Properties

Label 1323.4.a.s.1.2
Level $1323$
Weight $4$
Character 1323.1
Self dual yes
Analytic conductor $78.060$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1323,4,Mod(1,1323)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1323, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1323.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1323 = 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1323.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(78.0595269376\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{7}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 189)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.64575\) of defining polynomial
Character \(\chi\) \(=\) 1323.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.64575 q^{2} -1.00000 q^{4} +2.64575 q^{5} -23.8118 q^{8} +7.00000 q^{10} -18.5203 q^{11} +26.0000 q^{13} -55.0000 q^{16} +63.4980 q^{17} +35.0000 q^{19} -2.64575 q^{20} -49.0000 q^{22} +103.184 q^{23} -118.000 q^{25} +68.7895 q^{26} +5.29150 q^{29} +75.0000 q^{31} +44.9778 q^{32} +168.000 q^{34} -111.000 q^{37} +92.6013 q^{38} -63.0000 q^{40} -478.881 q^{41} -328.000 q^{43} +18.5203 q^{44} +273.000 q^{46} -380.988 q^{47} -312.199 q^{50} -26.0000 q^{52} -126.996 q^{53} -49.0000 q^{55} +14.0000 q^{58} -126.996 q^{59} +152.000 q^{61} +198.431 q^{62} +559.000 q^{64} +68.7895 q^{65} +202.000 q^{67} -63.4980 q^{68} -1055.65 q^{71} -672.000 q^{73} -293.678 q^{74} -35.0000 q^{76} -988.000 q^{79} -145.516 q^{80} -1267.00 q^{82} +142.871 q^{83} +168.000 q^{85} -867.806 q^{86} +441.000 q^{88} -965.699 q^{89} -103.184 q^{92} -1008.00 q^{94} +92.6013 q^{95} +492.000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} + 14 q^{10} + 52 q^{13} - 110 q^{16} + 70 q^{19} - 98 q^{22} - 236 q^{25} + 150 q^{31} + 336 q^{34} - 222 q^{37} - 126 q^{40} - 656 q^{43} + 546 q^{46} - 52 q^{52} - 98 q^{55} + 28 q^{58}+ \cdots + 984 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.64575 0.935414 0.467707 0.883883i \(-0.345080\pi\)
0.467707 + 0.883883i \(0.345080\pi\)
\(3\) 0 0
\(4\) −1.00000 −0.125000
\(5\) 2.64575 0.236643 0.118322 0.992975i \(-0.462249\pi\)
0.118322 + 0.992975i \(0.462249\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −23.8118 −1.05234
\(9\) 0 0
\(10\) 7.00000 0.221359
\(11\) −18.5203 −0.507643 −0.253821 0.967251i \(-0.581688\pi\)
−0.253821 + 0.967251i \(0.581688\pi\)
\(12\) 0 0
\(13\) 26.0000 0.554700 0.277350 0.960769i \(-0.410544\pi\)
0.277350 + 0.960769i \(0.410544\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −55.0000 −0.859375
\(17\) 63.4980 0.905914 0.452957 0.891532i \(-0.350369\pi\)
0.452957 + 0.891532i \(0.350369\pi\)
\(18\) 0 0
\(19\) 35.0000 0.422608 0.211304 0.977420i \(-0.432229\pi\)
0.211304 + 0.977420i \(0.432229\pi\)
\(20\) −2.64575 −0.0295804
\(21\) 0 0
\(22\) −49.0000 −0.474856
\(23\) 103.184 0.935453 0.467726 0.883873i \(-0.345073\pi\)
0.467726 + 0.883873i \(0.345073\pi\)
\(24\) 0 0
\(25\) −118.000 −0.944000
\(26\) 68.7895 0.518875
\(27\) 0 0
\(28\) 0 0
\(29\) 5.29150 0.0338830 0.0169415 0.999856i \(-0.494607\pi\)
0.0169415 + 0.999856i \(0.494607\pi\)
\(30\) 0 0
\(31\) 75.0000 0.434529 0.217264 0.976113i \(-0.430287\pi\)
0.217264 + 0.976113i \(0.430287\pi\)
\(32\) 44.9778 0.248469
\(33\) 0 0
\(34\) 168.000 0.847405
\(35\) 0 0
\(36\) 0 0
\(37\) −111.000 −0.493197 −0.246598 0.969118i \(-0.579313\pi\)
−0.246598 + 0.969118i \(0.579313\pi\)
\(38\) 92.6013 0.395314
\(39\) 0 0
\(40\) −63.0000 −0.249029
\(41\) −478.881 −1.82411 −0.912057 0.410064i \(-0.865506\pi\)
−0.912057 + 0.410064i \(0.865506\pi\)
\(42\) 0 0
\(43\) −328.000 −1.16324 −0.581622 0.813459i \(-0.697582\pi\)
−0.581622 + 0.813459i \(0.697582\pi\)
\(44\) 18.5203 0.0634553
\(45\) 0 0
\(46\) 273.000 0.875036
\(47\) −380.988 −1.18240 −0.591200 0.806525i \(-0.701346\pi\)
−0.591200 + 0.806525i \(0.701346\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −312.199 −0.883031
\(51\) 0 0
\(52\) −26.0000 −0.0693375
\(53\) −126.996 −0.329137 −0.164568 0.986366i \(-0.552623\pi\)
−0.164568 + 0.986366i \(0.552623\pi\)
\(54\) 0 0
\(55\) −49.0000 −0.120130
\(56\) 0 0
\(57\) 0 0
\(58\) 14.0000 0.0316947
\(59\) −126.996 −0.280228 −0.140114 0.990135i \(-0.544747\pi\)
−0.140114 + 0.990135i \(0.544747\pi\)
\(60\) 0 0
\(61\) 152.000 0.319043 0.159521 0.987194i \(-0.449005\pi\)
0.159521 + 0.987194i \(0.449005\pi\)
\(62\) 198.431 0.406465
\(63\) 0 0
\(64\) 559.000 1.09180
\(65\) 68.7895 0.131266
\(66\) 0 0
\(67\) 202.000 0.368332 0.184166 0.982895i \(-0.441042\pi\)
0.184166 + 0.982895i \(0.441042\pi\)
\(68\) −63.4980 −0.113239
\(69\) 0 0
\(70\) 0 0
\(71\) −1055.65 −1.76455 −0.882276 0.470733i \(-0.843990\pi\)
−0.882276 + 0.470733i \(0.843990\pi\)
\(72\) 0 0
\(73\) −672.000 −1.07742 −0.538710 0.842491i \(-0.681088\pi\)
−0.538710 + 0.842491i \(0.681088\pi\)
\(74\) −293.678 −0.461344
\(75\) 0 0
\(76\) −35.0000 −0.0528260
\(77\) 0 0
\(78\) 0 0
\(79\) −988.000 −1.40707 −0.703536 0.710660i \(-0.748397\pi\)
−0.703536 + 0.710660i \(0.748397\pi\)
\(80\) −145.516 −0.203365
\(81\) 0 0
\(82\) −1267.00 −1.70630
\(83\) 142.871 0.188941 0.0944704 0.995528i \(-0.469884\pi\)
0.0944704 + 0.995528i \(0.469884\pi\)
\(84\) 0 0
\(85\) 168.000 0.214378
\(86\) −867.806 −1.08812
\(87\) 0 0
\(88\) 441.000 0.534213
\(89\) −965.699 −1.15016 −0.575078 0.818098i \(-0.695028\pi\)
−0.575078 + 0.818098i \(0.695028\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −103.184 −0.116932
\(93\) 0 0
\(94\) −1008.00 −1.10603
\(95\) 92.6013 0.100007
\(96\) 0 0
\(97\) 492.000 0.515000 0.257500 0.966278i \(-0.417101\pi\)
0.257500 + 0.966278i \(0.417101\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 118.000 0.118000
\(101\) 1703.86 1.67862 0.839311 0.543652i \(-0.182959\pi\)
0.839311 + 0.543652i \(0.182959\pi\)
\(102\) 0 0
\(103\) −845.000 −0.808353 −0.404176 0.914681i \(-0.632442\pi\)
−0.404176 + 0.914681i \(0.632442\pi\)
\(104\) −619.106 −0.583734
\(105\) 0 0
\(106\) −336.000 −0.307879
\(107\) 1370.50 1.23824 0.619118 0.785298i \(-0.287490\pi\)
0.619118 + 0.785298i \(0.287490\pi\)
\(108\) 0 0
\(109\) 477.000 0.419159 0.209579 0.977792i \(-0.432791\pi\)
0.209579 + 0.977792i \(0.432791\pi\)
\(110\) −129.642 −0.112371
\(111\) 0 0
\(112\) 0 0
\(113\) −1709.16 −1.42287 −0.711433 0.702754i \(-0.751953\pi\)
−0.711433 + 0.702754i \(0.751953\pi\)
\(114\) 0 0
\(115\) 273.000 0.221369
\(116\) −5.29150 −0.00423538
\(117\) 0 0
\(118\) −336.000 −0.262130
\(119\) 0 0
\(120\) 0 0
\(121\) −988.000 −0.742299
\(122\) 402.154 0.298437
\(123\) 0 0
\(124\) −75.0000 −0.0543161
\(125\) −642.918 −0.460034
\(126\) 0 0
\(127\) −1590.00 −1.11094 −0.555471 0.831536i \(-0.687462\pi\)
−0.555471 + 0.831536i \(0.687462\pi\)
\(128\) 1119.15 0.772813
\(129\) 0 0
\(130\) 182.000 0.122788
\(131\) −656.146 −0.437617 −0.218808 0.975768i \(-0.570217\pi\)
−0.218808 + 0.975768i \(0.570217\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 534.442 0.344543
\(135\) 0 0
\(136\) −1512.00 −0.953330
\(137\) 428.612 0.267290 0.133645 0.991029i \(-0.457332\pi\)
0.133645 + 0.991029i \(0.457332\pi\)
\(138\) 0 0
\(139\) 2340.00 1.42789 0.713943 0.700204i \(-0.246907\pi\)
0.713943 + 0.700204i \(0.246907\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −2793.00 −1.65059
\(143\) −481.527 −0.281589
\(144\) 0 0
\(145\) 14.0000 0.00801818
\(146\) −1777.94 −1.00783
\(147\) 0 0
\(148\) 111.000 0.0616496
\(149\) 1889.07 1.03865 0.519323 0.854578i \(-0.326184\pi\)
0.519323 + 0.854578i \(0.326184\pi\)
\(150\) 0 0
\(151\) −370.000 −0.199405 −0.0997026 0.995017i \(-0.531789\pi\)
−0.0997026 + 0.995017i \(0.531789\pi\)
\(152\) −833.412 −0.444728
\(153\) 0 0
\(154\) 0 0
\(155\) 198.431 0.102828
\(156\) 0 0
\(157\) −490.000 −0.249084 −0.124542 0.992214i \(-0.539746\pi\)
−0.124542 + 0.992214i \(0.539746\pi\)
\(158\) −2614.00 −1.31620
\(159\) 0 0
\(160\) 119.000 0.0587986
\(161\) 0 0
\(162\) 0 0
\(163\) −3746.00 −1.80006 −0.900029 0.435831i \(-0.856455\pi\)
−0.900029 + 0.435831i \(0.856455\pi\)
\(164\) 478.881 0.228014
\(165\) 0 0
\(166\) 378.000 0.176738
\(167\) 1550.41 0.718409 0.359205 0.933259i \(-0.383048\pi\)
0.359205 + 0.933259i \(0.383048\pi\)
\(168\) 0 0
\(169\) −1521.00 −0.692308
\(170\) 444.486 0.200533
\(171\) 0 0
\(172\) 328.000 0.145406
\(173\) 2172.16 0.954604 0.477302 0.878739i \(-0.341615\pi\)
0.477302 + 0.878739i \(0.341615\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 1018.61 0.436255
\(177\) 0 0
\(178\) −2555.00 −1.07587
\(179\) −989.511 −0.413182 −0.206591 0.978427i \(-0.566237\pi\)
−0.206591 + 0.978427i \(0.566237\pi\)
\(180\) 0 0
\(181\) 2198.00 0.902630 0.451315 0.892365i \(-0.350955\pi\)
0.451315 + 0.892365i \(0.350955\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −2457.00 −0.984415
\(185\) −293.678 −0.116712
\(186\) 0 0
\(187\) −1176.00 −0.459880
\(188\) 380.988 0.147800
\(189\) 0 0
\(190\) 245.000 0.0935483
\(191\) −4431.63 −1.67886 −0.839429 0.543470i \(-0.817110\pi\)
−0.839429 + 0.543470i \(0.817110\pi\)
\(192\) 0 0
\(193\) 386.000 0.143963 0.0719816 0.997406i \(-0.477068\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(194\) 1301.71 0.481739
\(195\) 0 0
\(196\) 0 0
\(197\) −3455.35 −1.24966 −0.624831 0.780760i \(-0.714832\pi\)
−0.624831 + 0.780760i \(0.714832\pi\)
\(198\) 0 0
\(199\) 1605.00 0.571736 0.285868 0.958269i \(-0.407718\pi\)
0.285868 + 0.958269i \(0.407718\pi\)
\(200\) 2809.79 0.993410
\(201\) 0 0
\(202\) 4508.00 1.57021
\(203\) 0 0
\(204\) 0 0
\(205\) −1267.00 −0.431664
\(206\) −2235.66 −0.756145
\(207\) 0 0
\(208\) −1430.00 −0.476695
\(209\) −648.209 −0.214534
\(210\) 0 0
\(211\) −398.000 −0.129855 −0.0649276 0.997890i \(-0.520682\pi\)
−0.0649276 + 0.997890i \(0.520682\pi\)
\(212\) 126.996 0.0411421
\(213\) 0 0
\(214\) 3626.00 1.15826
\(215\) −867.806 −0.275274
\(216\) 0 0
\(217\) 0 0
\(218\) 1262.02 0.392087
\(219\) 0 0
\(220\) 49.0000 0.0150163
\(221\) 1650.95 0.502511
\(222\) 0 0
\(223\) −3577.00 −1.07414 −0.537071 0.843537i \(-0.680469\pi\)
−0.537071 + 0.843537i \(0.680469\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −4522.00 −1.33097
\(227\) 3540.02 1.03506 0.517531 0.855664i \(-0.326851\pi\)
0.517531 + 0.855664i \(0.326851\pi\)
\(228\) 0 0
\(229\) −5924.00 −1.70947 −0.854736 0.519064i \(-0.826281\pi\)
−0.854736 + 0.519064i \(0.826281\pi\)
\(230\) 722.290 0.207071
\(231\) 0 0
\(232\) −126.000 −0.0356565
\(233\) −2460.55 −0.691828 −0.345914 0.938266i \(-0.612431\pi\)
−0.345914 + 0.938266i \(0.612431\pi\)
\(234\) 0 0
\(235\) −1008.00 −0.279807
\(236\) 126.996 0.0350286
\(237\) 0 0
\(238\) 0 0
\(239\) 5190.96 1.40492 0.702459 0.711724i \(-0.252085\pi\)
0.702459 + 0.711724i \(0.252085\pi\)
\(240\) 0 0
\(241\) −6428.00 −1.71811 −0.859054 0.511885i \(-0.828947\pi\)
−0.859054 + 0.511885i \(0.828947\pi\)
\(242\) −2614.00 −0.694357
\(243\) 0 0
\(244\) −152.000 −0.0398803
\(245\) 0 0
\(246\) 0 0
\(247\) 910.000 0.234421
\(248\) −1785.88 −0.457273
\(249\) 0 0
\(250\) −1701.00 −0.430323
\(251\) 5915.90 1.48768 0.743841 0.668356i \(-0.233002\pi\)
0.743841 + 0.668356i \(0.233002\pi\)
\(252\) 0 0
\(253\) −1911.00 −0.474876
\(254\) −4206.74 −1.03919
\(255\) 0 0
\(256\) −1511.00 −0.368896
\(257\) −3098.17 −0.751980 −0.375990 0.926624i \(-0.622697\pi\)
−0.375990 + 0.926624i \(0.622697\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −68.7895 −0.0164083
\(261\) 0 0
\(262\) −1736.00 −0.409353
\(263\) 8029.86 1.88267 0.941335 0.337474i \(-0.109573\pi\)
0.941335 + 0.337474i \(0.109573\pi\)
\(264\) 0 0
\(265\) −336.000 −0.0778880
\(266\) 0 0
\(267\) 0 0
\(268\) −202.000 −0.0460415
\(269\) −8659.54 −1.96276 −0.981379 0.192083i \(-0.938476\pi\)
−0.981379 + 0.192083i \(0.938476\pi\)
\(270\) 0 0
\(271\) 380.000 0.0851784 0.0425892 0.999093i \(-0.486439\pi\)
0.0425892 + 0.999093i \(0.486439\pi\)
\(272\) −3492.39 −0.778520
\(273\) 0 0
\(274\) 1134.00 0.250027
\(275\) 2185.39 0.479215
\(276\) 0 0
\(277\) 6733.00 1.46046 0.730229 0.683203i \(-0.239413\pi\)
0.730229 + 0.683203i \(0.239413\pi\)
\(278\) 6191.06 1.33567
\(279\) 0 0
\(280\) 0 0
\(281\) 7249.36 1.53901 0.769503 0.638644i \(-0.220504\pi\)
0.769503 + 0.638644i \(0.220504\pi\)
\(282\) 0 0
\(283\) −2812.00 −0.590657 −0.295329 0.955396i \(-0.595429\pi\)
−0.295329 + 0.955396i \(0.595429\pi\)
\(284\) 1055.65 0.220569
\(285\) 0 0
\(286\) −1274.00 −0.263403
\(287\) 0 0
\(288\) 0 0
\(289\) −881.000 −0.179320
\(290\) 37.0405 0.00750032
\(291\) 0 0
\(292\) 672.000 0.134677
\(293\) 4497.78 0.896802 0.448401 0.893833i \(-0.351994\pi\)
0.448401 + 0.893833i \(0.351994\pi\)
\(294\) 0 0
\(295\) −336.000 −0.0663142
\(296\) 2643.11 0.519011
\(297\) 0 0
\(298\) 4998.00 0.971565
\(299\) 2682.79 0.518896
\(300\) 0 0
\(301\) 0 0
\(302\) −978.928 −0.186526
\(303\) 0 0
\(304\) −1925.00 −0.363179
\(305\) 402.154 0.0754993
\(306\) 0 0
\(307\) 4079.00 0.758309 0.379154 0.925333i \(-0.376215\pi\)
0.379154 + 0.925333i \(0.376215\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 525.000 0.0961871
\(311\) −2206.56 −0.402323 −0.201161 0.979558i \(-0.564472\pi\)
−0.201161 + 0.979558i \(0.564472\pi\)
\(312\) 0 0
\(313\) −5054.00 −0.912680 −0.456340 0.889805i \(-0.650840\pi\)
−0.456340 + 0.889805i \(0.650840\pi\)
\(314\) −1296.42 −0.232997
\(315\) 0 0
\(316\) 988.000 0.175884
\(317\) 380.988 0.0675029 0.0337515 0.999430i \(-0.489255\pi\)
0.0337515 + 0.999430i \(0.489255\pi\)
\(318\) 0 0
\(319\) −98.0000 −0.0172005
\(320\) 1478.97 0.258366
\(321\) 0 0
\(322\) 0 0
\(323\) 2222.43 0.382846
\(324\) 0 0
\(325\) −3068.00 −0.523637
\(326\) −9910.98 −1.68380
\(327\) 0 0
\(328\) 11403.0 1.91959
\(329\) 0 0
\(330\) 0 0
\(331\) −6820.00 −1.13251 −0.566255 0.824230i \(-0.691608\pi\)
−0.566255 + 0.824230i \(0.691608\pi\)
\(332\) −142.871 −0.0236176
\(333\) 0 0
\(334\) 4102.00 0.672010
\(335\) 534.442 0.0871632
\(336\) 0 0
\(337\) 4051.00 0.654813 0.327407 0.944884i \(-0.393825\pi\)
0.327407 + 0.944884i \(0.393825\pi\)
\(338\) −4024.19 −0.647595
\(339\) 0 0
\(340\) −168.000 −0.0267973
\(341\) −1389.02 −0.220585
\(342\) 0 0
\(343\) 0 0
\(344\) 7810.26 1.22413
\(345\) 0 0
\(346\) 5747.00 0.892950
\(347\) 1351.98 0.209159 0.104579 0.994517i \(-0.466650\pi\)
0.104579 + 0.994517i \(0.466650\pi\)
\(348\) 0 0
\(349\) −12406.0 −1.90280 −0.951401 0.307955i \(-0.900356\pi\)
−0.951401 + 0.307955i \(0.900356\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −833.000 −0.126134
\(353\) 12861.0 1.93916 0.969578 0.244784i \(-0.0787171\pi\)
0.969578 + 0.244784i \(0.0787171\pi\)
\(354\) 0 0
\(355\) −2793.00 −0.417569
\(356\) 965.699 0.143770
\(357\) 0 0
\(358\) −2618.00 −0.386496
\(359\) 6058.77 0.890723 0.445362 0.895351i \(-0.353075\pi\)
0.445362 + 0.895351i \(0.353075\pi\)
\(360\) 0 0
\(361\) −5634.00 −0.821403
\(362\) 5815.36 0.844333
\(363\) 0 0
\(364\) 0 0
\(365\) −1777.94 −0.254964
\(366\) 0 0
\(367\) 8085.00 1.14996 0.574978 0.818169i \(-0.305011\pi\)
0.574978 + 0.818169i \(0.305011\pi\)
\(368\) −5675.14 −0.803905
\(369\) 0 0
\(370\) −777.000 −0.109174
\(371\) 0 0
\(372\) 0 0
\(373\) 11657.0 1.61817 0.809084 0.587693i \(-0.199964\pi\)
0.809084 + 0.587693i \(0.199964\pi\)
\(374\) −3111.40 −0.430179
\(375\) 0 0
\(376\) 9072.00 1.24429
\(377\) 137.579 0.0187949
\(378\) 0 0
\(379\) −8868.00 −1.20190 −0.600948 0.799288i \(-0.705210\pi\)
−0.600948 + 0.799288i \(0.705210\pi\)
\(380\) −92.6013 −0.0125009
\(381\) 0 0
\(382\) −11725.0 −1.57043
\(383\) 10112.1 1.34909 0.674546 0.738233i \(-0.264339\pi\)
0.674546 + 0.738233i \(0.264339\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 1021.26 0.134665
\(387\) 0 0
\(388\) −492.000 −0.0643750
\(389\) 9175.47 1.19592 0.597962 0.801524i \(-0.295977\pi\)
0.597962 + 0.801524i \(0.295977\pi\)
\(390\) 0 0
\(391\) 6552.00 0.847440
\(392\) 0 0
\(393\) 0 0
\(394\) −9142.00 −1.16895
\(395\) −2614.00 −0.332974
\(396\) 0 0
\(397\) −1986.00 −0.251069 −0.125535 0.992089i \(-0.540065\pi\)
−0.125535 + 0.992089i \(0.540065\pi\)
\(398\) 4246.43 0.534810
\(399\) 0 0
\(400\) 6490.00 0.811250
\(401\) −3476.52 −0.432940 −0.216470 0.976289i \(-0.569454\pi\)
−0.216470 + 0.976289i \(0.569454\pi\)
\(402\) 0 0
\(403\) 1950.00 0.241033
\(404\) −1703.86 −0.209828
\(405\) 0 0
\(406\) 0 0
\(407\) 2055.75 0.250368
\(408\) 0 0
\(409\) 5056.00 0.611255 0.305627 0.952151i \(-0.401134\pi\)
0.305627 + 0.952151i \(0.401134\pi\)
\(410\) −3352.17 −0.403785
\(411\) 0 0
\(412\) 845.000 0.101044
\(413\) 0 0
\(414\) 0 0
\(415\) 378.000 0.0447115
\(416\) 1169.42 0.137826
\(417\) 0 0
\(418\) −1715.00 −0.200678
\(419\) −1412.83 −0.164729 −0.0823643 0.996602i \(-0.526247\pi\)
−0.0823643 + 0.996602i \(0.526247\pi\)
\(420\) 0 0
\(421\) −9343.00 −1.08159 −0.540796 0.841154i \(-0.681877\pi\)
−0.540796 + 0.841154i \(0.681877\pi\)
\(422\) −1053.01 −0.121468
\(423\) 0 0
\(424\) 3024.00 0.346364
\(425\) −7492.77 −0.855183
\(426\) 0 0
\(427\) 0 0
\(428\) −1370.50 −0.154779
\(429\) 0 0
\(430\) −2296.00 −0.257495
\(431\) 2087.50 0.233298 0.116649 0.993173i \(-0.462785\pi\)
0.116649 + 0.993173i \(0.462785\pi\)
\(432\) 0 0
\(433\) −15622.0 −1.73382 −0.866912 0.498462i \(-0.833898\pi\)
−0.866912 + 0.498462i \(0.833898\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −477.000 −0.0523949
\(437\) 3611.45 0.395330
\(438\) 0 0
\(439\) 11424.0 1.24200 0.621000 0.783811i \(-0.286727\pi\)
0.621000 + 0.783811i \(0.286727\pi\)
\(440\) 1166.78 0.126418
\(441\) 0 0
\(442\) 4368.00 0.470056
\(443\) 1722.38 0.184724 0.0923622 0.995725i \(-0.470558\pi\)
0.0923622 + 0.995725i \(0.470558\pi\)
\(444\) 0 0
\(445\) −2555.00 −0.272177
\(446\) −9463.85 −1.00477
\(447\) 0 0
\(448\) 0 0
\(449\) 1317.58 0.138487 0.0692435 0.997600i \(-0.477941\pi\)
0.0692435 + 0.997600i \(0.477941\pi\)
\(450\) 0 0
\(451\) 8869.00 0.925998
\(452\) 1709.16 0.177858
\(453\) 0 0
\(454\) 9366.00 0.968212
\(455\) 0 0
\(456\) 0 0
\(457\) 5041.00 0.515991 0.257996 0.966146i \(-0.416938\pi\)
0.257996 + 0.966146i \(0.416938\pi\)
\(458\) −15673.4 −1.59906
\(459\) 0 0
\(460\) −273.000 −0.0276711
\(461\) 5061.32 0.511343 0.255672 0.966764i \(-0.417703\pi\)
0.255672 + 0.966764i \(0.417703\pi\)
\(462\) 0 0
\(463\) 4426.00 0.444263 0.222131 0.975017i \(-0.428699\pi\)
0.222131 + 0.975017i \(0.428699\pi\)
\(464\) −291.033 −0.0291182
\(465\) 0 0
\(466\) −6510.00 −0.647146
\(467\) −9556.45 −0.946938 −0.473469 0.880811i \(-0.656998\pi\)
−0.473469 + 0.880811i \(0.656998\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) −2666.92 −0.261736
\(471\) 0 0
\(472\) 3024.00 0.294896
\(473\) 6074.65 0.590513
\(474\) 0 0
\(475\) −4130.00 −0.398942
\(476\) 0 0
\(477\) 0 0
\(478\) 13734.0 1.31418
\(479\) −1248.79 −0.119121 −0.0595604 0.998225i \(-0.518970\pi\)
−0.0595604 + 0.998225i \(0.518970\pi\)
\(480\) 0 0
\(481\) −2886.00 −0.273576
\(482\) −17006.9 −1.60714
\(483\) 0 0
\(484\) 988.000 0.0927874
\(485\) 1301.71 0.121871
\(486\) 0 0
\(487\) 1888.00 0.175674 0.0878372 0.996135i \(-0.472004\pi\)
0.0878372 + 0.996135i \(0.472004\pi\)
\(488\) −3619.39 −0.335742
\(489\) 0 0
\(490\) 0 0
\(491\) −18713.4 −1.72001 −0.860004 0.510287i \(-0.829539\pi\)
−0.860004 + 0.510287i \(0.829539\pi\)
\(492\) 0 0
\(493\) 336.000 0.0306951
\(494\) 2407.63 0.219280
\(495\) 0 0
\(496\) −4125.00 −0.373423
\(497\) 0 0
\(498\) 0 0
\(499\) 21148.0 1.89722 0.948612 0.316442i \(-0.102488\pi\)
0.948612 + 0.316442i \(0.102488\pi\)
\(500\) 642.918 0.0575043
\(501\) 0 0
\(502\) 15652.0 1.39160
\(503\) 2968.53 0.263142 0.131571 0.991307i \(-0.457998\pi\)
0.131571 + 0.991307i \(0.457998\pi\)
\(504\) 0 0
\(505\) 4508.00 0.397234
\(506\) −5056.03 −0.444206
\(507\) 0 0
\(508\) 1590.00 0.138868
\(509\) −201.077 −0.0175100 −0.00875500 0.999962i \(-0.502787\pi\)
−0.00875500 + 0.999962i \(0.502787\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −12951.0 −1.11788
\(513\) 0 0
\(514\) −8197.00 −0.703413
\(515\) −2235.66 −0.191291
\(516\) 0 0
\(517\) 7056.00 0.600237
\(518\) 0 0
\(519\) 0 0
\(520\) −1638.00 −0.138137
\(521\) 11056.6 0.929747 0.464874 0.885377i \(-0.346100\pi\)
0.464874 + 0.885377i \(0.346100\pi\)
\(522\) 0 0
\(523\) 593.000 0.0495795 0.0247898 0.999693i \(-0.492108\pi\)
0.0247898 + 0.999693i \(0.492108\pi\)
\(524\) 656.146 0.0547021
\(525\) 0 0
\(526\) 21245.0 1.76108
\(527\) 4762.35 0.393646
\(528\) 0 0
\(529\) −1520.00 −0.124928
\(530\) −888.972 −0.0728575
\(531\) 0 0
\(532\) 0 0
\(533\) −12450.9 −1.01184
\(534\) 0 0
\(535\) 3626.00 0.293020
\(536\) −4809.98 −0.387611
\(537\) 0 0
\(538\) −22911.0 −1.83599
\(539\) 0 0
\(540\) 0 0
\(541\) 15689.0 1.24681 0.623404 0.781900i \(-0.285749\pi\)
0.623404 + 0.781900i \(0.285749\pi\)
\(542\) 1005.39 0.0796771
\(543\) 0 0
\(544\) 2856.00 0.225092
\(545\) 1262.02 0.0991911
\(546\) 0 0
\(547\) −20840.0 −1.62898 −0.814492 0.580175i \(-0.802984\pi\)
−0.814492 + 0.580175i \(0.802984\pi\)
\(548\) −428.612 −0.0334113
\(549\) 0 0
\(550\) 5782.00 0.448264
\(551\) 185.203 0.0143192
\(552\) 0 0
\(553\) 0 0
\(554\) 17813.8 1.36613
\(555\) 0 0
\(556\) −2340.00 −0.178486
\(557\) −15742.2 −1.19752 −0.598761 0.800928i \(-0.704340\pi\)
−0.598761 + 0.800928i \(0.704340\pi\)
\(558\) 0 0
\(559\) −8528.00 −0.645252
\(560\) 0 0
\(561\) 0 0
\(562\) 19180.0 1.43961
\(563\) 11487.9 0.859956 0.429978 0.902839i \(-0.358521\pi\)
0.429978 + 0.902839i \(0.358521\pi\)
\(564\) 0 0
\(565\) −4522.00 −0.336711
\(566\) −7439.85 −0.552509
\(567\) 0 0
\(568\) 25137.0 1.85691
\(569\) −216.952 −0.0159843 −0.00799217 0.999968i \(-0.502544\pi\)
−0.00799217 + 0.999968i \(0.502544\pi\)
\(570\) 0 0
\(571\) −20494.0 −1.50201 −0.751005 0.660297i \(-0.770430\pi\)
−0.751005 + 0.660297i \(0.770430\pi\)
\(572\) 481.527 0.0351987
\(573\) 0 0
\(574\) 0 0
\(575\) −12175.7 −0.883067
\(576\) 0 0
\(577\) 7814.00 0.563780 0.281890 0.959447i \(-0.409039\pi\)
0.281890 + 0.959447i \(0.409039\pi\)
\(578\) −2330.91 −0.167739
\(579\) 0 0
\(580\) −14.0000 −0.00100227
\(581\) 0 0
\(582\) 0 0
\(583\) 2352.00 0.167084
\(584\) 16001.5 1.13381
\(585\) 0 0
\(586\) 11900.0 0.838881
\(587\) −18737.2 −1.31749 −0.658746 0.752366i \(-0.728913\pi\)
−0.658746 + 0.752366i \(0.728913\pi\)
\(588\) 0 0
\(589\) 2625.00 0.183635
\(590\) −888.972 −0.0620312
\(591\) 0 0
\(592\) 6105.00 0.423841
\(593\) −6341.87 −0.439172 −0.219586 0.975593i \(-0.570471\pi\)
−0.219586 + 0.975593i \(0.570471\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1889.07 −0.129831
\(597\) 0 0
\(598\) 7098.00 0.485383
\(599\) 6500.61 0.443419 0.221709 0.975113i \(-0.428836\pi\)
0.221709 + 0.975113i \(0.428836\pi\)
\(600\) 0 0
\(601\) −18594.0 −1.26201 −0.631003 0.775781i \(-0.717356\pi\)
−0.631003 + 0.775781i \(0.717356\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 370.000 0.0249256
\(605\) −2614.00 −0.175660
\(606\) 0 0
\(607\) −13916.0 −0.930532 −0.465266 0.885171i \(-0.654041\pi\)
−0.465266 + 0.885171i \(0.654041\pi\)
\(608\) 1574.22 0.105005
\(609\) 0 0
\(610\) 1064.00 0.0706231
\(611\) −9905.69 −0.655878
\(612\) 0 0
\(613\) −953.000 −0.0627917 −0.0313958 0.999507i \(-0.509995\pi\)
−0.0313958 + 0.999507i \(0.509995\pi\)
\(614\) 10792.0 0.709333
\(615\) 0 0
\(616\) 0 0
\(617\) −10921.7 −0.712625 −0.356312 0.934367i \(-0.615966\pi\)
−0.356312 + 0.934367i \(0.615966\pi\)
\(618\) 0 0
\(619\) 21467.0 1.39391 0.696956 0.717114i \(-0.254537\pi\)
0.696956 + 0.717114i \(0.254537\pi\)
\(620\) −198.431 −0.0128535
\(621\) 0 0
\(622\) −5838.00 −0.376338
\(623\) 0 0
\(624\) 0 0
\(625\) 13049.0 0.835136
\(626\) −13371.6 −0.853734
\(627\) 0 0
\(628\) 490.000 0.0311356
\(629\) −7048.28 −0.446794
\(630\) 0 0
\(631\) −25012.0 −1.57799 −0.788995 0.614399i \(-0.789398\pi\)
−0.788995 + 0.614399i \(0.789398\pi\)
\(632\) 23526.0 1.48072
\(633\) 0 0
\(634\) 1008.00 0.0631432
\(635\) −4206.74 −0.262897
\(636\) 0 0
\(637\) 0 0
\(638\) −259.284 −0.0160896
\(639\) 0 0
\(640\) 2961.00 0.182881
\(641\) −4111.50 −0.253345 −0.126673 0.991945i \(-0.540430\pi\)
−0.126673 + 0.991945i \(0.540430\pi\)
\(642\) 0 0
\(643\) 9571.00 0.587004 0.293502 0.955959i \(-0.405179\pi\)
0.293502 + 0.955959i \(0.405179\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 5880.00 0.358120
\(647\) 22150.2 1.34593 0.672964 0.739675i \(-0.265021\pi\)
0.672964 + 0.739675i \(0.265021\pi\)
\(648\) 0 0
\(649\) 2352.00 0.142256
\(650\) −8117.17 −0.489818
\(651\) 0 0
\(652\) 3746.00 0.225007
\(653\) 19652.6 1.17774 0.588872 0.808226i \(-0.299572\pi\)
0.588872 + 0.808226i \(0.299572\pi\)
\(654\) 0 0
\(655\) −1736.00 −0.103559
\(656\) 26338.5 1.56760
\(657\) 0 0
\(658\) 0 0
\(659\) −12421.8 −0.734271 −0.367136 0.930167i \(-0.619662\pi\)
−0.367136 + 0.930167i \(0.619662\pi\)
\(660\) 0 0
\(661\) 21350.0 1.25631 0.628153 0.778090i \(-0.283811\pi\)
0.628153 + 0.778090i \(0.283811\pi\)
\(662\) −18044.0 −1.05937
\(663\) 0 0
\(664\) −3402.00 −0.198830
\(665\) 0 0
\(666\) 0 0
\(667\) 546.000 0.0316960
\(668\) −1550.41 −0.0898012
\(669\) 0 0
\(670\) 1414.00 0.0815337
\(671\) −2815.08 −0.161960
\(672\) 0 0
\(673\) 10750.0 0.615724 0.307862 0.951431i \(-0.400387\pi\)
0.307862 + 0.951431i \(0.400387\pi\)
\(674\) 10717.9 0.612522
\(675\) 0 0
\(676\) 1521.00 0.0865385
\(677\) −20438.4 −1.16028 −0.580142 0.814515i \(-0.697003\pi\)
−0.580142 + 0.814515i \(0.697003\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −4000.38 −0.225599
\(681\) 0 0
\(682\) −3675.00 −0.206339
\(683\) 16041.2 0.898681 0.449340 0.893361i \(-0.351659\pi\)
0.449340 + 0.893361i \(0.351659\pi\)
\(684\) 0 0
\(685\) 1134.00 0.0632524
\(686\) 0 0
\(687\) 0 0
\(688\) 18040.0 0.999664
\(689\) −3301.90 −0.182572
\(690\) 0 0
\(691\) 28072.0 1.54545 0.772727 0.634738i \(-0.218892\pi\)
0.772727 + 0.634738i \(0.218892\pi\)
\(692\) −2172.16 −0.119325
\(693\) 0 0
\(694\) 3577.00 0.195650
\(695\) 6191.06 0.337900
\(696\) 0 0
\(697\) −30408.0 −1.65249
\(698\) −32823.2 −1.77991
\(699\) 0 0
\(700\) 0 0
\(701\) 15096.7 0.813399 0.406700 0.913562i \(-0.366680\pi\)
0.406700 + 0.913562i \(0.366680\pi\)
\(702\) 0 0
\(703\) −3885.00 −0.208429
\(704\) −10352.8 −0.554243
\(705\) 0 0
\(706\) 34027.0 1.81391
\(707\) 0 0
\(708\) 0 0
\(709\) −7671.00 −0.406334 −0.203167 0.979144i \(-0.565123\pi\)
−0.203167 + 0.979144i \(0.565123\pi\)
\(710\) −7389.58 −0.390600
\(711\) 0 0
\(712\) 22995.0 1.21036
\(713\) 7738.82 0.406481
\(714\) 0 0
\(715\) −1274.00 −0.0666362
\(716\) 989.511 0.0516477
\(717\) 0 0
\(718\) 16030.0 0.833195
\(719\) −22732.3 −1.17910 −0.589549 0.807733i \(-0.700695\pi\)
−0.589549 + 0.807733i \(0.700695\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −14906.2 −0.768352
\(723\) 0 0
\(724\) −2198.00 −0.112829
\(725\) −624.397 −0.0319856
\(726\) 0 0
\(727\) −26360.0 −1.34476 −0.672378 0.740208i \(-0.734727\pi\)
−0.672378 + 0.740208i \(0.734727\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −4704.00 −0.238497
\(731\) −20827.4 −1.05380
\(732\) 0 0
\(733\) 16956.0 0.854412 0.427206 0.904154i \(-0.359498\pi\)
0.427206 + 0.904154i \(0.359498\pi\)
\(734\) 21390.9 1.07568
\(735\) 0 0
\(736\) 4641.00 0.232431
\(737\) −3741.09 −0.186981
\(738\) 0 0
\(739\) −26538.0 −1.32100 −0.660498 0.750828i \(-0.729655\pi\)
−0.660498 + 0.750828i \(0.729655\pi\)
\(740\) 293.678 0.0145890
\(741\) 0 0
\(742\) 0 0
\(743\) 15739.6 0.777159 0.388579 0.921415i \(-0.372966\pi\)
0.388579 + 0.921415i \(0.372966\pi\)
\(744\) 0 0
\(745\) 4998.00 0.245789
\(746\) 30841.5 1.51366
\(747\) 0 0
\(748\) 1176.00 0.0574851
\(749\) 0 0
\(750\) 0 0
\(751\) 10792.0 0.524375 0.262188 0.965017i \(-0.415556\pi\)
0.262188 + 0.965017i \(0.415556\pi\)
\(752\) 20954.4 1.01613
\(753\) 0 0
\(754\) 364.000 0.0175810
\(755\) −978.928 −0.0471879
\(756\) 0 0
\(757\) −16330.0 −0.784047 −0.392024 0.919955i \(-0.628225\pi\)
−0.392024 + 0.919955i \(0.628225\pi\)
\(758\) −23462.5 −1.12427
\(759\) 0 0
\(760\) −2205.00 −0.105242
\(761\) 24415.0 1.16300 0.581500 0.813546i \(-0.302466\pi\)
0.581500 + 0.813546i \(0.302466\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 4431.63 0.209857
\(765\) 0 0
\(766\) 26754.0 1.26196
\(767\) −3301.90 −0.155443
\(768\) 0 0
\(769\) 9058.00 0.424759 0.212380 0.977187i \(-0.431879\pi\)
0.212380 + 0.977187i \(0.431879\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −386.000 −0.0179954
\(773\) 7236.13 0.336695 0.168348 0.985728i \(-0.446157\pi\)
0.168348 + 0.985728i \(0.446157\pi\)
\(774\) 0 0
\(775\) −8850.00 −0.410195
\(776\) −11715.4 −0.541956
\(777\) 0 0
\(778\) 24276.0 1.11868
\(779\) −16760.8 −0.770885
\(780\) 0 0
\(781\) 19551.0 0.895762
\(782\) 17335.0 0.792707
\(783\) 0 0
\(784\) 0 0
\(785\) −1296.42 −0.0589441
\(786\) 0 0
\(787\) 23732.0 1.07491 0.537455 0.843292i \(-0.319386\pi\)
0.537455 + 0.843292i \(0.319386\pi\)
\(788\) 3455.35 0.156208
\(789\) 0 0
\(790\) −6916.00 −0.311469
\(791\) 0 0
\(792\) 0 0
\(793\) 3952.00 0.176973
\(794\) −5254.46 −0.234854
\(795\) 0 0
\(796\) −1605.00 −0.0714670
\(797\) 16020.0 0.711993 0.355996 0.934487i \(-0.384142\pi\)
0.355996 + 0.934487i \(0.384142\pi\)
\(798\) 0 0
\(799\) −24192.0 −1.07115
\(800\) −5307.38 −0.234555
\(801\) 0 0
\(802\) −9198.00 −0.404978
\(803\) 12445.6 0.546944
\(804\) 0 0
\(805\) 0 0
\(806\) 5159.22 0.225466
\(807\) 0 0
\(808\) −40572.0 −1.76648
\(809\) 6651.42 0.289062 0.144531 0.989500i \(-0.453833\pi\)
0.144531 + 0.989500i \(0.453833\pi\)
\(810\) 0 0
\(811\) 7903.00 0.342185 0.171092 0.985255i \(-0.445270\pi\)
0.171092 + 0.985255i \(0.445270\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 5439.00 0.234198
\(815\) −9910.98 −0.425971
\(816\) 0 0
\(817\) −11480.0 −0.491597
\(818\) 13376.9 0.571776
\(819\) 0 0
\(820\) 1267.00 0.0539580
\(821\) −4847.02 −0.206044 −0.103022 0.994679i \(-0.532851\pi\)
−0.103022 + 0.994679i \(0.532851\pi\)
\(822\) 0 0
\(823\) 11598.0 0.491228 0.245614 0.969368i \(-0.421010\pi\)
0.245614 + 0.969368i \(0.421010\pi\)
\(824\) 20120.9 0.850663
\(825\) 0 0
\(826\) 0 0
\(827\) 20406.7 0.858053 0.429026 0.903292i \(-0.358857\pi\)
0.429026 + 0.903292i \(0.358857\pi\)
\(828\) 0 0
\(829\) −5348.00 −0.224058 −0.112029 0.993705i \(-0.535735\pi\)
−0.112029 + 0.993705i \(0.535735\pi\)
\(830\) 1000.09 0.0418238
\(831\) 0 0
\(832\) 14534.0 0.605620
\(833\) 0 0
\(834\) 0 0
\(835\) 4102.00 0.170007
\(836\) 648.209 0.0268167
\(837\) 0 0
\(838\) −3738.00 −0.154090
\(839\) 36728.3 1.51133 0.755663 0.654961i \(-0.227315\pi\)
0.755663 + 0.654961i \(0.227315\pi\)
\(840\) 0 0
\(841\) −24361.0 −0.998852
\(842\) −24719.3 −1.01174
\(843\) 0 0
\(844\) 398.000 0.0162319
\(845\) −4024.19 −0.163830
\(846\) 0 0
\(847\) 0 0
\(848\) 6984.78 0.282852
\(849\) 0 0
\(850\) −19824.0 −0.799950
\(851\) −11453.5 −0.461362
\(852\) 0 0
\(853\) −40628.0 −1.63080 −0.815402 0.578895i \(-0.803484\pi\)
−0.815402 + 0.578895i \(0.803484\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −32634.0 −1.30305
\(857\) −45065.1 −1.79626 −0.898129 0.439731i \(-0.855074\pi\)
−0.898129 + 0.439731i \(0.855074\pi\)
\(858\) 0 0
\(859\) −30329.0 −1.20467 −0.602335 0.798243i \(-0.705763\pi\)
−0.602335 + 0.798243i \(0.705763\pi\)
\(860\) 867.806 0.0344092
\(861\) 0 0
\(862\) 5523.00 0.218230
\(863\) −18176.3 −0.716951 −0.358476 0.933539i \(-0.616703\pi\)
−0.358476 + 0.933539i \(0.616703\pi\)
\(864\) 0 0
\(865\) 5747.00 0.225900
\(866\) −41331.9 −1.62184
\(867\) 0 0
\(868\) 0 0
\(869\) 18298.0 0.714290
\(870\) 0 0
\(871\) 5252.00 0.204314
\(872\) −11358.2 −0.441098
\(873\) 0 0
\(874\) 9555.00 0.369797
\(875\) 0 0
\(876\) 0 0
\(877\) −3326.00 −0.128063 −0.0640314 0.997948i \(-0.520396\pi\)
−0.0640314 + 0.997948i \(0.520396\pi\)
\(878\) 30225.1 1.16178
\(879\) 0 0
\(880\) 2695.00 0.103237
\(881\) −23438.7 −0.896334 −0.448167 0.893950i \(-0.647923\pi\)
−0.448167 + 0.893950i \(0.647923\pi\)
\(882\) 0 0
\(883\) −10768.0 −0.410387 −0.205194 0.978721i \(-0.565782\pi\)
−0.205194 + 0.978721i \(0.565782\pi\)
\(884\) −1650.95 −0.0628138
\(885\) 0 0
\(886\) 4557.00 0.172794
\(887\) 25087.0 0.949650 0.474825 0.880080i \(-0.342511\pi\)
0.474825 + 0.880080i \(0.342511\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −6759.89 −0.254598
\(891\) 0 0
\(892\) 3577.00 0.134268
\(893\) −13334.6 −0.499692
\(894\) 0 0
\(895\) −2618.00 −0.0977766
\(896\) 0 0
\(897\) 0 0
\(898\) 3486.00 0.129543
\(899\) 396.863 0.0147232
\(900\) 0 0
\(901\) −8064.00 −0.298170
\(902\) 23465.2 0.866191
\(903\) 0 0
\(904\) 40698.0 1.49734
\(905\) 5815.36 0.213601
\(906\) 0 0
\(907\) 10550.0 0.386226 0.193113 0.981177i \(-0.438142\pi\)
0.193113 + 0.981177i \(0.438142\pi\)
\(908\) −3540.02 −0.129383
\(909\) 0 0
\(910\) 0 0
\(911\) −2492.30 −0.0906405 −0.0453203 0.998973i \(-0.514431\pi\)
−0.0453203 + 0.998973i \(0.514431\pi\)
\(912\) 0 0
\(913\) −2646.00 −0.0959144
\(914\) 13337.2 0.482666
\(915\) 0 0
\(916\) 5924.00 0.213684
\(917\) 0 0
\(918\) 0 0
\(919\) 27056.0 0.971159 0.485579 0.874193i \(-0.338609\pi\)
0.485579 + 0.874193i \(0.338609\pi\)
\(920\) −6500.61 −0.232955
\(921\) 0 0
\(922\) 13391.0 0.478318
\(923\) −27447.0 −0.978797
\(924\) 0 0
\(925\) 13098.0 0.465578
\(926\) 11710.1 0.415570
\(927\) 0 0
\(928\) 238.000 0.00841889
\(929\) 43326.8 1.53015 0.765074 0.643943i \(-0.222702\pi\)
0.765074 + 0.643943i \(0.222702\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 2460.55 0.0864785
\(933\) 0 0
\(934\) −25284.0 −0.885779
\(935\) −3111.40 −0.108828
\(936\) 0 0
\(937\) −31092.0 −1.08402 −0.542012 0.840370i \(-0.682337\pi\)
−0.542012 + 0.840370i \(0.682337\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 1008.00 0.0349759
\(941\) −24624.0 −0.853050 −0.426525 0.904476i \(-0.640262\pi\)
−0.426525 + 0.904476i \(0.640262\pi\)
\(942\) 0 0
\(943\) −49413.0 −1.70637
\(944\) 6984.78 0.240821
\(945\) 0 0
\(946\) 16072.0 0.552374
\(947\) 35942.5 1.23334 0.616671 0.787221i \(-0.288481\pi\)
0.616671 + 0.787221i \(0.288481\pi\)
\(948\) 0 0
\(949\) −17472.0 −0.597645
\(950\) −10927.0 −0.373176
\(951\) 0 0
\(952\) 0 0
\(953\) 53301.3 1.81175 0.905875 0.423544i \(-0.139214\pi\)
0.905875 + 0.423544i \(0.139214\pi\)
\(954\) 0 0
\(955\) −11725.0 −0.397290
\(956\) −5190.96 −0.175615
\(957\) 0 0
\(958\) −3304.00 −0.111427
\(959\) 0 0
\(960\) 0 0
\(961\) −24166.0 −0.811185
\(962\) −7635.64 −0.255907
\(963\) 0 0
\(964\) 6428.00 0.214763
\(965\) 1021.26 0.0340679
\(966\) 0 0
\(967\) 4066.00 0.135216 0.0676079 0.997712i \(-0.478463\pi\)
0.0676079 + 0.997712i \(0.478463\pi\)
\(968\) 23526.0 0.781152
\(969\) 0 0
\(970\) 3444.00 0.114000
\(971\) 28431.2 0.939652 0.469826 0.882759i \(-0.344317\pi\)
0.469826 + 0.882759i \(0.344317\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 4995.18 0.164328
\(975\) 0 0
\(976\) −8360.00 −0.274177
\(977\) 29590.1 0.968957 0.484478 0.874803i \(-0.339009\pi\)
0.484478 + 0.874803i \(0.339009\pi\)
\(978\) 0 0
\(979\) 17885.0 0.583868
\(980\) 0 0
\(981\) 0 0
\(982\) −49511.0 −1.60892
\(983\) −36797.1 −1.19394 −0.596971 0.802263i \(-0.703629\pi\)
−0.596971 + 0.802263i \(0.703629\pi\)
\(984\) 0 0
\(985\) −9142.00 −0.295724
\(986\) 888.972 0.0287126
\(987\) 0 0
\(988\) −910.000 −0.0293026
\(989\) −33844.5 −1.08816
\(990\) 0 0
\(991\) 42302.0 1.35597 0.677986 0.735075i \(-0.262853\pi\)
0.677986 + 0.735075i \(0.262853\pi\)
\(992\) 3373.33 0.107967
\(993\) 0 0
\(994\) 0 0
\(995\) 4246.43 0.135297
\(996\) 0 0
\(997\) −17218.0 −0.546940 −0.273470 0.961880i \(-0.588171\pi\)
−0.273470 + 0.961880i \(0.588171\pi\)
\(998\) 55952.3 1.77469
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1323.4.a.s.1.2 2
3.2 odd 2 inner 1323.4.a.s.1.1 2
7.6 odd 2 189.4.a.g.1.2 yes 2
21.20 even 2 189.4.a.g.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.4.a.g.1.1 2 21.20 even 2
189.4.a.g.1.2 yes 2 7.6 odd 2
1323.4.a.s.1.1 2 3.2 odd 2 inner
1323.4.a.s.1.2 2 1.1 even 1 trivial