Properties

Label 133.2.a.b.1.1
Level 133133
Weight 22
Character 133.1
Self dual yes
Analytic conductor 1.0621.062
Analytic rank 11
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [133,2,Mod(1,133)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(133, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("133.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 133=719 133 = 7 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 133.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 1.062010346881.06201034688
Analytic rank: 11
Dimension: 22
Coefficient field: Q(13)\Q(\sqrt{13})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x3 x^{2} - x - 3 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Root 2.302782.30278 of defining polynomial
Character χ\chi == 133.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q2.30278q2+0.302776q3+3.30278q43.00000q50.697224q6+1.00000q73.00000q82.90833q9+6.90833q100.697224q11+1.00000q125.60555q132.30278q140.908327q15+0.302776q165.30278q17+6.69722q18+1.00000q199.90833q20+0.302776q21+1.60555q223.00000q230.908327q24+4.00000q25+12.9083q261.78890q27+3.30278q28+9.90833q29+2.09167q30+1.30278q31+5.30278q320.211103q33+12.2111q343.00000q359.60555q36+3.60555q372.30278q381.69722q39+9.00000q40+0.697224q410.697224q4210.0000q432.30278q44+8.72498q45+6.90833q46+6.21110q47+0.0916731q48+1.00000q499.21110q501.60555q5118.5139q526.90833q53+4.11943q54+2.09167q553.00000q56+0.302776q5722.8167q586.21110q593.00000q604.21110q613.00000q622.90833q6312.8167q64+16.8167q65+0.486122q661.90833q6717.5139q680.908327q69+6.90833q70+12.2111q71+8.72498q72+1.51388q738.30278q74+1.21110q75+3.30278q760.697224q77+3.90833q78+11.2111q790.908327q80+8.18335q811.60555q8212.9083q83+1.00000q84+15.9083q85+23.0278q86+3.00000q87+2.09167q8810.6056q8920.0917q905.60555q919.90833q92+0.394449q9314.3028q943.00000q95+1.60555q96+9.60555q972.30278q98+2.02776q99+O(q100)q-2.30278 q^{2} +0.302776 q^{3} +3.30278 q^{4} -3.00000 q^{5} -0.697224 q^{6} +1.00000 q^{7} -3.00000 q^{8} -2.90833 q^{9} +6.90833 q^{10} -0.697224 q^{11} +1.00000 q^{12} -5.60555 q^{13} -2.30278 q^{14} -0.908327 q^{15} +0.302776 q^{16} -5.30278 q^{17} +6.69722 q^{18} +1.00000 q^{19} -9.90833 q^{20} +0.302776 q^{21} +1.60555 q^{22} -3.00000 q^{23} -0.908327 q^{24} +4.00000 q^{25} +12.9083 q^{26} -1.78890 q^{27} +3.30278 q^{28} +9.90833 q^{29} +2.09167 q^{30} +1.30278 q^{31} +5.30278 q^{32} -0.211103 q^{33} +12.2111 q^{34} -3.00000 q^{35} -9.60555 q^{36} +3.60555 q^{37} -2.30278 q^{38} -1.69722 q^{39} +9.00000 q^{40} +0.697224 q^{41} -0.697224 q^{42} -10.0000 q^{43} -2.30278 q^{44} +8.72498 q^{45} +6.90833 q^{46} +6.21110 q^{47} +0.0916731 q^{48} +1.00000 q^{49} -9.21110 q^{50} -1.60555 q^{51} -18.5139 q^{52} -6.90833 q^{53} +4.11943 q^{54} +2.09167 q^{55} -3.00000 q^{56} +0.302776 q^{57} -22.8167 q^{58} -6.21110 q^{59} -3.00000 q^{60} -4.21110 q^{61} -3.00000 q^{62} -2.90833 q^{63} -12.8167 q^{64} +16.8167 q^{65} +0.486122 q^{66} -1.90833 q^{67} -17.5139 q^{68} -0.908327 q^{69} +6.90833 q^{70} +12.2111 q^{71} +8.72498 q^{72} +1.51388 q^{73} -8.30278 q^{74} +1.21110 q^{75} +3.30278 q^{76} -0.697224 q^{77} +3.90833 q^{78} +11.2111 q^{79} -0.908327 q^{80} +8.18335 q^{81} -1.60555 q^{82} -12.9083 q^{83} +1.00000 q^{84} +15.9083 q^{85} +23.0278 q^{86} +3.00000 q^{87} +2.09167 q^{88} -10.6056 q^{89} -20.0917 q^{90} -5.60555 q^{91} -9.90833 q^{92} +0.394449 q^{93} -14.3028 q^{94} -3.00000 q^{95} +1.60555 q^{96} +9.60555 q^{97} -2.30278 q^{98} +2.02776 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2qq23q3+3q46q55q6+2q76q8+5q9+3q105q11+2q124q13q14+9q153q167q17+17q18+2q199q20+32q99+O(q100) 2 q - q^{2} - 3 q^{3} + 3 q^{4} - 6 q^{5} - 5 q^{6} + 2 q^{7} - 6 q^{8} + 5 q^{9} + 3 q^{10} - 5 q^{11} + 2 q^{12} - 4 q^{13} - q^{14} + 9 q^{15} - 3 q^{16} - 7 q^{17} + 17 q^{18} + 2 q^{19} - 9 q^{20}+ \cdots - 32 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −2.30278 −1.62831 −0.814154 0.580649i 0.802799π-0.802799\pi
−0.814154 + 0.580649i 0.802799π0.802799\pi
33 0.302776 0.174808 0.0874038 0.996173i 0.472143π-0.472143\pi
0.0874038 + 0.996173i 0.472143π0.472143\pi
44 3.30278 1.65139
55 −3.00000 −1.34164 −0.670820 0.741620i 0.734058π-0.734058\pi
−0.670820 + 0.741620i 0.734058π0.734058\pi
66 −0.697224 −0.284641
77 1.00000 0.377964
88 −3.00000 −1.06066
99 −2.90833 −0.969442
1010 6.90833 2.18460
1111 −0.697224 −0.210221 −0.105111 0.994461i 0.533520π-0.533520\pi
−0.105111 + 0.994461i 0.533520π0.533520\pi
1212 1.00000 0.288675
1313 −5.60555 −1.55470 −0.777350 0.629068i 0.783437π-0.783437\pi
−0.777350 + 0.629068i 0.783437π0.783437\pi
1414 −2.30278 −0.615443
1515 −0.908327 −0.234529
1616 0.302776 0.0756939
1717 −5.30278 −1.28611 −0.643056 0.765819i 0.722334π-0.722334\pi
−0.643056 + 0.765819i 0.722334π0.722334\pi
1818 6.69722 1.57855
1919 1.00000 0.229416
2020 −9.90833 −2.21557
2121 0.302776 0.0660711
2222 1.60555 0.342305
2323 −3.00000 −0.625543 −0.312772 0.949828i 0.601257π-0.601257\pi
−0.312772 + 0.949828i 0.601257π0.601257\pi
2424 −0.908327 −0.185411
2525 4.00000 0.800000
2626 12.9083 2.53153
2727 −1.78890 −0.344273
2828 3.30278 0.624166
2929 9.90833 1.83993 0.919965 0.392000i 0.128217π-0.128217\pi
0.919965 + 0.392000i 0.128217π0.128217\pi
3030 2.09167 0.381886
3131 1.30278 0.233985 0.116993 0.993133i 0.462675π-0.462675\pi
0.116993 + 0.993133i 0.462675π0.462675\pi
3232 5.30278 0.937407
3333 −0.211103 −0.0367482
3434 12.2111 2.09419
3535 −3.00000 −0.507093
3636 −9.60555 −1.60093
3737 3.60555 0.592749 0.296374 0.955072i 0.404222π-0.404222\pi
0.296374 + 0.955072i 0.404222π0.404222\pi
3838 −2.30278 −0.373560
3939 −1.69722 −0.271773
4040 9.00000 1.42302
4141 0.697224 0.108888 0.0544441 0.998517i 0.482661π-0.482661\pi
0.0544441 + 0.998517i 0.482661π0.482661\pi
4242 −0.697224 −0.107584
4343 −10.0000 −1.52499 −0.762493 0.646997i 0.776025π-0.776025\pi
−0.762493 + 0.646997i 0.776025π0.776025\pi
4444 −2.30278 −0.347156
4545 8.72498 1.30064
4646 6.90833 1.01858
4747 6.21110 0.905982 0.452991 0.891515i 0.350357π-0.350357\pi
0.452991 + 0.891515i 0.350357π0.350357\pi
4848 0.0916731 0.0132319
4949 1.00000 0.142857
5050 −9.21110 −1.30265
5151 −1.60555 −0.224822
5252 −18.5139 −2.56741
5353 −6.90833 −0.948932 −0.474466 0.880274i 0.657359π-0.657359\pi
−0.474466 + 0.880274i 0.657359π0.657359\pi
5454 4.11943 0.560583
5555 2.09167 0.282041
5656 −3.00000 −0.400892
5757 0.302776 0.0401036
5858 −22.8167 −2.99597
5959 −6.21110 −0.808617 −0.404308 0.914623i 0.632488π-0.632488\pi
−0.404308 + 0.914623i 0.632488π0.632488\pi
6060 −3.00000 −0.387298
6161 −4.21110 −0.539176 −0.269588 0.962976i 0.586888π-0.586888\pi
−0.269588 + 0.962976i 0.586888π0.586888\pi
6262 −3.00000 −0.381000
6363 −2.90833 −0.366415
6464 −12.8167 −1.60208
6565 16.8167 2.08585
6666 0.486122 0.0598375
6767 −1.90833 −0.233139 −0.116570 0.993183i 0.537190π-0.537190\pi
−0.116570 + 0.993183i 0.537190π0.537190\pi
6868 −17.5139 −2.12387
6969 −0.908327 −0.109350
7070 6.90833 0.825703
7171 12.2111 1.44919 0.724596 0.689174i 0.242027π-0.242027\pi
0.724596 + 0.689174i 0.242027π0.242027\pi
7272 8.72498 1.02825
7373 1.51388 0.177186 0.0885930 0.996068i 0.471763π-0.471763\pi
0.0885930 + 0.996068i 0.471763π0.471763\pi
7474 −8.30278 −0.965178
7575 1.21110 0.139846
7676 3.30278 0.378854
7777 −0.697224 −0.0794561
7878 3.90833 0.442531
7979 11.2111 1.26135 0.630674 0.776048i 0.282779π-0.282779\pi
0.630674 + 0.776048i 0.282779π0.282779\pi
8080 −0.908327 −0.101554
8181 8.18335 0.909261
8282 −1.60555 −0.177303
8383 −12.9083 −1.41687 −0.708436 0.705775i 0.750599π-0.750599\pi
−0.708436 + 0.705775i 0.750599π0.750599\pi
8484 1.00000 0.109109
8585 15.9083 1.72550
8686 23.0278 2.48315
8787 3.00000 0.321634
8888 2.09167 0.222973
8989 −10.6056 −1.12419 −0.562093 0.827074i 0.690004π-0.690004\pi
−0.562093 + 0.827074i 0.690004π0.690004\pi
9090 −20.0917 −2.11785
9191 −5.60555 −0.587621
9292 −9.90833 −1.03301
9393 0.394449 0.0409024
9494 −14.3028 −1.47522
9595 −3.00000 −0.307794
9696 1.60555 0.163866
9797 9.60555 0.975296 0.487648 0.873040i 0.337855π-0.337855\pi
0.487648 + 0.873040i 0.337855π0.337855\pi
9898 −2.30278 −0.232615
9999 2.02776 0.203797
100100 13.2111 1.32111
101101 −4.39445 −0.437264 −0.218632 0.975807i 0.570159π-0.570159\pi
−0.218632 + 0.975807i 0.570159π0.570159\pi
102102 3.69722 0.366080
103103 −16.2111 −1.59733 −0.798664 0.601778i 0.794459π-0.794459\pi
−0.798664 + 0.601778i 0.794459π0.794459\pi
104104 16.8167 1.64901
105105 −0.908327 −0.0886436
106106 15.9083 1.54515
107107 −5.78890 −0.559634 −0.279817 0.960053i 0.590274π-0.590274\pi
−0.279817 + 0.960053i 0.590274π0.590274\pi
108108 −5.90833 −0.568529
109109 −10.2111 −0.978046 −0.489023 0.872271i 0.662647π-0.662647\pi
−0.489023 + 0.872271i 0.662647π0.662647\pi
110110 −4.81665 −0.459250
111111 1.09167 0.103617
112112 0.302776 0.0286096
113113 9.69722 0.912238 0.456119 0.889919i 0.349239π-0.349239\pi
0.456119 + 0.889919i 0.349239π0.349239\pi
114114 −0.697224 −0.0653010
115115 9.00000 0.839254
116116 32.7250 3.03844
117117 16.3028 1.50719
118118 14.3028 1.31668
119119 −5.30278 −0.486105
120120 2.72498 0.248756
121121 −10.5139 −0.955807
122122 9.69722 0.877945
123123 0.211103 0.0190345
124124 4.30278 0.386401
125125 3.00000 0.268328
126126 6.69722 0.596636
127127 −11.8167 −1.04856 −0.524279 0.851546i 0.675665π-0.675665\pi
−0.524279 + 0.851546i 0.675665π0.675665\pi
128128 18.9083 1.67128
129129 −3.02776 −0.266579
130130 −38.7250 −3.39641
131131 −20.5139 −1.79231 −0.896153 0.443745i 0.853649π-0.853649\pi
−0.896153 + 0.443745i 0.853649π0.853649\pi
132132 −0.697224 −0.0606856
133133 1.00000 0.0867110
134134 4.39445 0.379623
135135 5.36669 0.461891
136136 15.9083 1.36413
137137 21.6333 1.84826 0.924129 0.382080i 0.124792π-0.124792\pi
0.924129 + 0.382080i 0.124792π0.124792\pi
138138 2.09167 0.178055
139139 5.00000 0.424094 0.212047 0.977259i 0.431987π-0.431987\pi
0.212047 + 0.977259i 0.431987π0.431987\pi
140140 −9.90833 −0.837406
141141 1.88057 0.158373
142142 −28.1194 −2.35973
143143 3.90833 0.326831
144144 −0.880571 −0.0733809
145145 −29.7250 −2.46853
146146 −3.48612 −0.288513
147147 0.302776 0.0249725
148148 11.9083 0.978858
149149 −6.21110 −0.508833 −0.254417 0.967095i 0.581883π-0.581883\pi
−0.254417 + 0.967095i 0.581883π0.581883\pi
150150 −2.78890 −0.227713
151151 5.90833 0.480813 0.240406 0.970672i 0.422719π-0.422719\pi
0.240406 + 0.970672i 0.422719π0.422719\pi
152152 −3.00000 −0.243332
153153 15.4222 1.24681
154154 1.60555 0.129379
155155 −3.90833 −0.313924
156156 −5.60555 −0.448803
157157 4.51388 0.360247 0.180123 0.983644i 0.442350π-0.442350\pi
0.180123 + 0.983644i 0.442350π0.442350\pi
158158 −25.8167 −2.05386
159159 −2.09167 −0.165880
160160 −15.9083 −1.25766
161161 −3.00000 −0.236433
162162 −18.8444 −1.48056
163163 5.69722 0.446241 0.223121 0.974791i 0.428376π-0.428376\pi
0.223121 + 0.974791i 0.428376π0.428376\pi
164164 2.30278 0.179817
165165 0.633308 0.0493029
166166 29.7250 2.30711
167167 4.39445 0.340053 0.170026 0.985440i 0.445615π-0.445615\pi
0.170026 + 0.985440i 0.445615π0.445615\pi
168168 −0.908327 −0.0700789
169169 18.4222 1.41709
170170 −36.6333 −2.80965
171171 −2.90833 −0.222405
172172 −33.0278 −2.51834
173173 7.81665 0.594289 0.297145 0.954832i 0.403966π-0.403966\pi
0.297145 + 0.954832i 0.403966π0.403966\pi
174174 −6.90833 −0.523719
175175 4.00000 0.302372
176176 −0.211103 −0.0159125
177177 −1.88057 −0.141352
178178 24.4222 1.83052
179179 −11.7250 −0.876366 −0.438183 0.898886i 0.644378π-0.644378\pi
−0.438183 + 0.898886i 0.644378π0.644378\pi
180180 28.8167 2.14787
181181 −10.6972 −0.795118 −0.397559 0.917577i 0.630143π-0.630143\pi
−0.397559 + 0.917577i 0.630143π0.630143\pi
182182 12.9083 0.956829
183183 −1.27502 −0.0942521
184184 9.00000 0.663489
185185 −10.8167 −0.795256
186186 −0.908327 −0.0666018
187187 3.69722 0.270368
188188 20.5139 1.49613
189189 −1.78890 −0.130123
190190 6.90833 0.501183
191191 25.3305 1.83285 0.916426 0.400203i 0.131060π-0.131060\pi
0.916426 + 0.400203i 0.131060π0.131060\pi
192192 −3.88057 −0.280056
193193 −23.1194 −1.66417 −0.832086 0.554646i 0.812854π-0.812854\pi
−0.832086 + 0.554646i 0.812854π0.812854\pi
194194 −22.1194 −1.58808
195195 5.09167 0.364622
196196 3.30278 0.235913
197197 −6.90833 −0.492198 −0.246099 0.969245i 0.579149π-0.579149\pi
−0.246099 + 0.969245i 0.579149π0.579149\pi
198198 −4.66947 −0.331845
199199 −13.4222 −0.951475 −0.475737 0.879587i 0.657819π-0.657819\pi
−0.475737 + 0.879587i 0.657819π0.657819\pi
200200 −12.0000 −0.848528
201201 −0.577795 −0.0407545
202202 10.1194 0.712001
203203 9.90833 0.695428
204204 −5.30278 −0.371269
205205 −2.09167 −0.146089
206206 37.3305 2.60094
207207 8.72498 0.606428
208208 −1.69722 −0.117681
209209 −0.697224 −0.0482280
210210 2.09167 0.144339
211211 −7.69722 −0.529899 −0.264949 0.964262i 0.585355π-0.585355\pi
−0.264949 + 0.964262i 0.585355π0.585355\pi
212212 −22.8167 −1.56705
213213 3.69722 0.253330
214214 13.3305 0.911256
215215 30.0000 2.04598
216216 5.36669 0.365157
217217 1.30278 0.0884382
218218 23.5139 1.59256
219219 0.458365 0.0309735
220220 6.90833 0.465759
221221 29.7250 1.99952
222222 −2.51388 −0.168720
223223 12.8167 0.858267 0.429133 0.903241i 0.358819π-0.358819\pi
0.429133 + 0.903241i 0.358819π0.358819\pi
224224 5.30278 0.354307
225225 −11.6333 −0.775554
226226 −22.3305 −1.48540
227227 −25.1194 −1.66724 −0.833618 0.552342i 0.813734π-0.813734\pi
−0.833618 + 0.552342i 0.813734π0.813734\pi
228228 1.00000 0.0662266
229229 −0.788897 −0.0521318 −0.0260659 0.999660i 0.508298π-0.508298\pi
−0.0260659 + 0.999660i 0.508298π0.508298\pi
230230 −20.7250 −1.36656
231231 −0.211103 −0.0138895
232232 −29.7250 −1.95154
233233 −2.09167 −0.137030 −0.0685150 0.997650i 0.521826π-0.521826\pi
−0.0685150 + 0.997650i 0.521826π0.521826\pi
234234 −37.5416 −2.45417
235235 −18.6333 −1.21550
236236 −20.5139 −1.33534
237237 3.39445 0.220493
238238 12.2111 0.791528
239239 −27.4222 −1.77379 −0.886897 0.461966i 0.847144π-0.847144\pi
−0.886897 + 0.461966i 0.847144π0.847144\pi
240240 −0.275019 −0.0177524
241241 −20.6056 −1.32732 −0.663660 0.748034i 0.730998π-0.730998\pi
−0.663660 + 0.748034i 0.730998π0.730998\pi
242242 24.2111 1.55635
243243 7.84441 0.503219
244244 −13.9083 −0.890389
245245 −3.00000 −0.191663
246246 −0.486122 −0.0309940
247247 −5.60555 −0.356673
248248 −3.90833 −0.248179
249249 −3.90833 −0.247680
250250 −6.90833 −0.436921
251251 −15.9083 −1.00412 −0.502062 0.864831i 0.667425π-0.667425\pi
−0.502062 + 0.864831i 0.667425π0.667425\pi
252252 −9.60555 −0.605093
253253 2.09167 0.131502
254254 27.2111 1.70738
255255 4.81665 0.301631
256256 −17.9083 −1.11927
257257 −0.908327 −0.0566599 −0.0283299 0.999599i 0.509019π-0.509019\pi
−0.0283299 + 0.999599i 0.509019π0.509019\pi
258258 6.97224 0.434073
259259 3.60555 0.224038
260260 55.5416 3.44455
261261 −28.8167 −1.78371
262262 47.2389 2.91843
263263 −9.69722 −0.597956 −0.298978 0.954260i 0.596646π-0.596646\pi
−0.298978 + 0.954260i 0.596646π0.596646\pi
264264 0.633308 0.0389774
265265 20.7250 1.27313
266266 −2.30278 −0.141192
267267 −3.21110 −0.196516
268268 −6.30278 −0.385003
269269 20.7250 1.26362 0.631812 0.775122i 0.282311π-0.282311\pi
0.631812 + 0.775122i 0.282311π0.282311\pi
270270 −12.3583 −0.752101
271271 17.9083 1.08785 0.543927 0.839133i 0.316937π-0.316937\pi
0.543927 + 0.839133i 0.316937π0.316937\pi
272272 −1.60555 −0.0973508
273273 −1.69722 −0.102721
274274 −49.8167 −3.00953
275275 −2.78890 −0.168177
276276 −3.00000 −0.180579
277277 0.605551 0.0363840 0.0181920 0.999835i 0.494209π-0.494209\pi
0.0181920 + 0.999835i 0.494209π0.494209\pi
278278 −11.5139 −0.690557
279279 −3.78890 −0.226835
280280 9.00000 0.537853
281281 3.00000 0.178965 0.0894825 0.995988i 0.471479π-0.471479\pi
0.0894825 + 0.995988i 0.471479π0.471479\pi
282282 −4.33053 −0.257879
283283 27.3305 1.62463 0.812316 0.583218i 0.198207π-0.198207\pi
0.812316 + 0.583218i 0.198207π0.198207\pi
284284 40.3305 2.39318
285285 −0.908327 −0.0538046
286286 −9.00000 −0.532181
287287 0.697224 0.0411559
288288 −15.4222 −0.908762
289289 11.1194 0.654084
290290 68.4500 4.01952
291291 2.90833 0.170489
292292 5.00000 0.292603
293293 −12.6333 −0.738046 −0.369023 0.929420i 0.620308π-0.620308\pi
−0.369023 + 0.929420i 0.620308π0.620308\pi
294294 −0.697224 −0.0406630
295295 18.6333 1.08487
296296 −10.8167 −0.628705
297297 1.24726 0.0723735
298298 14.3028 0.828538
299299 16.8167 0.972532
300300 4.00000 0.230940
301301 −10.0000 −0.576390
302302 −13.6056 −0.782911
303303 −1.33053 −0.0764371
304304 0.302776 0.0173654
305305 12.6333 0.723381
306306 −35.5139 −2.03019
307307 14.6972 0.838815 0.419407 0.907798i 0.362238π-0.362238\pi
0.419407 + 0.907798i 0.362238π0.362238\pi
308308 −2.30278 −0.131213
309309 −4.90833 −0.279225
310310 9.00000 0.511166
311311 −2.51388 −0.142549 −0.0712745 0.997457i 0.522707π-0.522707\pi
−0.0712745 + 0.997457i 0.522707π0.522707\pi
312312 5.09167 0.288259
313313 −27.0278 −1.52770 −0.763850 0.645394i 0.776693π-0.776693\pi
−0.763850 + 0.645394i 0.776693π0.776693\pi
314314 −10.3944 −0.586593
315315 8.72498 0.491597
316316 37.0278 2.08297
317317 8.78890 0.493634 0.246817 0.969062i 0.420615π-0.420615\pi
0.246817 + 0.969062i 0.420615π0.420615\pi
318318 4.81665 0.270105
319319 −6.90833 −0.386792
320320 38.4500 2.14942
321321 −1.75274 −0.0978282
322322 6.90833 0.384986
323323 −5.30278 −0.295054
324324 27.0278 1.50154
325325 −22.4222 −1.24376
326326 −13.1194 −0.726618
327327 −3.09167 −0.170970
328328 −2.09167 −0.115493
329329 6.21110 0.342429
330330 −1.45837 −0.0802804
331331 11.6972 0.642938 0.321469 0.946920i 0.395823π-0.395823\pi
0.321469 + 0.946920i 0.395823π0.395823\pi
332332 −42.6333 −2.33981
333333 −10.4861 −0.574636
334334 −10.1194 −0.553711
335335 5.72498 0.312789
336336 0.0916731 0.00500118
337337 7.72498 0.420807 0.210403 0.977615i 0.432522π-0.432522\pi
0.210403 + 0.977615i 0.432522π0.432522\pi
338338 −42.4222 −2.30746
339339 2.93608 0.159466
340340 52.5416 2.84947
341341 −0.908327 −0.0491887
342342 6.69722 0.362144
343343 1.00000 0.0539949
344344 30.0000 1.61749
345345 2.72498 0.146708
346346 −18.0000 −0.967686
347347 −28.5416 −1.53220 −0.766098 0.642724i 0.777804π-0.777804\pi
−0.766098 + 0.642724i 0.777804π0.777804\pi
348348 9.90833 0.531142
349349 7.51388 0.402209 0.201104 0.979570i 0.435547π-0.435547\pi
0.201104 + 0.979570i 0.435547π0.435547\pi
350350 −9.21110 −0.492354
351351 10.0278 0.535242
352352 −3.69722 −0.197063
353353 9.90833 0.527367 0.263684 0.964609i 0.415063π-0.415063\pi
0.263684 + 0.964609i 0.415063π0.415063\pi
354354 4.33053 0.230165
355355 −36.6333 −1.94429
356356 −35.0278 −1.85647
357357 −1.60555 −0.0849748
358358 27.0000 1.42699
359359 −25.5416 −1.34804 −0.674018 0.738715i 0.735433π-0.735433\pi
−0.674018 + 0.738715i 0.735433π0.735433\pi
360360 −26.1749 −1.37954
361361 1.00000 0.0526316
362362 24.6333 1.29470
363363 −3.18335 −0.167082
364364 −18.5139 −0.970391
365365 −4.54163 −0.237720
366366 2.93608 0.153472
367367 −0.0277564 −0.00144887 −0.000724436 1.00000i 0.500231π-0.500231\pi
−0.000724436 1.00000i 0.500231π0.500231\pi
368368 −0.908327 −0.0473498
369369 −2.02776 −0.105561
370370 24.9083 1.29492
371371 −6.90833 −0.358662
372372 1.30278 0.0675458
373373 24.1194 1.24886 0.624428 0.781082i 0.285332π-0.285332\pi
0.624428 + 0.781082i 0.285332π0.285332\pi
374374 −8.51388 −0.440242
375375 0.908327 0.0469058
376376 −18.6333 −0.960939
377377 −55.5416 −2.86054
378378 4.11943 0.211881
379379 6.81665 0.350148 0.175074 0.984555i 0.443984π-0.443984\pi
0.175074 + 0.984555i 0.443984π0.443984\pi
380380 −9.90833 −0.508286
381381 −3.57779 −0.183296
382382 −58.3305 −2.98445
383383 6.63331 0.338946 0.169473 0.985535i 0.445793π-0.445793\pi
0.169473 + 0.985535i 0.445793π0.445793\pi
384384 5.72498 0.292152
385385 2.09167 0.106602
386386 53.2389 2.70979
387387 29.0833 1.47839
388388 31.7250 1.61059
389389 −24.1472 −1.22431 −0.612155 0.790737i 0.709697π-0.709697\pi
−0.612155 + 0.790737i 0.709697π0.709697\pi
390390 −11.7250 −0.593717
391391 15.9083 0.804519
392392 −3.00000 −0.151523
393393 −6.21110 −0.313309
394394 15.9083 0.801450
395395 −33.6333 −1.69228
396396 6.69722 0.336548
397397 37.0278 1.85837 0.929185 0.369615i 0.120510π-0.120510\pi
0.929185 + 0.369615i 0.120510π0.120510\pi
398398 30.9083 1.54929
399399 0.302776 0.0151577
400400 1.21110 0.0605551
401401 −3.48612 −0.174089 −0.0870443 0.996204i 0.527742π-0.527742\pi
−0.0870443 + 0.996204i 0.527742π0.527742\pi
402402 1.33053 0.0663609
403403 −7.30278 −0.363777
404404 −14.5139 −0.722092
405405 −24.5500 −1.21990
406406 −22.8167 −1.13237
407407 −2.51388 −0.124608
408408 4.81665 0.238460
409409 20.9083 1.03385 0.516925 0.856031i 0.327077π-0.327077\pi
0.516925 + 0.856031i 0.327077π0.327077\pi
410410 4.81665 0.237878
411411 6.55004 0.323090
412412 −53.5416 −2.63781
413413 −6.21110 −0.305628
414414 −20.0917 −0.987452
415415 38.7250 1.90093
416416 −29.7250 −1.45739
417417 1.51388 0.0741349
418418 1.60555 0.0785301
419419 15.0000 0.732798 0.366399 0.930458i 0.380591π-0.380591\pi
0.366399 + 0.930458i 0.380591π0.380591\pi
420420 −3.00000 −0.146385
421421 −29.6056 −1.44289 −0.721443 0.692474i 0.756521π-0.756521\pi
−0.721443 + 0.692474i 0.756521π0.756521\pi
422422 17.7250 0.862839
423423 −18.0639 −0.878298
424424 20.7250 1.00649
425425 −21.2111 −1.02889
426426 −8.51388 −0.412499
427427 −4.21110 −0.203790
428428 −19.1194 −0.924173
429429 1.18335 0.0571325
430430 −69.0833 −3.33149
431431 −3.21110 −0.154673 −0.0773367 0.997005i 0.524642π-0.524642\pi
−0.0773367 + 0.997005i 0.524642π0.524642\pi
432432 −0.541635 −0.0260594
433433 −0.577795 −0.0277671 −0.0138835 0.999904i 0.504419π-0.504419\pi
−0.0138835 + 0.999904i 0.504419π0.504419\pi
434434 −3.00000 −0.144005
435435 −9.00000 −0.431517
436436 −33.7250 −1.61513
437437 −3.00000 −0.143509
438438 −1.05551 −0.0504344
439439 22.7889 1.08765 0.543827 0.839197i 0.316975π-0.316975\pi
0.543827 + 0.839197i 0.316975π0.316975\pi
440440 −6.27502 −0.299150
441441 −2.90833 −0.138492
442442 −68.4500 −3.25583
443443 −16.1194 −0.765857 −0.382929 0.923778i 0.625084π-0.625084\pi
−0.382929 + 0.923778i 0.625084π0.625084\pi
444444 3.60555 0.171112
445445 31.8167 1.50825
446446 −29.5139 −1.39752
447447 −1.88057 −0.0889479
448448 −12.8167 −0.605530
449449 −0.486122 −0.0229415 −0.0114708 0.999934i 0.503651π-0.503651\pi
−0.0114708 + 0.999934i 0.503651π0.503651\pi
450450 26.7889 1.26284
451451 −0.486122 −0.0228906
452452 32.0278 1.50646
453453 1.78890 0.0840497
454454 57.8444 2.71477
455455 16.8167 0.788377
456456 −0.908327 −0.0425363
457457 22.3028 1.04328 0.521640 0.853166i 0.325320π-0.325320\pi
0.521640 + 0.853166i 0.325320π0.325320\pi
458458 1.81665 0.0848867
459459 9.48612 0.442774
460460 29.7250 1.38593
461461 0.908327 0.0423050 0.0211525 0.999776i 0.493266π-0.493266\pi
0.0211525 + 0.999776i 0.493266π0.493266\pi
462462 0.486122 0.0226164
463463 −36.4500 −1.69397 −0.846987 0.531614i 0.821586π-0.821586\pi
−0.846987 + 0.531614i 0.821586π0.821586\pi
464464 3.00000 0.139272
465465 −1.18335 −0.0548764
466466 4.81665 0.223127
467467 16.5416 0.765456 0.382728 0.923861i 0.374985π-0.374985\pi
0.382728 + 0.923861i 0.374985π0.374985\pi
468468 53.8444 2.48896
469469 −1.90833 −0.0881183
470470 42.9083 1.97921
471471 1.36669 0.0629739
472472 18.6333 0.857668
473473 6.97224 0.320584
474474 −7.81665 −0.359031
475475 4.00000 0.183533
476476 −17.5139 −0.802747
477477 20.0917 0.919935
478478 63.1472 2.88829
479479 −0.697224 −0.0318570 −0.0159285 0.999873i 0.505070π-0.505070\pi
−0.0159285 + 0.999873i 0.505070π0.505070\pi
480480 −4.81665 −0.219849
481481 −20.2111 −0.921547
482482 47.4500 2.16129
483483 −0.908327 −0.0413303
484484 −34.7250 −1.57841
485485 −28.8167 −1.30850
486486 −18.0639 −0.819396
487487 4.57779 0.207440 0.103720 0.994607i 0.466925π-0.466925\pi
0.103720 + 0.994607i 0.466925π0.466925\pi
488488 12.6333 0.571883
489489 1.72498 0.0780063
490490 6.90833 0.312086
491491 −12.0000 −0.541552 −0.270776 0.962642i 0.587280π-0.587280\pi
−0.270776 + 0.962642i 0.587280π0.587280\pi
492492 0.697224 0.0314333
493493 −52.5416 −2.36636
494494 12.9083 0.580773
495495 −6.08327 −0.273423
496496 0.394449 0.0177113
497497 12.2111 0.547743
498498 9.00000 0.403300
499499 19.9361 0.892462 0.446231 0.894918i 0.352766π-0.352766\pi
0.446231 + 0.894918i 0.352766π0.352766\pi
500500 9.90833 0.443114
501501 1.33053 0.0594438
502502 36.6333 1.63502
503503 6.42221 0.286352 0.143176 0.989697i 0.454269π-0.454269\pi
0.143176 + 0.989697i 0.454269π0.454269\pi
504504 8.72498 0.388642
505505 13.1833 0.586651
506506 −4.81665 −0.214126
507507 5.57779 0.247719
508508 −39.0278 −1.73158
509509 33.6333 1.49077 0.745385 0.666634i 0.232266π-0.232266\pi
0.745385 + 0.666634i 0.232266π0.232266\pi
510510 −11.0917 −0.491148
511511 1.51388 0.0669700
512512 3.42221 0.151242
513513 −1.78890 −0.0789818
514514 2.09167 0.0922597
515515 48.6333 2.14304
516516 −10.0000 −0.440225
517517 −4.33053 −0.190457
518518 −8.30278 −0.364803
519519 2.36669 0.103886
520520 −50.4500 −2.21238
521521 36.6333 1.60493 0.802467 0.596696i 0.203520π-0.203520\pi
0.802467 + 0.596696i 0.203520π0.203520\pi
522522 66.3583 2.90442
523523 37.6611 1.64680 0.823402 0.567459i 0.192073π-0.192073\pi
0.823402 + 0.567459i 0.192073π0.192073\pi
524524 −67.7527 −2.95979
525525 1.21110 0.0528568
526526 22.3305 0.973657
527527 −6.90833 −0.300931
528528 −0.0639167 −0.00278162
529529 −14.0000 −0.608696
530530 −47.7250 −2.07304
531531 18.0639 0.783907
532532 3.30278 0.143193
533533 −3.90833 −0.169288
534534 7.39445 0.319989
535535 17.3667 0.750828
536536 5.72498 0.247282
537537 −3.55004 −0.153195
538538 −47.7250 −2.05757
539539 −0.697224 −0.0300316
540540 17.7250 0.762762
541541 16.7889 0.721811 0.360906 0.932602i 0.382468π-0.382468\pi
0.360906 + 0.932602i 0.382468π0.382468\pi
542542 −41.2389 −1.77136
543543 −3.23886 −0.138993
544544 −28.1194 −1.20561
545545 30.6333 1.31219
546546 3.90833 0.167261
547547 −10.4861 −0.448354 −0.224177 0.974548i 0.571969π-0.571969\pi
−0.224177 + 0.974548i 0.571969π0.571969\pi
548548 71.4500 3.05219
549549 12.2473 0.522700
550550 6.42221 0.273844
551551 9.90833 0.422109
552552 2.72498 0.115983
553553 11.2111 0.476745
554554 −1.39445 −0.0592444
555555 −3.27502 −0.139017
556556 16.5139 0.700344
557557 −1.11943 −0.0474317 −0.0237159 0.999719i 0.507550π-0.507550\pi
−0.0237159 + 0.999719i 0.507550π0.507550\pi
558558 8.72498 0.369358
559559 56.0555 2.37090
560560 −0.908327 −0.0383838
561561 1.11943 0.0472623
562562 −6.90833 −0.291410
563563 −24.2111 −1.02038 −0.510188 0.860063i 0.670424π-0.670424\pi
−0.510188 + 0.860063i 0.670424π0.670424\pi
564564 6.21110 0.261535
565565 −29.0917 −1.22390
566566 −62.9361 −2.64540
567567 8.18335 0.343668
568568 −36.6333 −1.53710
569569 7.18335 0.301142 0.150571 0.988599i 0.451889π-0.451889\pi
0.150571 + 0.988599i 0.451889π0.451889\pi
570570 2.09167 0.0876105
571571 −2.39445 −0.100205 −0.0501023 0.998744i 0.515955π-0.515955\pi
−0.0501023 + 0.998744i 0.515955π0.515955\pi
572572 12.9083 0.539724
573573 7.66947 0.320397
574574 −1.60555 −0.0670144
575575 −12.0000 −0.500435
576576 37.2750 1.55313
577577 19.5139 0.812373 0.406187 0.913790i 0.366858π-0.366858\pi
0.406187 + 0.913790i 0.366858π0.366858\pi
578578 −25.6056 −1.06505
579579 −7.00000 −0.290910
580580 −98.1749 −4.07649
581581 −12.9083 −0.535528
582582 −6.69722 −0.277609
583583 4.81665 0.199485
584584 −4.54163 −0.187934
585585 −48.9083 −2.02211
586586 29.0917 1.20177
587587 0.422205 0.0174263 0.00871313 0.999962i 0.497226π-0.497226\pi
0.00871313 + 0.999962i 0.497226π0.497226\pi
588588 1.00000 0.0412393
589589 1.30278 0.0536799
590590 −42.9083 −1.76651
591591 −2.09167 −0.0860399
592592 1.09167 0.0448675
593593 −4.81665 −0.197796 −0.0988981 0.995098i 0.531532π-0.531532\pi
−0.0988981 + 0.995098i 0.531532π0.531532\pi
594594 −2.87217 −0.117846
595595 15.9083 0.652178
596596 −20.5139 −0.840281
597597 −4.06392 −0.166325
598598 −38.7250 −1.58358
599599 −0.908327 −0.0371132 −0.0185566 0.999828i 0.505907π-0.505907\pi
−0.0185566 + 0.999828i 0.505907π0.505907\pi
600600 −3.63331 −0.148329
601601 −27.5139 −1.12231 −0.561157 0.827709i 0.689644π-0.689644\pi
−0.561157 + 0.827709i 0.689644π0.689644\pi
602602 23.0278 0.938541
603603 5.55004 0.226015
604604 19.5139 0.794008
605605 31.5416 1.28235
606606 3.06392 0.124463
607607 −13.0000 −0.527654 −0.263827 0.964570i 0.584985π-0.584985\pi
−0.263827 + 0.964570i 0.584985π0.584985\pi
608608 5.30278 0.215056
609609 3.00000 0.121566
610610 −29.0917 −1.17789
611611 −34.8167 −1.40853
612612 50.9361 2.05897
613613 −0.724981 −0.0292817 −0.0146408 0.999893i 0.504660π-0.504660\pi
−0.0146408 + 0.999893i 0.504660π0.504660\pi
614614 −33.8444 −1.36585
615615 −0.633308 −0.0255374
616616 2.09167 0.0842759
617617 −10.8806 −0.438035 −0.219018 0.975721i 0.570285π-0.570285\pi
−0.219018 + 0.975721i 0.570285π0.570285\pi
618618 11.3028 0.454664
619619 −41.3305 −1.66121 −0.830607 0.556859i 0.812006π-0.812006\pi
−0.830607 + 0.556859i 0.812006π0.812006\pi
620620 −12.9083 −0.518411
621621 5.36669 0.215358
622622 5.78890 0.232114
623623 −10.6056 −0.424902
624624 −0.513878 −0.0205716
625625 −29.0000 −1.16000
626626 62.2389 2.48757
627627 −0.211103 −0.00843062
628628 14.9083 0.594907
629629 −19.1194 −0.762342
630630 −20.0917 −0.800471
631631 13.2389 0.527031 0.263515 0.964655i 0.415118π-0.415118\pi
0.263515 + 0.964655i 0.415118π0.415118\pi
632632 −33.6333 −1.33786
633633 −2.33053 −0.0926303
634634 −20.2389 −0.803788
635635 35.4500 1.40679
636636 −6.90833 −0.273933
637637 −5.60555 −0.222100
638638 15.9083 0.629817
639639 −35.5139 −1.40491
640640 −56.7250 −2.24225
641641 9.90833 0.391355 0.195678 0.980668i 0.437309π-0.437309\pi
0.195678 + 0.980668i 0.437309π0.437309\pi
642642 4.03616 0.159295
643643 30.3944 1.19864 0.599320 0.800510i 0.295438π-0.295438\pi
0.599320 + 0.800510i 0.295438π0.295438\pi
644644 −9.90833 −0.390443
645645 9.08327 0.357653
646646 12.2111 0.480439
647647 15.4222 0.606309 0.303155 0.952941i 0.401960π-0.401960\pi
0.303155 + 0.952941i 0.401960π0.401960\pi
648648 −24.5500 −0.964417
649649 4.33053 0.169988
650650 51.6333 2.02522
651651 0.394449 0.0154597
652652 18.8167 0.736917
653653 −16.8167 −0.658087 −0.329043 0.944315i 0.606726π-0.606726\pi
−0.329043 + 0.944315i 0.606726π0.606726\pi
654654 7.11943 0.278392
655655 61.5416 2.40463
656656 0.211103 0.00824217
657657 −4.40285 −0.171772
658658 −14.3028 −0.557580
659659 16.3305 0.636147 0.318074 0.948066i 0.396964π-0.396964\pi
0.318074 + 0.948066i 0.396964π0.396964\pi
660660 2.09167 0.0814183
661661 −0.788897 −0.0306846 −0.0153423 0.999882i 0.504884π-0.504884\pi
−0.0153423 + 0.999882i 0.504884π0.504884\pi
662662 −26.9361 −1.04690
663663 9.00000 0.349531
664664 38.7250 1.50282
665665 −3.00000 −0.116335
666666 24.1472 0.935684
667667 −29.7250 −1.15096
668668 14.5139 0.561559
669669 3.88057 0.150032
670670 −13.1833 −0.509317
671671 2.93608 0.113346
672672 1.60555 0.0619355
673673 14.9083 0.574674 0.287337 0.957830i 0.407230π-0.407230\pi
0.287337 + 0.957830i 0.407230π0.407230\pi
674674 −17.7889 −0.685203
675675 −7.15559 −0.275419
676676 60.8444 2.34017
677677 17.9361 0.689340 0.344670 0.938724i 0.387991π-0.387991\pi
0.344670 + 0.938724i 0.387991π0.387991\pi
678678 −6.76114 −0.259660
679679 9.60555 0.368627
680680 −47.7250 −1.83017
681681 −7.60555 −0.291445
682682 2.09167 0.0800943
683683 12.2111 0.467245 0.233622 0.972327i 0.424942π-0.424942\pi
0.233622 + 0.972327i 0.424942π0.424942\pi
684684 −9.60555 −0.367277
685685 −64.8999 −2.47970
686686 −2.30278 −0.0879204
687687 −0.238859 −0.00911304
688688 −3.02776 −0.115432
689689 38.7250 1.47530
690690 −6.27502 −0.238886
691691 −41.8167 −1.59078 −0.795390 0.606098i 0.792734π-0.792734\pi
−0.795390 + 0.606098i 0.792734π0.792734\pi
692692 25.8167 0.981402
693693 2.02776 0.0770281
694694 65.7250 2.49489
695695 −15.0000 −0.568982
696696 −9.00000 −0.341144
697697 −3.69722 −0.140042
698698 −17.3028 −0.654920
699699 −0.633308 −0.0239539
700700 13.2111 0.499333
701701 21.2111 0.801132 0.400566 0.916268i 0.368813π-0.368813\pi
0.400566 + 0.916268i 0.368813π0.368813\pi
702702 −23.0917 −0.871539
703703 3.60555 0.135986
704704 8.93608 0.336791
705705 −5.64171 −0.212479
706706 −22.8167 −0.858716
707707 −4.39445 −0.165270
708708 −6.21110 −0.233428
709709 −11.6056 −0.435856 −0.217928 0.975965i 0.569930π-0.569930\pi
−0.217928 + 0.975965i 0.569930π0.569930\pi
710710 84.3583 3.16591
711711 −32.6056 −1.22280
712712 31.8167 1.19238
713713 −3.90833 −0.146368
714714 3.69722 0.138365
715715 −11.7250 −0.438489
716716 −38.7250 −1.44722
717717 −8.30278 −0.310073
718718 58.8167 2.19502
719719 −27.6333 −1.03055 −0.515274 0.857025i 0.672310π-0.672310\pi
−0.515274 + 0.857025i 0.672310π0.672310\pi
720720 2.64171 0.0984508
721721 −16.2111 −0.603733
722722 −2.30278 −0.0857004
723723 −6.23886 −0.232026
724724 −35.3305 −1.31305
725725 39.6333 1.47194
726726 7.33053 0.272062
727727 −27.6611 −1.02589 −0.512946 0.858421i 0.671446π-0.671446\pi
−0.512946 + 0.858421i 0.671446π0.671446\pi
728728 16.8167 0.623267
729729 −22.1749 −0.821294
730730 10.4584 0.387081
731731 53.0278 1.96130
732732 −4.21110 −0.155647
733733 32.0000 1.18195 0.590973 0.806691i 0.298744π-0.298744\pi
0.590973 + 0.806691i 0.298744π0.298744\pi
734734 0.0639167 0.00235921
735735 −0.908327 −0.0335041
736736 −15.9083 −0.586389
737737 1.33053 0.0490108
738738 4.66947 0.171885
739739 −18.5778 −0.683395 −0.341698 0.939810i 0.611002π-0.611002\pi
−0.341698 + 0.939810i 0.611002π0.611002\pi
740740 −35.7250 −1.31328
741741 −1.69722 −0.0623491
742742 15.9083 0.584013
743743 −12.6333 −0.463471 −0.231736 0.972779i 0.574440π-0.574440\pi
−0.231736 + 0.972779i 0.574440π0.574440\pi
744744 −1.18335 −0.0433836
745745 18.6333 0.682672
746746 −55.5416 −2.03352
747747 37.5416 1.37358
748748 12.2111 0.446482
749749 −5.78890 −0.211522
750750 −2.09167 −0.0763771
751751 26.3583 0.961828 0.480914 0.876768i 0.340305π-0.340305\pi
0.480914 + 0.876768i 0.340305π0.340305\pi
752752 1.88057 0.0685774
753753 −4.81665 −0.175529
754754 127.900 4.65784
755755 −17.7250 −0.645078
756756 −5.90833 −0.214884
757757 2.00000 0.0726912 0.0363456 0.999339i 0.488428π-0.488428\pi
0.0363456 + 0.999339i 0.488428π0.488428\pi
758758 −15.6972 −0.570149
759759 0.633308 0.0229876
760760 9.00000 0.326464
761761 −24.2111 −0.877652 −0.438826 0.898572i 0.644606π-0.644606\pi
−0.438826 + 0.898572i 0.644606π0.644606\pi
762762 8.23886 0.298462
763763 −10.2111 −0.369667
764764 83.6611 3.02675
765765 −46.2666 −1.67277
766766 −15.2750 −0.551909
767767 34.8167 1.25716
768768 −5.42221 −0.195657
769769 −25.2111 −0.909136 −0.454568 0.890712i 0.650206π-0.650206\pi
−0.454568 + 0.890712i 0.650206π0.650206\pi
770770 −4.81665 −0.173580
771771 −0.275019 −0.00990458
772772 −76.3583 −2.74819
773773 −22.1833 −0.797880 −0.398940 0.916977i 0.630622π-0.630622\pi
−0.398940 + 0.916977i 0.630622π0.630622\pi
774774 −66.9722 −2.40727
775775 5.21110 0.187188
776776 −28.8167 −1.03446
777777 1.09167 0.0391636
778778 55.6056 1.99356
779779 0.697224 0.0249807
780780 16.8167 0.602133
781781 −8.51388 −0.304651
782782 −36.6333 −1.31000
783783 −17.7250 −0.633439
784784 0.302776 0.0108134
785785 −13.5416 −0.483322
786786 14.3028 0.510163
787787 −31.6333 −1.12761 −0.563803 0.825909i 0.690662π-0.690662\pi
−0.563803 + 0.825909i 0.690662π0.690662\pi
788788 −22.8167 −0.812810
789789 −2.93608 −0.104527
790790 77.4500 2.75555
791791 9.69722 0.344794
792792 −6.08327 −0.216160
793793 23.6056 0.838258
794794 −85.2666 −3.02600
795795 6.27502 0.222552
796796 −44.3305 −1.57125
797797 26.0917 0.924214 0.462107 0.886824i 0.347094π-0.347094\pi
0.462107 + 0.886824i 0.347094π0.347094\pi
798798 −0.697224 −0.0246815
799799 −32.9361 −1.16519
800800 21.2111 0.749926
801801 30.8444 1.08983
802802 8.02776 0.283470
803803 −1.05551 −0.0372482
804804 −1.90833 −0.0673015
805805 9.00000 0.317208
806806 16.8167 0.592341
807807 6.27502 0.220891
808808 13.1833 0.463788
809809 −26.0278 −0.915087 −0.457544 0.889187i 0.651271π-0.651271\pi
−0.457544 + 0.889187i 0.651271π0.651271\pi
810810 56.5332 1.98638
811811 −32.0555 −1.12562 −0.562811 0.826586i 0.690280π-0.690280\pi
−0.562811 + 0.826586i 0.690280π0.690280\pi
812812 32.7250 1.14842
813813 5.42221 0.190165
814814 5.78890 0.202901
815815 −17.0917 −0.598695
816816 −0.486122 −0.0170177
817817 −10.0000 −0.349856
818818 −48.1472 −1.68343
819819 16.3028 0.569665
820820 −6.90833 −0.241249
821821 −51.6333 −1.80201 −0.901007 0.433804i 0.857171π-0.857171\pi
−0.901007 + 0.433804i 0.857171π0.857171\pi
822822 −15.0833 −0.526089
823823 16.2389 0.566051 0.283026 0.959112i 0.408662π-0.408662\pi
0.283026 + 0.959112i 0.408662π0.408662\pi
824824 48.6333 1.69422
825825 −0.844410 −0.0293986
826826 14.3028 0.497657
827827 −45.0000 −1.56480 −0.782402 0.622774i 0.786006π-0.786006\pi
−0.782402 + 0.622774i 0.786006π0.786006\pi
828828 28.8167 1.00145
829829 54.0555 1.87743 0.938713 0.344700i 0.112019π-0.112019\pi
0.938713 + 0.344700i 0.112019π0.112019\pi
830830 −89.1749 −3.09531
831831 0.183346 0.00636021
832832 71.8444 2.49076
833833 −5.30278 −0.183730
834834 −3.48612 −0.120715
835835 −13.1833 −0.456229
836836 −2.30278 −0.0796432
837837 −2.33053 −0.0805550
838838 −34.5416 −1.19322
839839 −2.78890 −0.0962834 −0.0481417 0.998841i 0.515330π-0.515330\pi
−0.0481417 + 0.998841i 0.515330π0.515330\pi
840840 2.72498 0.0940208
841841 69.1749 2.38534
842842 68.1749 2.34946
843843 0.908327 0.0312844
844844 −25.4222 −0.875068
845845 −55.2666 −1.90123
846846 41.5971 1.43014
847847 −10.5139 −0.361261
848848 −2.09167 −0.0718283
849849 8.27502 0.283998
850850 48.8444 1.67535
851851 −10.8167 −0.370790
852852 12.2111 0.418345
853853 3.33053 0.114035 0.0570176 0.998373i 0.481841π-0.481841\pi
0.0570176 + 0.998373i 0.481841π0.481841\pi
854854 9.69722 0.331832
855855 8.72498 0.298388
856856 17.3667 0.593581
857857 32.0917 1.09623 0.548115 0.836403i 0.315345π-0.315345\pi
0.548115 + 0.836403i 0.315345π0.315345\pi
858858 −2.72498 −0.0930293
859859 −27.3028 −0.931559 −0.465779 0.884901i 0.654226π-0.654226\pi
−0.465779 + 0.884901i 0.654226π0.654226\pi
860860 99.0833 3.37871
861861 0.211103 0.00719436
862862 7.39445 0.251856
863863 −16.5416 −0.563084 −0.281542 0.959549i 0.590846π-0.590846\pi
−0.281542 + 0.959549i 0.590846π0.590846\pi
864864 −9.48612 −0.322724
865865 −23.4500 −0.797323
866866 1.33053 0.0452133
867867 3.36669 0.114339
868868 4.30278 0.146046
869869 −7.81665 −0.265162
870870 20.7250 0.702643
871871 10.6972 0.362462
872872 30.6333 1.03737
873873 −27.9361 −0.945493
874874 6.90833 0.233678
875875 3.00000 0.101419
876876 1.51388 0.0511492
877877 −8.18335 −0.276332 −0.138166 0.990409i 0.544121π-0.544121\pi
−0.138166 + 0.990409i 0.544121π0.544121\pi
878878 −52.4777 −1.77104
879879 −3.82506 −0.129016
880880 0.633308 0.0213488
881881 −19.7527 −0.665487 −0.332743 0.943017i 0.607974π-0.607974\pi
−0.332743 + 0.943017i 0.607974π0.607974\pi
882882 6.69722 0.225507
883883 −46.2111 −1.55513 −0.777564 0.628804i 0.783545π-0.783545\pi
−0.777564 + 0.628804i 0.783545π0.783545\pi
884884 98.1749 3.30198
885885 5.64171 0.189644
886886 37.1194 1.24705
887887 19.1833 0.644114 0.322057 0.946720i 0.395626π-0.395626\pi
0.322057 + 0.946720i 0.395626π0.395626\pi
888888 −3.27502 −0.109902
889889 −11.8167 −0.396318
890890 −73.2666 −2.45590
891891 −5.70563 −0.191146
892892 42.3305 1.41733
893893 6.21110 0.207847
894894 4.33053 0.144835
895895 35.1749 1.17577
896896 18.9083 0.631683
897897 5.09167 0.170006
898898 1.11943 0.0373558
899899 12.9083 0.430517
900900 −38.4222 −1.28074
901901 36.6333 1.22043
902902 1.11943 0.0372729
903903 −3.02776 −0.100757
904904 −29.0917 −0.967575
905905 32.0917 1.06676
906906 −4.11943 −0.136859
907907 −5.18335 −0.172110 −0.0860551 0.996290i 0.527426π-0.527426\pi
−0.0860551 + 0.996290i 0.527426π0.527426\pi
908908 −82.9638 −2.75325
909909 12.7805 0.423902
910910 −38.7250 −1.28372
911911 −6.00000 −0.198789 −0.0993944 0.995048i 0.531691π-0.531691\pi
−0.0993944 + 0.995048i 0.531691π0.531691\pi
912912 0.0916731 0.00303560
913913 9.00000 0.297857
914914 −51.3583 −1.69878
915915 3.82506 0.126453
916916 −2.60555 −0.0860898
917917 −20.5139 −0.677428
918918 −21.8444 −0.720973
919919 −7.97224 −0.262980 −0.131490 0.991317i 0.541976π-0.541976\pi
−0.131490 + 0.991317i 0.541976π0.541976\pi
920920 −27.0000 −0.890164
921921 4.44996 0.146631
922922 −2.09167 −0.0688856
923923 −68.4500 −2.25306
924924 −0.697224 −0.0229370
925925 14.4222 0.474199
926926 83.9361 2.75831
927927 47.1472 1.54852
928928 52.5416 1.72476
929929 11.5139 0.377758 0.188879 0.982000i 0.439515π-0.439515\pi
0.188879 + 0.982000i 0.439515π0.439515\pi
930930 2.72498 0.0893556
931931 1.00000 0.0327737
932932 −6.90833 −0.226290
933933 −0.761141 −0.0249186
934934 −38.0917 −1.24640
935935 −11.0917 −0.362736
936936 −48.9083 −1.59862
937937 21.1194 0.689942 0.344971 0.938613i 0.387889π-0.387889\pi
0.344971 + 0.938613i 0.387889π0.387889\pi
938938 4.39445 0.143484
939939 −8.18335 −0.267053
940940 −61.5416 −2.00727
941941 6.00000 0.195594 0.0977972 0.995206i 0.468820π-0.468820\pi
0.0977972 + 0.995206i 0.468820π0.468820\pi
942942 −3.14719 −0.102541
943943 −2.09167 −0.0681142
944944 −1.88057 −0.0612074
945945 5.36669 0.174579
946946 −16.0555 −0.522010
947947 36.9083 1.19936 0.599680 0.800240i 0.295295π-0.295295\pi
0.599680 + 0.800240i 0.295295π0.295295\pi
948948 11.2111 0.364120
949949 −8.48612 −0.275471
950950 −9.21110 −0.298848
951951 2.66106 0.0862909
952952 15.9083 0.515592
953953 4.33053 0.140280 0.0701398 0.997537i 0.477655π-0.477655\pi
0.0701398 + 0.997537i 0.477655π0.477655\pi
954954 −46.2666 −1.49794
955955 −75.9916 −2.45903
956956 −90.5694 −2.92922
957957 −2.09167 −0.0676142
958958 1.60555 0.0518730
959959 21.6333 0.698576
960960 11.6417 0.375735
961961 −29.3028 −0.945251
962962 46.5416 1.50056
963963 16.8360 0.542533
964964 −68.0555 −2.19192
965965 69.3583 2.23272
966966 2.09167 0.0672985
967967 26.6972 0.858525 0.429262 0.903180i 0.358774π-0.358774\pi
0.429262 + 0.903180i 0.358774π0.358774\pi
968968 31.5416 1.01379
969969 −1.60555 −0.0515777
970970 66.3583 2.13064
971971 −18.6333 −0.597971 −0.298986 0.954258i 0.596648π-0.596648\pi
−0.298986 + 0.954258i 0.596648π0.596648\pi
972972 25.9083 0.831010
973973 5.00000 0.160293
974974 −10.5416 −0.337776
975975 −6.78890 −0.217419
976976 −1.27502 −0.0408124
977977 −17.4500 −0.558274 −0.279137 0.960251i 0.590048π-0.590048\pi
−0.279137 + 0.960251i 0.590048π0.590048\pi
978978 −3.97224 −0.127018
979979 7.39445 0.236328
980980 −9.90833 −0.316510
981981 29.6972 0.948159
982982 27.6333 0.881814
983983 −49.0555 −1.56463 −0.782314 0.622884i 0.785961π-0.785961\pi
−0.782314 + 0.622884i 0.785961π0.785961\pi
984984 −0.633308 −0.0201891
985985 20.7250 0.660353
986986 120.992 3.85316
987987 1.88057 0.0598592
988988 −18.5139 −0.589005
989989 30.0000 0.953945
990990 14.0084 0.445216
991991 −16.9722 −0.539141 −0.269571 0.962981i 0.586882π-0.586882\pi
−0.269571 + 0.962981i 0.586882π0.586882\pi
992992 6.90833 0.219340
993993 3.54163 0.112390
994994 −28.1194 −0.891894
995995 40.2666 1.27654
996996 −12.9083 −0.409016
997997 5.27502 0.167062 0.0835308 0.996505i 0.473380π-0.473380\pi
0.0835308 + 0.996505i 0.473380π0.473380\pi
998998 −45.9083 −1.45320
999999 −6.44996 −0.204068
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 133.2.a.b.1.1 2
3.2 odd 2 1197.2.a.h.1.2 2
4.3 odd 2 2128.2.a.l.1.1 2
5.4 even 2 3325.2.a.n.1.2 2
7.2 even 3 931.2.f.h.704.2 4
7.3 odd 6 931.2.f.g.324.2 4
7.4 even 3 931.2.f.h.324.2 4
7.5 odd 6 931.2.f.g.704.2 4
7.6 odd 2 931.2.a.g.1.1 2
8.3 odd 2 8512.2.a.l.1.2 2
8.5 even 2 8512.2.a.bh.1.1 2
19.18 odd 2 2527.2.a.d.1.2 2
21.20 even 2 8379.2.a.bf.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
133.2.a.b.1.1 2 1.1 even 1 trivial
931.2.a.g.1.1 2 7.6 odd 2
931.2.f.g.324.2 4 7.3 odd 6
931.2.f.g.704.2 4 7.5 odd 6
931.2.f.h.324.2 4 7.4 even 3
931.2.f.h.704.2 4 7.2 even 3
1197.2.a.h.1.2 2 3.2 odd 2
2128.2.a.l.1.1 2 4.3 odd 2
2527.2.a.d.1.2 2 19.18 odd 2
3325.2.a.n.1.2 2 5.4 even 2
8379.2.a.bf.1.2 2 21.20 even 2
8512.2.a.l.1.2 2 8.3 odd 2
8512.2.a.bh.1.1 2 8.5 even 2