Properties

Label 133.2.a.d.1.2
Level 133133
Weight 22
Character 133.1
Self dual yes
Analytic conductor 1.0621.062
Analytic rank 00
Dimension 33
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [133,2,Mod(1,133)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(133, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("133.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 133=719 133 = 7 \cdot 19
Weight: k k == 2 2
Character orbit: [χ][\chi] == 133.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 1.062010346881.06201034688
Analytic rank: 00
Dimension: 33
Coefficient field: 3.3.229.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x34x1 x^{3} - 4x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.2
Root 1.86081-1.86081 of defining polynomial
Character χ\chi == 133.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+1.46260q2+2.86081q3+0.139194q43.32340q5+4.18421q61.00000q72.72161q8+5.18421q94.86081q10+1.53740q11+0.398207q123.32340q131.46260q149.50761q154.25901q16+5.25901q17+7.58242q18+1.00000q190.462598q202.86081q21+2.24860q22+3.60179q237.78600q24+6.04502q254.86081q26+6.24860q270.139194q28+8.83102q2913.9058q308.18421q310.786003q32+4.39821q33+7.69182q34+3.32340q35+0.721612q36+4.24860q37+1.46260q389.50761q39+9.04502q4012.7022q414.18421q426.64681q43+0.213997q4417.2292q45+5.26798q462.11982q4712.1842q48+1.00000q49+8.84143q50+15.0450q510.462598q520.0643910q53+9.13919q545.10941q55+2.72161q56+2.86081q57+12.9162q58+3.04502q591.32340q601.47301q6111.9702q625.18421q63+7.36842q64+11.0450q65+6.43281q662.33382q67+0.732024q68+10.3040q69+4.86081q700.526989q7114.1094q720.989588q73+6.21400q74+17.2936q75+0.139194q761.53740q7713.9058q78+0.796415q79+14.1544q80+2.32340q8118.5783q82+10.0644q830.398207q8417.4778q859.72161q86+25.2638q874.18421q88+5.01523q8925.1994q90+3.32340q91+0.501348q9223.4134q933.10044q943.32340q952.24860q9617.9702q97+1.46260q98+7.97021q99+O(q100)q+1.46260 q^{2} +2.86081 q^{3} +0.139194 q^{4} -3.32340 q^{5} +4.18421 q^{6} -1.00000 q^{7} -2.72161 q^{8} +5.18421 q^{9} -4.86081 q^{10} +1.53740 q^{11} +0.398207 q^{12} -3.32340 q^{13} -1.46260 q^{14} -9.50761 q^{15} -4.25901 q^{16} +5.25901 q^{17} +7.58242 q^{18} +1.00000 q^{19} -0.462598 q^{20} -2.86081 q^{21} +2.24860 q^{22} +3.60179 q^{23} -7.78600 q^{24} +6.04502 q^{25} -4.86081 q^{26} +6.24860 q^{27} -0.139194 q^{28} +8.83102 q^{29} -13.9058 q^{30} -8.18421 q^{31} -0.786003 q^{32} +4.39821 q^{33} +7.69182 q^{34} +3.32340 q^{35} +0.721612 q^{36} +4.24860 q^{37} +1.46260 q^{38} -9.50761 q^{39} +9.04502 q^{40} -12.7022 q^{41} -4.18421 q^{42} -6.64681 q^{43} +0.213997 q^{44} -17.2292 q^{45} +5.26798 q^{46} -2.11982 q^{47} -12.1842 q^{48} +1.00000 q^{49} +8.84143 q^{50} +15.0450 q^{51} -0.462598 q^{52} -0.0643910 q^{53} +9.13919 q^{54} -5.10941 q^{55} +2.72161 q^{56} +2.86081 q^{57} +12.9162 q^{58} +3.04502 q^{59} -1.32340 q^{60} -1.47301 q^{61} -11.9702 q^{62} -5.18421 q^{63} +7.36842 q^{64} +11.0450 q^{65} +6.43281 q^{66} -2.33382 q^{67} +0.732024 q^{68} +10.3040 q^{69} +4.86081 q^{70} -0.526989 q^{71} -14.1094 q^{72} -0.989588 q^{73} +6.21400 q^{74} +17.2936 q^{75} +0.139194 q^{76} -1.53740 q^{77} -13.9058 q^{78} +0.796415 q^{79} +14.1544 q^{80} +2.32340 q^{81} -18.5783 q^{82} +10.0644 q^{83} -0.398207 q^{84} -17.4778 q^{85} -9.72161 q^{86} +25.2638 q^{87} -4.18421 q^{88} +5.01523 q^{89} -25.1994 q^{90} +3.32340 q^{91} +0.501348 q^{92} -23.4134 q^{93} -3.10044 q^{94} -3.32340 q^{95} -2.24860 q^{96} -17.9702 q^{97} +1.46260 q^{98} +7.97021 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 3q+2q2+3q3+6q42q5q63q7+3q8+2q99q10+7q112q122q132q147q154q16+7q17+6q18+3q19+q20++2q98+O(q100) 3 q + 2 q^{2} + 3 q^{3} + 6 q^{4} - 2 q^{5} - q^{6} - 3 q^{7} + 3 q^{8} + 2 q^{9} - 9 q^{10} + 7 q^{11} - 2 q^{12} - 2 q^{13} - 2 q^{14} - 7 q^{15} - 4 q^{16} + 7 q^{17} + 6 q^{18} + 3 q^{19} + q^{20}+ \cdots + 2 q^{98}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 1.46260 1.03421 0.517107 0.855921i 0.327009π-0.327009\pi
0.517107 + 0.855921i 0.327009π0.327009\pi
33 2.86081 1.65169 0.825844 0.563899i 0.190699π-0.190699\pi
0.825844 + 0.563899i 0.190699π0.190699\pi
44 0.139194 0.0695971
55 −3.32340 −1.48627 −0.743136 0.669141i 0.766662π-0.766662\pi
−0.743136 + 0.669141i 0.766662π0.766662\pi
66 4.18421 1.70820
77 −1.00000 −0.377964
88 −2.72161 −0.962235
99 5.18421 1.72807
1010 −4.86081 −1.53712
1111 1.53740 0.463544 0.231772 0.972770i 0.425548π-0.425548\pi
0.231772 + 0.972770i 0.425548π0.425548\pi
1212 0.398207 0.114953
1313 −3.32340 −0.921747 −0.460873 0.887466i 0.652464π-0.652464\pi
−0.460873 + 0.887466i 0.652464π0.652464\pi
1414 −1.46260 −0.390896
1515 −9.50761 −2.45486
1616 −4.25901 −1.06475
1717 5.25901 1.27550 0.637749 0.770244i 0.279866π-0.279866\pi
0.637749 + 0.770244i 0.279866π0.279866\pi
1818 7.58242 1.78719
1919 1.00000 0.229416
2020 −0.462598 −0.103440
2121 −2.86081 −0.624279
2222 2.24860 0.479403
2323 3.60179 0.751026 0.375513 0.926817i 0.377467π-0.377467\pi
0.375513 + 0.926817i 0.377467π0.377467\pi
2424 −7.78600 −1.58931
2525 6.04502 1.20900
2626 −4.86081 −0.953282
2727 6.24860 1.20254
2828 −0.139194 −0.0263052
2929 8.83102 1.63988 0.819940 0.572450i 0.194007π-0.194007\pi
0.819940 + 0.572450i 0.194007π0.194007\pi
3030 −13.9058 −2.53884
3131 −8.18421 −1.46993 −0.734964 0.678106i 0.762801π-0.762801\pi
−0.734964 + 0.678106i 0.762801π0.762801\pi
3232 −0.786003 −0.138947
3333 4.39821 0.765630
3434 7.69182 1.31914
3535 3.32340 0.561758
3636 0.721612 0.120269
3737 4.24860 0.698466 0.349233 0.937036i 0.386442π-0.386442\pi
0.349233 + 0.937036i 0.386442π0.386442\pi
3838 1.46260 0.237265
3939 −9.50761 −1.52244
4040 9.04502 1.43014
4141 −12.7022 −1.98376 −0.991878 0.127193i 0.959403π-0.959403\pi
−0.991878 + 0.127193i 0.959403π0.959403\pi
4242 −4.18421 −0.645638
4343 −6.64681 −1.01363 −0.506814 0.862055i 0.669177π-0.669177\pi
−0.506814 + 0.862055i 0.669177π0.669177\pi
4444 0.213997 0.0322613
4545 −17.2292 −2.56838
4646 5.26798 0.776721
4747 −2.11982 −0.309207 −0.154604 0.987977i 0.549410π-0.549410\pi
−0.154604 + 0.987977i 0.549410π0.549410\pi
4848 −12.1842 −1.75864
4949 1.00000 0.142857
5050 8.84143 1.25037
5151 15.0450 2.10672
5252 −0.462598 −0.0641509
5353 −0.0643910 −0.00884478 −0.00442239 0.999990i 0.501408π-0.501408\pi
−0.00442239 + 0.999990i 0.501408π0.501408\pi
5454 9.13919 1.24369
5555 −5.10941 −0.688952
5656 2.72161 0.363691
5757 2.86081 0.378923
5858 12.9162 1.69598
5959 3.04502 0.396427 0.198214 0.980159i 0.436486π-0.436486\pi
0.198214 + 0.980159i 0.436486π0.436486\pi
6060 −1.32340 −0.170851
6161 −1.47301 −0.188600 −0.0942998 0.995544i 0.530061π-0.530061\pi
−0.0942998 + 0.995544i 0.530061π0.530061\pi
6262 −11.9702 −1.52022
6363 −5.18421 −0.653149
6464 7.36842 0.921053
6565 11.0450 1.36997
6666 6.43281 0.791824
6767 −2.33382 −0.285121 −0.142561 0.989786i 0.545534π-0.545534\pi
−0.142561 + 0.989786i 0.545534π0.545534\pi
6868 0.732024 0.0887709
6969 10.3040 1.24046
7070 4.86081 0.580977
7171 −0.526989 −0.0625421 −0.0312711 0.999511i 0.509956π-0.509956\pi
−0.0312711 + 0.999511i 0.509956π0.509956\pi
7272 −14.1094 −1.66281
7373 −0.989588 −0.115822 −0.0579112 0.998322i 0.518444π-0.518444\pi
−0.0579112 + 0.998322i 0.518444π0.518444\pi
7474 6.21400 0.722363
7575 17.2936 1.99689
7676 0.139194 0.0159667
7777 −1.53740 −0.175203
7878 −13.9058 −1.57452
7979 0.796415 0.0896037 0.0448018 0.998996i 0.485734π-0.485734\pi
0.0448018 + 0.998996i 0.485734π0.485734\pi
8080 14.1544 1.58251
8181 2.32340 0.258156
8282 −18.5783 −2.05163
8383 10.0644 1.10471 0.552355 0.833609i 0.313729π-0.313729\pi
0.552355 + 0.833609i 0.313729π0.313729\pi
8484 −0.398207 −0.0434480
8585 −17.4778 −1.89574
8686 −9.72161 −1.04831
8787 25.2638 2.70857
8888 −4.18421 −0.446038
8989 5.01523 0.531613 0.265807 0.964026i 0.414362π-0.414362\pi
0.265807 + 0.964026i 0.414362π0.414362\pi
9090 −25.1994 −2.65625
9191 3.32340 0.348387
9292 0.501348 0.0522692
9393 −23.4134 −2.42786
9494 −3.10044 −0.319786
9595 −3.32340 −0.340974
9696 −2.24860 −0.229497
9797 −17.9702 −1.82460 −0.912299 0.409524i 0.865695π-0.865695\pi
−0.912299 + 0.409524i 0.865695π0.865695\pi
9898 1.46260 0.147745
9999 7.97021 0.801037
100100 0.841431 0.0841431
101101 6.89541 0.686119 0.343059 0.939314i 0.388537π-0.388537\pi
0.343059 + 0.939314i 0.388537π0.388537\pi
102102 22.0048 2.17880
103103 13.1350 1.29423 0.647117 0.762390i 0.275974π-0.275974\pi
0.647117 + 0.762390i 0.275974π0.275974\pi
104104 9.04502 0.886937
105105 9.50761 0.927848
106106 −0.0941782 −0.00914739
107107 10.6766 1.03215 0.516073 0.856545i 0.327393π-0.327393\pi
0.516073 + 0.856545i 0.327393π0.327393\pi
108108 0.869769 0.0836935
109109 9.97021 0.954973 0.477487 0.878639i 0.341548π-0.341548\pi
0.477487 + 0.878639i 0.341548π0.341548\pi
110110 −7.47301 −0.712524
111111 12.1544 1.15365
112112 4.25901 0.402439
113113 −18.5228 −1.74248 −0.871241 0.490855i 0.836684π-0.836684\pi
−0.871241 + 0.490855i 0.836684π0.836684\pi
114114 4.18421 0.391887
115115 −11.9702 −1.11623
116116 1.22923 0.114131
117117 −17.2292 −1.59284
118118 4.45364 0.409990
119119 −5.25901 −0.482093
120120 25.8760 2.36215
121121 −8.63640 −0.785127
122122 −2.15442 −0.195052
123123 −36.3386 −3.27654
124124 −1.13919 −0.102303
125125 −3.47301 −0.310636
126126 −7.58242 −0.675495
127127 −6.77559 −0.601236 −0.300618 0.953745i 0.597193π-0.597193\pi
−0.300618 + 0.953745i 0.597193π0.597193\pi
128128 12.3490 1.09151
129129 −19.0152 −1.67420
130130 16.1544 1.41684
131131 7.25901 0.634223 0.317111 0.948388i 0.397287π-0.397287\pi
0.317111 + 0.948388i 0.397287π0.397287\pi
132132 0.612205 0.0532856
133133 −1.00000 −0.0867110
134134 −3.41344 −0.294876
135135 −20.7666 −1.78731
136136 −14.3130 −1.22733
137137 15.2936 1.30662 0.653311 0.757090i 0.273379π-0.273379\pi
0.653311 + 0.757090i 0.273379π0.273379\pi
138138 15.0707 1.28290
139139 −9.82061 −0.832973 −0.416486 0.909142i 0.636739π-0.636739\pi
−0.416486 + 0.909142i 0.636739π0.636739\pi
140140 0.462598 0.0390967
141141 −6.06439 −0.510714
142142 −0.770774 −0.0646819
143143 −5.10941 −0.427270
144144 −22.0796 −1.83997
145145 −29.3490 −2.43731
146146 −1.44737 −0.119785
147147 2.86081 0.235955
148148 0.591380 0.0486112
149149 −13.5422 −1.10942 −0.554711 0.832043i 0.687171π-0.687171\pi
−0.554711 + 0.832043i 0.687171π0.687171\pi
150150 25.2936 2.06522
151151 8.18421 0.666022 0.333011 0.942923i 0.391935π-0.391935\pi
0.333011 + 0.942923i 0.391935π0.391935\pi
152152 −2.72161 −0.220752
153153 27.2638 2.20415
154154 −2.24860 −0.181197
155155 27.1994 2.18471
156156 −1.32340 −0.105957
157157 5.13023 0.409437 0.204719 0.978821i 0.434372π-0.434372\pi
0.204719 + 0.978821i 0.434372π0.434372\pi
158158 1.16484 0.0926693
159159 −0.184210 −0.0146088
160160 2.61220 0.206513
161161 −3.60179 −0.283861
162162 3.39821 0.266988
163163 −1.37883 −0.107998 −0.0539992 0.998541i 0.517197π-0.517197\pi
−0.0539992 + 0.998541i 0.517197π0.517197\pi
164164 −1.76808 −0.138064
165165 −14.6170 −1.13793
166166 14.7202 1.14251
167167 21.5630 1.66860 0.834299 0.551312i 0.185873π-0.185873\pi
0.834299 + 0.551312i 0.185873π0.185873\pi
168168 7.78600 0.600703
169169 −1.95498 −0.150383
170170 −25.5630 −1.96060
171171 5.18421 0.396446
172172 −0.925197 −0.0705456
173173 −19.1648 −1.45708 −0.728538 0.685006i 0.759800π-0.759800\pi
−0.728538 + 0.685006i 0.759800π0.759800\pi
174174 36.9508 2.80124
175175 −6.04502 −0.456960
176176 −6.54781 −0.493560
177177 8.71120 0.654774
178178 7.33527 0.549801
179179 −15.1994 −1.13606 −0.568030 0.823008i 0.692294π-0.692294\pi
−0.568030 + 0.823008i 0.692294π0.692294\pi
180180 −2.39821 −0.178752
181181 2.31299 0.171923 0.0859617 0.996298i 0.472604π-0.472604\pi
0.0859617 + 0.996298i 0.472604π0.472604\pi
182182 4.86081 0.360307
183183 −4.21400 −0.311508
184184 −9.80268 −0.722663
185185 −14.1198 −1.03811
186186 −34.2445 −2.51093
187187 8.08522 0.591250
188188 −0.295066 −0.0215199
189189 −6.24860 −0.454519
190190 −4.86081 −0.352640
191191 −0.0852153 −0.00616596 −0.00308298 0.999995i 0.500981π-0.500981\pi
−0.00308298 + 0.999995i 0.500981π0.500981\pi
192192 21.0796 1.52129
193193 1.75622 0.126415 0.0632076 0.998000i 0.479867π-0.479867\pi
0.0632076 + 0.998000i 0.479867π0.479867\pi
194194 −26.2832 −1.88702
195195 31.5976 2.26275
196196 0.139194 0.00994244
197197 10.8400 0.772317 0.386158 0.922433i 0.373802π-0.373802\pi
0.386158 + 0.922433i 0.373802π0.373802\pi
198198 11.6572 0.828443
199199 −4.82620 −0.342120 −0.171060 0.985261i 0.554719π-0.554719\pi
−0.171060 + 0.985261i 0.554719π0.554719\pi
200200 −16.4522 −1.16335
201201 −6.67660 −0.470931
202202 10.0852 0.709593
203203 −8.83102 −0.619816
204204 2.09418 0.146622
205205 42.2147 2.94840
206206 19.2113 1.33851
207207 18.6724 1.29782
208208 14.1544 0.981433
209209 1.53740 0.106344
210210 13.9058 0.959593
211211 −3.91478 −0.269505 −0.134752 0.990879i 0.543024π-0.543024\pi
−0.134752 + 0.990879i 0.543024π0.543024\pi
212212 −0.00896285 −0.000615571 0
213213 −1.50761 −0.103300
214214 15.6156 1.06746
215215 22.0900 1.50653
216216 −17.0063 −1.15713
217217 8.18421 0.555580
218218 14.5824 0.987646
219219 −2.83102 −0.191303
220220 −0.711200 −0.0479491
221221 −17.4778 −1.17569
222222 17.7770 1.19312
223223 −2.11982 −0.141954 −0.0709768 0.997478i 0.522612π-0.522612\pi
−0.0709768 + 0.997478i 0.522612π0.522612\pi
224224 0.786003 0.0525170
225225 31.3386 2.08924
226226 −27.0915 −1.80210
227227 10.9598 0.727428 0.363714 0.931511i 0.381509π-0.381509\pi
0.363714 + 0.931511i 0.381509π0.381509\pi
228228 0.398207 0.0263719
229229 9.70079 0.641046 0.320523 0.947241i 0.396141π-0.396141\pi
0.320523 + 0.947241i 0.396141π0.396141\pi
230230 −17.5076 −1.15442
231231 −4.39821 −0.289381
232232 −24.0346 −1.57795
233233 −9.62743 −0.630714 −0.315357 0.948973i 0.602124π-0.602124\pi
−0.315357 + 0.948973i 0.602124π0.602124\pi
234234 −25.1994 −1.64734
235235 7.04502 0.459566
236236 0.423848 0.0275902
237237 2.27839 0.147997
238238 −7.69182 −0.498587
239239 4.39821 0.284496 0.142248 0.989831i 0.454567π-0.454567\pi
0.142248 + 0.989831i 0.454567π0.454567\pi
240240 40.4931 2.61382
241241 26.3684 1.69854 0.849270 0.527959i 0.177043π-0.177043\pi
0.849270 + 0.527959i 0.177043π0.177043\pi
242242 −12.6316 −0.811989
243243 −12.0990 −0.776151
244244 −0.205034 −0.0131260
245245 −3.32340 −0.212325
246246 −53.1488 −3.38865
247247 −3.32340 −0.211463
248248 22.2742 1.41442
249249 28.7923 1.82464
250250 −5.07962 −0.321263
251251 −5.34905 −0.337629 −0.168814 0.985648i 0.553994π-0.553994\pi
−0.168814 + 0.985648i 0.553994π0.553994\pi
252252 −0.721612 −0.0454573
253253 5.53740 0.348133
254254 −9.90997 −0.621807
255255 −50.0007 −3.13116
256256 3.32485 0.207803
257257 −24.9300 −1.55509 −0.777546 0.628826i 0.783536π-0.783536\pi
−0.777546 + 0.628826i 0.783536π0.783536\pi
258258 −27.8116 −1.73148
259259 −4.24860 −0.263995
260260 1.53740 0.0953456
261261 45.7819 2.83383
262262 10.6170 0.655922
263263 −4.21400 −0.259846 −0.129923 0.991524i 0.541473π-0.541473\pi
−0.129923 + 0.991524i 0.541473π0.541473\pi
264264 −11.9702 −0.736716
265265 0.213997 0.0131457
266266 −1.46260 −0.0896777
267267 14.3476 0.878059
268268 −0.324854 −0.0198436
269269 −4.98959 −0.304221 −0.152110 0.988364i 0.548607π-0.548607\pi
−0.152110 + 0.988364i 0.548607π0.548607\pi
270270 −30.3732 −1.84846
271271 −31.0707 −1.88741 −0.943704 0.330791i 0.892684π-0.892684\pi
−0.943704 + 0.330791i 0.892684π0.892684\pi
272272 −22.3982 −1.35809
273273 9.50761 0.575427
274274 22.3684 1.35133
275275 9.29362 0.560426
276276 1.43426 0.0863323
277277 −17.2549 −1.03674 −0.518372 0.855155i 0.673462π-0.673462\pi
−0.518372 + 0.855155i 0.673462π0.673462\pi
278278 −14.3636 −0.861472
279279 −42.4287 −2.54014
280280 −9.04502 −0.540543
281281 −4.61702 −0.275428 −0.137714 0.990472i 0.543976π-0.543976\pi
−0.137714 + 0.990472i 0.543976π0.543976\pi
282282 −8.86977 −0.528187
283283 24.7804 1.47304 0.736521 0.676415i 0.236467π-0.236467\pi
0.736521 + 0.676415i 0.236467π0.236467\pi
284284 −0.0733538 −0.00435275
285285 −9.50761 −0.563182
286286 −7.47301 −0.441888
287287 12.7022 0.749789
288288 −4.07480 −0.240110
289289 10.6572 0.626895
290290 −42.9259 −2.52069
291291 −51.4093 −3.01367
292292 −0.137745 −0.00806091
293293 9.28465 0.542415 0.271208 0.962521i 0.412577π-0.412577\pi
0.271208 + 0.962521i 0.412577π0.412577\pi
294294 4.18421 0.244028
295295 −10.1198 −0.589199
296296 −11.5630 −0.672088
297297 9.60661 0.557432
298298 −19.8068 −1.14738
299299 −11.9702 −0.692255
300300 2.40717 0.138978
301301 6.64681 0.383116
302302 11.9702 0.688808
303303 19.7264 1.13325
304304 −4.25901 −0.244271
305305 4.89541 0.280310
306306 39.8760 2.27956
307307 −3.81579 −0.217779 −0.108889 0.994054i 0.534729π-0.534729\pi
−0.108889 + 0.994054i 0.534729π0.534729\pi
308308 −0.213997 −0.0121936
309309 37.5768 2.13767
310310 39.7819 2.25946
311311 0.354641 0.0201098 0.0100549 0.999949i 0.496799π-0.496799\pi
0.0100549 + 0.999949i 0.496799π0.496799\pi
312312 25.8760 1.46494
313313 9.63158 0.544409 0.272205 0.962239i 0.412247π-0.412247\pi
0.272205 + 0.962239i 0.412247π0.412247\pi
314314 7.50347 0.423445
315315 17.2292 0.970757
316316 0.110856 0.00623615
317317 −13.4432 −0.755047 −0.377523 0.926000i 0.623224π-0.623224\pi
−0.377523 + 0.926000i 0.623224π0.623224\pi
318318 −0.269425 −0.0151086
319319 13.5768 0.760156
320320 −24.4882 −1.36893
321321 30.5437 1.70478
322322 −5.26798 −0.293573
323323 5.25901 0.292619
324324 0.323404 0.0179669
325325 −20.0900 −1.11439
326326 −2.01668 −0.111693
327327 28.5228 1.57732
328328 34.5706 1.90884
329329 2.11982 0.116869
330330 −21.3788 −1.17687
331331 11.6572 0.640739 0.320369 0.947293i 0.396193π-0.396193\pi
0.320369 + 0.947293i 0.396193π0.396193\pi
332332 1.40090 0.0768846
333333 22.0256 1.20700
334334 31.5381 1.72569
335335 7.75622 0.423767
336336 12.1842 0.664703
337337 19.6662 1.07129 0.535643 0.844445i 0.320069π-0.320069\pi
0.535643 + 0.844445i 0.320069π0.320069\pi
338338 −2.85936 −0.155528
339339 −52.9903 −2.87804
340340 −2.43281 −0.131938
341341 −12.5824 −0.681376
342342 7.58242 0.410010
343343 −1.00000 −0.0539949
344344 18.0900 0.975349
345345 −34.2445 −1.84366
346346 −28.0305 −1.50693
347347 34.4328 1.84845 0.924225 0.381848i 0.124712π-0.124712\pi
0.924225 + 0.381848i 0.124712π0.124712\pi
348348 3.51658 0.188508
349349 −9.48679 −0.507816 −0.253908 0.967228i 0.581716π-0.581716\pi
−0.253908 + 0.967228i 0.581716π0.581716\pi
350350 −8.84143 −0.472594
351351 −20.7666 −1.10844
352352 −1.20840 −0.0644080
353353 22.3130 1.18760 0.593800 0.804612i 0.297627π-0.297627\pi
0.593800 + 0.804612i 0.297627π0.297627\pi
354354 12.7410 0.677176
355355 1.75140 0.0929546
356356 0.698090 0.0369987
357357 −15.0450 −0.796267
358358 −22.2307 −1.17493
359359 −8.61220 −0.454535 −0.227267 0.973832i 0.572979π-0.572979\pi
−0.227267 + 0.973832i 0.572979π0.572979\pi
360360 46.8913 2.47139
361361 1.00000 0.0526316
362362 3.38298 0.177805
363363 −24.7071 −1.29678
364364 0.462598 0.0242467
365365 3.28880 0.172144
366366 −6.16339 −0.322165
367367 13.3926 0.699089 0.349544 0.936920i 0.386336π-0.386336\pi
0.349544 + 0.936920i 0.386336π0.386336\pi
368368 −15.3401 −0.799657
369369 −65.8511 −3.42807
370370 −20.6516 −1.07363
371371 0.0643910 0.00334301
372372 −3.25901 −0.168972
373373 −12.1932 −0.631339 −0.315669 0.948869i 0.602229π-0.602229\pi
−0.315669 + 0.948869i 0.602229π0.602229\pi
374374 11.8254 0.611478
375375 −9.93561 −0.513073
376376 5.76932 0.297530
377377 −29.3490 −1.51155
378378 −9.13919 −0.470069
379379 15.2847 0.785120 0.392560 0.919726i 0.371590π-0.371590\pi
0.392560 + 0.919726i 0.371590π0.371590\pi
380380 −0.462598 −0.0237308
381381 −19.3836 −0.993054
382382 −0.124636 −0.00637692
383383 7.04502 0.359984 0.179992 0.983668i 0.442393π-0.442393\pi
0.179992 + 0.983668i 0.442393π0.442393\pi
384384 35.3282 1.80284
385385 5.10941 0.260399
386386 2.56864 0.130740
387387 −34.4585 −1.75162
388388 −2.50135 −0.126987
389389 17.0014 0.862008 0.431004 0.902350i 0.358160π-0.358160\pi
0.431004 + 0.902350i 0.358160π0.358160\pi
390390 46.2147 2.34017
391391 18.9419 0.957932
392392 −2.72161 −0.137462
393393 20.7666 1.04754
394394 15.8545 0.798740
395395 −2.64681 −0.133175
396396 1.10941 0.0557498
397397 29.1953 1.46527 0.732635 0.680622i 0.238290π-0.238290\pi
0.732635 + 0.680622i 0.238290π0.238290\pi
398398 −7.05880 −0.353825
399399 −2.86081 −0.143219
400400 −25.7458 −1.28729
401401 −13.3878 −0.668555 −0.334277 0.942475i 0.608492π-0.608492\pi
−0.334277 + 0.942475i 0.608492π0.608492\pi
402402 −9.76518 −0.487043
403403 27.1994 1.35490
404404 0.959801 0.0477519
405405 −7.72161 −0.383690
406406 −12.9162 −0.641022
407407 6.53181 0.323770
408408 −40.9467 −2.02716
409409 20.9300 1.03492 0.517461 0.855707i 0.326877π-0.326877\pi
0.517461 + 0.855707i 0.326877π0.326877\pi
410410 61.7431 3.04927
411411 43.7521 2.15813
412412 1.82832 0.0900749
413413 −3.04502 −0.149835
414414 27.3103 1.34223
415415 −33.4480 −1.64190
416416 2.61220 0.128074
417417 −28.0948 −1.37581
418418 2.24860 0.109983
419419 −16.7666 −0.819103 −0.409552 0.912287i 0.634315π-0.634315\pi
−0.409552 + 0.912287i 0.634315π0.634315\pi
420420 1.32340 0.0645755
421421 −17.7819 −0.866635 −0.433317 0.901241i 0.642657π-0.642657\pi
−0.433317 + 0.901241i 0.642657π0.642657\pi
422422 −5.72576 −0.278726
423423 −10.9896 −0.534332
424424 0.175247 0.00851076
425425 31.7908 1.54208
426426 −2.20503 −0.106834
427427 1.47301 0.0712840
428428 1.48612 0.0718343
429429 −14.6170 −0.705716
430430 32.3088 1.55807
431431 29.8325 1.43698 0.718490 0.695538i 0.244834π-0.244834\pi
0.718490 + 0.695538i 0.244834π0.244834\pi
432432 −26.6129 −1.28041
433433 −11.1350 −0.535116 −0.267558 0.963542i 0.586217π-0.586217\pi
−0.267558 + 0.963542i 0.586217π0.586217\pi
434434 11.9702 0.574589
435435 −83.9619 −4.02567
436436 1.38780 0.0664633
437437 3.60179 0.172297
438438 −4.14064 −0.197848
439439 14.8864 0.710491 0.355246 0.934773i 0.384397π-0.384397\pi
0.355246 + 0.934773i 0.384397π0.384397\pi
440440 13.9058 0.662934
441441 5.18421 0.246867
442442 −25.5630 −1.21591
443443 30.4149 1.44505 0.722527 0.691342i 0.242980π-0.242980\pi
0.722527 + 0.691342i 0.242980π0.242980\pi
444444 1.69182 0.0802904
445445 −16.6676 −0.790122
446446 −3.10044 −0.146810
447447 −38.7417 −1.83242
448448 −7.36842 −0.348125
449449 −9.35801 −0.441632 −0.220816 0.975316i 0.570872π-0.570872\pi
−0.220816 + 0.975316i 0.570872π0.570872\pi
450450 45.8358 2.16072
451451 −19.5284 −0.919558
452452 −2.57827 −0.121272
453453 23.4134 1.10006
454454 16.0298 0.752315
455455 −11.0450 −0.517798
456456 −7.78600 −0.364613
457457 −29.8552 −1.39657 −0.698284 0.715821i 0.746053π-0.746053\pi
−0.698284 + 0.715821i 0.746053π0.746053\pi
458458 14.1884 0.662978
459459 32.8615 1.53384
460460 −1.66618 −0.0776862
461461 −16.8608 −0.785286 −0.392643 0.919691i 0.628439π-0.628439\pi
−0.392643 + 0.919691i 0.628439π0.628439\pi
462462 −6.43281 −0.299281
463463 −9.86226 −0.458338 −0.229169 0.973387i 0.573601π-0.573601\pi
−0.229169 + 0.973387i 0.573601π0.573601\pi
464464 −37.6114 −1.74607
465465 77.8123 3.60846
466466 −14.0811 −0.652293
467467 18.4924 0.855726 0.427863 0.903844i 0.359267π-0.359267\pi
0.427863 + 0.903844i 0.359267π0.359267\pi
468468 −2.39821 −0.110857
469469 2.33382 0.107766
470470 10.3040 0.475289
471471 14.6766 0.676262
472472 −8.28735 −0.381456
473473 −10.2188 −0.469862
474474 3.33237 0.153061
475475 6.04502 0.277364
476476 −0.732024 −0.0335523
477477 −0.333816 −0.0152844
478478 6.43281 0.294230
479479 −32.2951 −1.47560 −0.737800 0.675020i 0.764135π-0.764135\pi
−0.737800 + 0.675020i 0.764135π0.764135\pi
480480 7.47301 0.341095
481481 −14.1198 −0.643808
482482 38.5664 1.75665
483483 −10.3040 −0.468850
484484 −1.20214 −0.0546425
485485 59.7223 2.71185
486486 −17.6960 −0.802706
487487 −27.1142 −1.22866 −0.614331 0.789048i 0.710574π-0.710574\pi
−0.614331 + 0.789048i 0.710574π0.710574\pi
488488 4.00896 0.181477
489489 −3.94457 −0.178380
490490 −4.86081 −0.219589
491491 6.58723 0.297278 0.148639 0.988892i 0.452511π-0.452511\pi
0.148639 + 0.988892i 0.452511π0.452511\pi
492492 −5.05813 −0.228038
493493 46.4424 2.09166
494494 −4.86081 −0.218698
495495 −26.4882 −1.19056
496496 34.8567 1.56511
497497 0.526989 0.0236387
498498 42.1115 1.88706
499499 23.4689 1.05061 0.525305 0.850914i 0.323951π-0.323951\pi
0.525305 + 0.850914i 0.323951π0.323951\pi
500500 −0.483423 −0.0216193
501501 61.6877 2.75600
502502 −7.82351 −0.349180
503503 20.1801 0.899785 0.449892 0.893083i 0.351462π-0.351462\pi
0.449892 + 0.893083i 0.351462π0.351462\pi
504504 14.1094 0.628483
505505 −22.9162 −1.01976
506506 8.09899 0.360044
507507 −5.59283 −0.248386
508508 −0.943123 −0.0418443
509509 −28.8448 −1.27852 −0.639262 0.768989i 0.720760π-0.720760\pi
−0.639262 + 0.768989i 0.720760π0.720760\pi
510510 −73.1309 −3.23829
511511 0.989588 0.0437768
512512 −19.8352 −0.876599
513513 6.24860 0.275882
514514 −36.4626 −1.60830
515515 −43.6531 −1.92358
516516 −2.64681 −0.116519
517517 −3.25901 −0.143331
518518 −6.21400 −0.273027
519519 −54.8269 −2.40663
520520 −30.0602 −1.31823
521521 −5.36215 −0.234920 −0.117460 0.993078i 0.537475π-0.537475\pi
−0.117460 + 0.993078i 0.537475π0.537475\pi
522522 66.9605 2.93078
523523 −1.56304 −0.0683471 −0.0341735 0.999416i 0.510880π-0.510880\pi
−0.0341735 + 0.999416i 0.510880π0.510880\pi
524524 1.01041 0.0441401
525525 −17.2936 −0.754755
526526 −6.16339 −0.268736
527527 −43.0409 −1.87489
528528 −18.7320 −0.815207
529529 −10.0271 −0.435960
530530 0.312992 0.0135955
531531 15.7860 0.685054
532532 −0.139194 −0.00603483
533533 42.2147 1.82852
534534 20.9848 0.908100
535535 −35.4826 −1.53405
536536 6.35174 0.274353
537537 −43.4826 −1.87641
538538 −7.29776 −0.314629
539539 1.53740 0.0662206
540540 −2.89059 −0.124391
541541 20.8864 0.897978 0.448989 0.893537i 0.351784π-0.351784\pi
0.448989 + 0.893537i 0.351784π0.351784\pi
542542 −45.4439 −1.95198
543543 6.61702 0.283964
544544 −4.13360 −0.177227
545545 −33.1350 −1.41935
546546 13.9058 0.595114
547547 21.8165 0.932804 0.466402 0.884573i 0.345550π-0.345550\pi
0.466402 + 0.884573i 0.345550π0.345550\pi
548548 2.12878 0.0909371
549549 −7.63640 −0.325913
550550 13.5928 0.579600
551551 8.83102 0.376214
552552 −28.0436 −1.19361
553553 −0.796415 −0.0338670
554554 −25.2369 −1.07221
555555 −40.3941 −1.71463
556556 −1.36697 −0.0579725
557557 11.7950 0.499769 0.249884 0.968276i 0.419607π-0.419607\pi
0.249884 + 0.968276i 0.419607π0.419607\pi
558558 −62.0561 −2.62704
559559 22.0900 0.934309
560560 −14.1544 −0.598134
561561 23.1302 0.976559
562562 −6.75285 −0.284852
563563 35.8414 1.51054 0.755268 0.655416i 0.227507π-0.227507\pi
0.755268 + 0.655416i 0.227507π0.227507\pi
564564 −0.844128 −0.0355442
565565 61.5589 2.58980
566566 36.2438 1.52344
567567 −2.32340 −0.0975738
568568 1.43426 0.0601802
569569 −8.29025 −0.347545 −0.173773 0.984786i 0.555596π-0.555596\pi
−0.173773 + 0.984786i 0.555596π0.555596\pi
570570 −13.9058 −0.582451
571571 8.50906 0.356093 0.178047 0.984022i 0.443022π-0.443022\pi
0.178047 + 0.984022i 0.443022π0.443022\pi
572572 −0.711200 −0.0297367
573573 −0.243784 −0.0101842
574574 18.5783 0.775442
575575 21.7729 0.907992
576576 38.1994 1.59164
577577 −12.3732 −0.515105 −0.257552 0.966264i 0.582916π-0.582916\pi
−0.257552 + 0.966264i 0.582916π0.582916\pi
578578 15.5872 0.648343
579579 5.02419 0.208798
580580 −4.08522 −0.169629
581581 −10.0644 −0.417541
582582 −75.1911 −3.11677
583583 −0.0989948 −0.00409995
584584 2.69327 0.111448
585585 57.2597 2.36740
586586 13.5797 0.560973
587587 −44.6773 −1.84403 −0.922014 0.387156i 0.873457π-0.873457\pi
−0.922014 + 0.387156i 0.873457π0.873457\pi
588588 0.398207 0.0164218
589589 −8.18421 −0.337225
590590 −14.8012 −0.609357
591591 31.0111 1.27563
592592 −18.0948 −0.743694
593593 1.84143 0.0756185 0.0378093 0.999285i 0.487962π-0.487962\pi
0.0378093 + 0.999285i 0.487962π0.487962\pi
594594 14.0506 0.576504
595595 17.4778 0.716521
596596 −1.88500 −0.0772125
597597 −13.8068 −0.565076
598598 −17.5076 −0.715940
599599 −30.5437 −1.24798 −0.623990 0.781432i 0.714489π-0.714489\pi
−0.623990 + 0.781432i 0.714489π0.714489\pi
600600 −47.0665 −1.92148
601601 −34.8913 −1.42324 −0.711622 0.702562i 0.752039π-0.752039\pi
−0.711622 + 0.702562i 0.752039π0.752039\pi
602602 9.72161 0.396223
603603 −12.0990 −0.492709
604604 1.13919 0.0463532
605605 28.7022 1.16691
606606 28.8518 1.17203
607607 −29.3926 −1.19301 −0.596505 0.802610i 0.703444π-0.703444\pi
−0.596505 + 0.802610i 0.703444π0.703444\pi
608608 −0.786003 −0.0318766
609609 −25.2638 −1.02374
610610 7.16002 0.289901
611611 7.04502 0.285011
612612 3.79497 0.153402
613613 −40.0561 −1.61785 −0.808925 0.587911i 0.799950π-0.799950\pi
−0.808925 + 0.587911i 0.799950π0.799950\pi
614614 −5.58097 −0.225230
615615 120.768 4.86983
616616 4.18421 0.168587
617617 24.9002 1.00245 0.501223 0.865318i 0.332884π-0.332884\pi
0.501223 + 0.865318i 0.332884π0.332884\pi
618618 54.9598 2.21081
619619 −15.7264 −0.632099 −0.316049 0.948743i 0.602356π-0.602356\pi
−0.316049 + 0.948743i 0.602356π0.602356\pi
620620 3.78600 0.152050
621621 22.5062 0.903141
622622 0.518697 0.0207979
623623 −5.01523 −0.200931
624624 40.4931 1.62102
625625 −18.6829 −0.747314
626626 14.0871 0.563035
627627 4.39821 0.175647
628628 0.714098 0.0284956
629629 22.3434 0.890892
630630 25.1994 1.00397
631631 −38.2999 −1.52469 −0.762347 0.647168i 0.775953π-0.775953\pi
−0.762347 + 0.647168i 0.775953π0.775953\pi
632632 −2.16753 −0.0862198
633633 −11.1994 −0.445138
634634 −19.6620 −0.780879
635635 22.5180 0.893601
636636 −0.0256410 −0.00101673
637637 −3.32340 −0.131678
638638 19.8574 0.786164
639639 −2.73202 −0.108077
640640 −41.0409 −1.62228
641641 −41.9363 −1.65638 −0.828192 0.560445i 0.810630π-0.810630\pi
−0.828192 + 0.560445i 0.810630π0.810630\pi
642642 44.6731 1.76311
643643 −16.9371 −0.667932 −0.333966 0.942585i 0.608387π-0.608387\pi
−0.333966 + 0.942585i 0.608387π0.608387\pi
644644 −0.501348 −0.0197559
645645 63.1953 2.48831
646646 7.69182 0.302631
647647 4.50906 0.177270 0.0886348 0.996064i 0.471750π-0.471750\pi
0.0886348 + 0.996064i 0.471750π0.471750\pi
648648 −6.32340 −0.248407
649649 4.68141 0.183762
650650 −29.3836 −1.15252
651651 23.4134 0.917645
652652 −0.191925 −0.00751638
653653 −15.0242 −0.587942 −0.293971 0.955814i 0.594977π-0.594977\pi
−0.293971 + 0.955814i 0.594977π0.594977\pi
654654 41.7175 1.63128
655655 −24.1246 −0.942628
656656 54.0990 2.11221
657657 −5.13023 −0.200149
658658 3.10044 0.120868
659659 24.7410 0.963772 0.481886 0.876234i 0.339952π-0.339952\pi
0.481886 + 0.876234i 0.339952π0.339952\pi
660660 −2.03460 −0.0791968
661661 −9.62329 −0.374302 −0.187151 0.982331i 0.559925π-0.559925\pi
−0.187151 + 0.982331i 0.559925π0.559925\pi
662662 17.0498 0.662661
663663 −50.0007 −1.94187
664664 −27.3914 −1.06299
665665 3.32340 0.128876
666666 32.2147 1.24829
667667 31.8075 1.23159
668668 3.00145 0.116130
669669 −6.06439 −0.234463
670670 11.3442 0.438266
671671 −2.26461 −0.0874243
672672 2.24860 0.0867417
673673 −11.1213 −0.428693 −0.214347 0.976758i 0.568762π-0.568762\pi
−0.214347 + 0.976758i 0.568762π0.568762\pi
674674 28.7637 1.10794
675675 37.7729 1.45388
676676 −0.272122 −0.0104662
677677 16.5616 0.636514 0.318257 0.948005i 0.396903π-0.396903\pi
0.318257 + 0.948005i 0.396903π0.396903\pi
678678 −77.5035 −2.97650
679679 17.9702 0.689633
680680 47.5679 1.82414
681681 31.3539 1.20148
682682 −18.4030 −0.704688
683683 9.62262 0.368199 0.184100 0.982908i 0.441063π-0.441063\pi
0.184100 + 0.982908i 0.441063π0.441063\pi
684684 0.721612 0.0275915
685685 −50.8269 −1.94199
686686 −1.46260 −0.0558423
687687 27.7521 1.05881
688688 28.3088 1.07926
689689 0.213997 0.00815265
690690 −50.0859 −1.90674
691691 11.5720 0.440220 0.220110 0.975475i 0.429358π-0.429358\pi
0.220110 + 0.975475i 0.429358π0.429358\pi
692692 −2.66763 −0.101408
693693 −7.97021 −0.302763
694694 50.3614 1.91169
695695 32.6378 1.23802
696696 −68.7583 −2.60628
697697 −66.8012 −2.53028
698698 −13.8754 −0.525190
699699 −27.5422 −1.04174
700700 −0.841431 −0.0318031
701701 −46.3781 −1.75167 −0.875837 0.482606i 0.839690π-0.839690\pi
−0.875837 + 0.482606i 0.839690π0.839690\pi
702702 −30.3732 −1.14636
703703 4.24860 0.160239
704704 11.3282 0.426948
705705 20.1544 0.759059
706706 32.6349 1.22823
707707 −6.89541 −0.259329
708708 1.21255 0.0455703
709709 −26.2099 −0.984332 −0.492166 0.870501i 0.663795π-0.663795\pi
−0.492166 + 0.870501i 0.663795π0.663795\pi
710710 2.56159 0.0961349
711711 4.12878 0.154841
712712 −13.6495 −0.511537
713713 −29.4778 −1.10395
714714 −22.0048 −0.823510
715715 16.9806 0.635039
716716 −2.11567 −0.0790664
717717 12.5824 0.469899
718718 −12.5962 −0.470086
719719 −11.4432 −0.426760 −0.213380 0.976969i 0.568447π-0.568447\pi
−0.213380 + 0.976969i 0.568447π0.568447\pi
720720 73.3795 2.73469
721721 −13.1350 −0.489175
722722 1.46260 0.0544323
723723 75.4349 2.80546
724724 0.321955 0.0119654
725725 53.3836 1.98262
726726 −36.1365 −1.34115
727727 26.8054 0.994156 0.497078 0.867706i 0.334406π-0.334406\pi
0.497078 + 0.867706i 0.334406π0.334406\pi
728728 −9.04502 −0.335231
729729 −41.5831 −1.54011
730730 4.81019 0.178033
731731 −34.9557 −1.29288
732732 −0.586564 −0.0216800
733733 42.7189 1.57786 0.788930 0.614484i 0.210636π-0.210636\pi
0.788930 + 0.614484i 0.210636π0.210636\pi
734734 19.5880 0.723007
735735 −9.50761 −0.350694
736736 −2.83102 −0.104353
737737 −3.58801 −0.132166
738738 −96.3137 −3.54535
739739 4.35656 0.160259 0.0801293 0.996784i 0.474467π-0.474467\pi
0.0801293 + 0.996784i 0.474467π0.474467\pi
740740 −1.96540 −0.0722494
741741 −9.50761 −0.349271
742742 0.0941782 0.00345739
743743 −2.11982 −0.0777686 −0.0388843 0.999244i 0.512380π-0.512380\pi
−0.0388843 + 0.999244i 0.512380π0.512380\pi
744744 63.7223 2.33617
745745 45.0063 1.64890
746746 −17.8337 −0.652939
747747 52.1759 1.90902
748748 1.12541 0.0411492
749749 −10.6766 −0.390114
750750 −14.5318 −0.530627
751751 −27.1004 −0.988909 −0.494455 0.869203i 0.664632π-0.664632\pi
−0.494455 + 0.869203i 0.664632π0.664632\pi
752752 9.02834 0.329230
753753 −15.3026 −0.557657
754754 −42.9259 −1.56327
755755 −27.1994 −0.989889
756756 −0.869769 −0.0316332
757757 40.3297 1.46581 0.732903 0.680333i 0.238165π-0.238165\pi
0.732903 + 0.680333i 0.238165π0.238165\pi
758758 22.3553 0.811981
759759 15.8414 0.575008
760760 9.04502 0.328097
761761 15.8206 0.573497 0.286748 0.958006i 0.407426π-0.407426\pi
0.286748 + 0.958006i 0.407426π0.407426\pi
762762 −28.3505 −1.02703
763763 −9.97021 −0.360946
764764 −0.0118615 −0.000429133 0
765765 −90.6087 −3.27597
766766 10.3040 0.372300
767767 −10.1198 −0.365405
768768 9.51176 0.343226
769769 33.6829 1.21464 0.607318 0.794459i 0.292246π-0.292246\pi
0.607318 + 0.794459i 0.292246π0.292246\pi
770770 7.47301 0.269309
771771 −71.3199 −2.56852
772772 0.244455 0.00879813
773773 −22.9252 −0.824562 −0.412281 0.911057i 0.635268π-0.635268\pi
−0.412281 + 0.911057i 0.635268π0.635268\pi
774774 −50.3989 −1.81155
775775 −49.4737 −1.77715
776776 48.9079 1.75569
777777 −12.1544 −0.436037
778778 24.8663 0.891500
779779 −12.7022 −0.455105
780780 4.39821 0.157481
781781 −0.810194 −0.0289910
782782 27.7044 0.990706
783783 55.1815 1.97203
784784 −4.25901 −0.152108
785785 −17.0498 −0.608535
786786 30.3732 1.08338
787787 7.70079 0.274503 0.137252 0.990536i 0.456173π-0.456173\pi
0.137252 + 0.990536i 0.456173π0.456173\pi
788788 1.50886 0.0537510
789789 −12.0554 −0.429185
790790 −3.87122 −0.137732
791791 18.5228 0.658596
792792 −21.6918 −0.770785
793793 4.89541 0.173841
794794 42.7010 1.51540
795795 0.612205 0.0217127
796796 −0.671779 −0.0238106
797797 −16.5914 −0.587697 −0.293848 0.955852i 0.594936π-0.594936\pi
−0.293848 + 0.955852i 0.594936π0.594936\pi
798798 −4.18421 −0.148119
799799 −11.1482 −0.394393
800800 −4.75140 −0.167987
801801 26.0000 0.918665
802802 −19.5810 −0.691428
803803 −1.52139 −0.0536888
804804 −0.929343 −0.0327754
805805 11.9702 0.421895
806806 39.7819 1.40126
807807 −14.2742 −0.502477
808808 −18.7666 −0.660208
809809 1.41344 0.0496938 0.0248469 0.999691i 0.492090π-0.492090\pi
0.0248469 + 0.999691i 0.492090π0.492090\pi
810810 −11.2936 −0.396817
811811 28.1980 0.990165 0.495083 0.868846i 0.335138π-0.335138\pi
0.495083 + 0.868846i 0.335138π0.335138\pi
812812 −1.22923 −0.0431374
813813 −88.8871 −3.11741
814814 9.55341 0.334847
815815 4.58242 0.160515
816816 −64.0769 −2.24314
817817 −6.64681 −0.232542
818818 30.6122 1.07033
819819 17.2292 0.602038
820820 5.87603 0.205200
821821 26.9765 0.941486 0.470743 0.882270i 0.343986π-0.343986\pi
0.470743 + 0.882270i 0.343986π0.343986\pi
822822 63.9917 2.23197
823823 25.6441 0.893898 0.446949 0.894560i 0.352511π-0.352511\pi
0.446949 + 0.894560i 0.352511π0.352511\pi
824824 −35.7485 −1.24536
825825 26.5872 0.925649
826826 −4.45364 −0.154962
827827 29.5451 1.02738 0.513692 0.857975i 0.328277π-0.328277\pi
0.513692 + 0.857975i 0.328277π0.328277\pi
828828 2.59910 0.0903248
829829 4.82687 0.167644 0.0838221 0.996481i 0.473287π-0.473287\pi
0.0838221 + 0.996481i 0.473287π0.473287\pi
830830 −48.9211 −1.69807
831831 −49.3628 −1.71238
832832 −24.4882 −0.848977
833833 5.25901 0.182214
834834 −41.0915 −1.42288
835835 −71.6627 −2.47999
836836 0.213997 0.00740125
837837 −51.1399 −1.76765
838838 −24.5228 −0.847128
839839 −35.3241 −1.21952 −0.609761 0.792585i 0.708735π-0.708735\pi
−0.609761 + 0.792585i 0.708735π0.708735\pi
840840 −25.8760 −0.892808
841841 48.9869 1.68920
842842 −26.0077 −0.896285
843843 −13.2084 −0.454922
844844 −0.544915 −0.0187568
845845 6.49720 0.223511
846846 −16.0734 −0.552613
847847 8.63640 0.296750
848848 0.274242 0.00941751
849849 70.8919 2.43300
850850 46.4972 1.59484
851851 15.3026 0.524566
852852 −0.209851 −0.00718938
853853 40.6129 1.39056 0.695279 0.718740i 0.255281π-0.255281\pi
0.695279 + 0.718740i 0.255281π0.255281\pi
854854 2.15442 0.0737228
855855 −17.2292 −0.589227
856856 −29.0575 −0.993167
857857 21.4570 0.732957 0.366479 0.930426i 0.380563π-0.380563\pi
0.366479 + 0.930426i 0.380563π0.380563\pi
858858 −21.3788 −0.729861
859859 21.9237 0.748029 0.374014 0.927423i 0.377981π-0.377981\pi
0.374014 + 0.927423i 0.377981π0.377981\pi
860860 3.07480 0.104850
861861 36.3386 1.23842
862862 43.6329 1.48614
863863 −27.1004 −0.922510 −0.461255 0.887268i 0.652601π-0.652601\pi
−0.461255 + 0.887268i 0.652601π0.652601\pi
864864 −4.91142 −0.167090
865865 63.6925 2.16561
866866 −16.2861 −0.553424
867867 30.4882 1.03543
868868 1.13919 0.0386668
869869 1.22441 0.0415352
870870 −122.803 −4.16340
871871 7.75622 0.262809
872872 −27.1350 −0.918909
873873 −93.1614 −3.15303
874874 5.26798 0.178192
875875 3.47301 0.117409
876876 −0.394061 −0.0133141
877877 −40.7160 −1.37488 −0.687441 0.726240i 0.741266π-0.741266\pi
−0.687441 + 0.726240i 0.741266π0.741266\pi
878878 21.7729 0.734800
879879 26.5616 0.895900
880880 21.7610 0.733564
881881 −10.2653 −0.345846 −0.172923 0.984935i 0.555321π-0.555321\pi
−0.172923 + 0.984935i 0.555321π0.555321\pi
882882 7.58242 0.255313
883883 −13.7514 −0.462771 −0.231386 0.972862i 0.574326π-0.574326\pi
−0.231386 + 0.972862i 0.574326π0.574326\pi
884884 −2.43281 −0.0818243
885885 −28.9508 −0.973172
886886 44.4848 1.49449
887887 55.6710 1.86925 0.934625 0.355636i 0.115736π-0.115736\pi
0.934625 + 0.355636i 0.115736π0.115736\pi
888888 −33.0796 −1.11008
889889 6.77559 0.227246
890890 −24.3781 −0.817154
891891 3.57201 0.119667
892892 −0.295066 −0.00987955
893893 −2.11982 −0.0709370
894894 −56.6635 −1.89511
895895 50.5139 1.68849
896896 −12.3490 −0.412553
897897 −34.2445 −1.14339
898898 −13.6870 −0.456741
899899 −72.2749 −2.41050
900900 4.36215 0.145405
901901 −0.338633 −0.0112815
902902 −28.5623 −0.951019
903903 19.0152 0.632787
904904 50.4120 1.67668
905905 −7.68701 −0.255525
906906 34.2445 1.13770
907907 5.21255 0.173080 0.0865399 0.996248i 0.472419π-0.472419\pi
0.0865399 + 0.996248i 0.472419π0.472419\pi
908908 1.52554 0.0506268
909909 35.7473 1.18566
910910 −16.1544 −0.535514
911911 −38.0900 −1.26198 −0.630990 0.775791i 0.717351π-0.717351\pi
−0.630990 + 0.775791i 0.717351π0.717351\pi
912912 −12.1842 −0.403460
913913 15.4730 0.512082
914914 −43.6662 −1.44435
915915 14.0048 0.462985
916916 1.35029 0.0446149
917917 −7.25901 −0.239714
918918 48.0631 1.58632
919919 43.3955 1.43149 0.715743 0.698364i 0.246088π-0.246088\pi
0.715743 + 0.698364i 0.246088π0.246088\pi
920920 32.5783 1.07407
921921 −10.9162 −0.359702
922922 −24.6606 −0.812153
923923 1.75140 0.0576480
924924 −0.612205 −0.0201401
925925 25.6829 0.844447
926926 −14.4245 −0.474019
927927 68.0948 2.23653
928928 −6.94120 −0.227856
929929 −6.34278 −0.208100 −0.104050 0.994572i 0.533180π-0.533180\pi
−0.104050 + 0.994572i 0.533180π0.533180\pi
930930 113.808 3.73192
931931 1.00000 0.0327737
932932 −1.34008 −0.0438959
933933 1.01456 0.0332151
934934 27.0469 0.885003
935935 −26.8704 −0.878757
936936 46.8913 1.53269
937937 0.444673 0.0145268 0.00726341 0.999974i 0.497688π-0.497688\pi
0.00726341 + 0.999974i 0.497688π0.497688\pi
938938 3.41344 0.111453
939939 27.5541 0.899193
940940 0.980625 0.0319845
941941 −15.2936 −0.498558 −0.249279 0.968432i 0.580194π-0.580194\pi
−0.249279 + 0.968432i 0.580194π0.580194\pi
942942 21.4660 0.699399
943943 −45.7508 −1.48985
944944 −12.9688 −0.422097
945945 20.7666 0.675538
946946 −14.9460 −0.485937
947947 44.7112 1.45292 0.726459 0.687209i 0.241165π-0.241165\pi
0.726459 + 0.687209i 0.241165π0.241165\pi
948948 0.317138 0.0103002
949949 3.28880 0.106759
950950 8.84143 0.286854
951951 −38.4585 −1.24710
952952 14.3130 0.463887
953953 −48.3434 −1.56600 −0.782999 0.622023i 0.786311π-0.786311\pi
−0.782999 + 0.622023i 0.786311π0.786311\pi
954954 −0.488239 −0.0158073
955955 0.283205 0.00916430
956956 0.612205 0.0198001
957957 38.8407 1.25554
958958 −47.2347 −1.52608
959959 −15.2936 −0.493857
960960 −70.0561 −2.26105
961961 35.9813 1.16069
962962 −20.6516 −0.665835
963963 55.3497 1.78362
964964 3.67033 0.118213
965965 −5.83661 −0.187887
966966 −15.0707 −0.484890
967967 56.1759 1.80650 0.903248 0.429119i 0.141176π-0.141176\pi
0.903248 + 0.429119i 0.141176π0.141176\pi
968968 23.5049 0.755477
969969 15.0450 0.483316
970970 87.3497 2.80463
971971 −48.5603 −1.55838 −0.779188 0.626791i 0.784368π-0.784368\pi
−0.779188 + 0.626791i 0.784368π0.784368\pi
972972 −1.68411 −0.0540178
973973 9.82061 0.314834
974974 −39.6572 −1.27070
975975 −57.4737 −1.84063
976976 6.27357 0.200812
977977 29.6925 0.949947 0.474974 0.880000i 0.342458π-0.342458\pi
0.474974 + 0.880000i 0.342458π0.342458\pi
978978 −5.76932 −0.184483
979979 7.71042 0.246426
980980 −0.462598 −0.0147772
981981 51.6877 1.65026
982982 9.63448 0.307449
983983 16.8358 0.536980 0.268490 0.963283i 0.413475π-0.413475\pi
0.268490 + 0.963283i 0.413475π0.413475\pi
984984 98.8996 3.15281
985985 −36.0256 −1.14787
986986 67.9266 2.16323
987987 6.06439 0.193032
988988 −0.462598 −0.0147172
989989 −23.9404 −0.761261
990990 −38.7417 −1.23129
991991 −2.53595 −0.0805572 −0.0402786 0.999188i 0.512825π-0.512825\pi
−0.0402786 + 0.999188i 0.512825π0.512825\pi
992992 6.43281 0.204242
993993 33.3490 1.05830
994994 0.770774 0.0244475
995995 16.0394 0.508484
996996 4.00772 0.126989
997997 −36.9217 −1.16932 −0.584661 0.811277i 0.698773π-0.698773\pi
−0.584661 + 0.811277i 0.698773π0.698773\pi
998998 34.3255 1.08656
999999 26.5478 0.839936
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 133.2.a.d.1.2 3
3.2 odd 2 1197.2.a.k.1.2 3
4.3 odd 2 2128.2.a.p.1.1 3
5.4 even 2 3325.2.a.r.1.2 3
7.2 even 3 931.2.f.l.704.2 6
7.3 odd 6 931.2.f.m.324.2 6
7.4 even 3 931.2.f.l.324.2 6
7.5 odd 6 931.2.f.m.704.2 6
7.6 odd 2 931.2.a.k.1.2 3
8.3 odd 2 8512.2.a.bp.1.3 3
8.5 even 2 8512.2.a.bi.1.1 3
19.18 odd 2 2527.2.a.f.1.2 3
21.20 even 2 8379.2.a.bo.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
133.2.a.d.1.2 3 1.1 even 1 trivial
931.2.a.k.1.2 3 7.6 odd 2
931.2.f.l.324.2 6 7.4 even 3
931.2.f.l.704.2 6 7.2 even 3
931.2.f.m.324.2 6 7.3 odd 6
931.2.f.m.704.2 6 7.5 odd 6
1197.2.a.k.1.2 3 3.2 odd 2
2128.2.a.p.1.1 3 4.3 odd 2
2527.2.a.f.1.2 3 19.18 odd 2
3325.2.a.r.1.2 3 5.4 even 2
8379.2.a.bo.1.2 3 21.20 even 2
8512.2.a.bi.1.1 3 8.5 even 2
8512.2.a.bp.1.3 3 8.3 odd 2