Properties

Label 1332.1.cy.a.1135.1
Level 13321332
Weight 11
Character 1332.1135
Analytic conductor 0.6650.665
Analytic rank 00
Dimension 1212
Projective image D18D_{18}
CM discriminant -4
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1332,1,Mod(559,1332)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1332, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([9, 0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1332.559");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1332=223237 1332 = 2^{2} \cdot 3^{2} \cdot 37
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1332.cy (of order 1818, degree 66, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.6647545968270.664754596827
Analytic rank: 00
Dimension: 1212
Relative dimension: 22 over Q(ζ18)\Q(\zeta_{18})
Coefficient field: Q(ζ36)\Q(\zeta_{36})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x12x6+1 x^{12} - x^{6} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D18D_{18}
Projective field: Galois closure of Q[x]/(x18)\mathbb{Q}[x]/(x^{18} - \cdots)

Embedding invariants

Embedding label 1135.1
Root 0.9848080.173648i0.984808 - 0.173648i of defining polynomial
Character χ\chi == 1332.1135
Dual form 1332.1.cy.a.595.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.6427880.766044i)q2+(0.173648+0.984808i)q4+(0.524005+1.43969i)q5+(0.8660250.500000i)q8+(0.7660441.32683i)q10+(1.70574+0.300767i)q13+(0.9396930.342020i)q16+(1.85083+0.326352i)q17+(1.50881+0.266044i)q20+(1.03209+0.866025i)q25+(0.8660251.50000i)q26+(0.3007670.173648i)q29+(0.342020+0.939693i)q32+(1.43969+1.20805i)q34+(0.173648+0.984808i)q37+(1.17365+0.984808i)q40+(0.118782+0.673648i)q41+(0.7660440.642788i)q49+(1.32683+0.233956i)q50+(0.592396+1.62760i)q52+(1.62760+0.592396i)q53+(0.3263520.118782i)q58+(1.939690.342020i)q61+(0.5000000.866025i)q64+(0.460802+2.61334i)q651.87939iq681.00000q73+(0.8660250.500000i)q741.53209iq80+(0.5923960.342020i)q82+(1.439692.49362i)q85+(0.6427881.76604i)q89+(1.70574+0.984808i)q97+(0.9848080.173648i)q98+O(q100)q+(-0.642788 - 0.766044i) q^{2} +(-0.173648 + 0.984808i) q^{4} +(0.524005 + 1.43969i) q^{5} +(0.866025 - 0.500000i) q^{8} +(0.766044 - 1.32683i) q^{10} +(1.70574 + 0.300767i) q^{13} +(-0.939693 - 0.342020i) q^{16} +(-1.85083 + 0.326352i) q^{17} +(-1.50881 + 0.266044i) q^{20} +(-1.03209 + 0.866025i) q^{25} +(-0.866025 - 1.50000i) q^{26} +(0.300767 - 0.173648i) q^{29} +(0.342020 + 0.939693i) q^{32} +(1.43969 + 1.20805i) q^{34} +(-0.173648 + 0.984808i) q^{37} +(1.17365 + 0.984808i) q^{40} +(-0.118782 + 0.673648i) q^{41} +(0.766044 - 0.642788i) q^{49} +(1.32683 + 0.233956i) q^{50} +(-0.592396 + 1.62760i) q^{52} +(1.62760 + 0.592396i) q^{53} +(-0.326352 - 0.118782i) q^{58} +(-1.93969 - 0.342020i) q^{61} +(0.500000 - 0.866025i) q^{64} +(0.460802 + 2.61334i) q^{65} -1.87939i q^{68} -1.00000 q^{73} +(0.866025 - 0.500000i) q^{74} -1.53209i q^{80} +(0.592396 - 0.342020i) q^{82} +(-1.43969 - 2.49362i) q^{85} +(0.642788 - 1.76604i) q^{89} +(1.70574 + 0.984808i) q^{97} +(-0.984808 - 0.173648i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q+6q25+6q34+12q406q5812q61+6q6412q736q85+O(q100) 12 q + 6 q^{25} + 6 q^{34} + 12 q^{40} - 6 q^{58} - 12 q^{61} + 6 q^{64} - 12 q^{73} - 6 q^{85}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1332Z)×\left(\mathbb{Z}/1332\mathbb{Z}\right)^\times.

nn 667667 10371037 12971297
χ(n)\chi(n) 1-1 11 e(518)e\left(\frac{5}{18}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.642788 0.766044i −0.642788 0.766044i
33 0 0
44 −0.173648 + 0.984808i −0.173648 + 0.984808i
55 0.524005 + 1.43969i 0.524005 + 1.43969i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
66 0 0
77 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
88 0.866025 0.500000i 0.866025 0.500000i
99 0 0
1010 0.766044 1.32683i 0.766044 1.32683i
1111 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
1212 0 0
1313 1.70574 + 0.300767i 1.70574 + 0.300767i 0.939693 0.342020i 0.111111π-0.111111\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
1414 0 0
1515 0 0
1616 −0.939693 0.342020i −0.939693 0.342020i
1717 −1.85083 + 0.326352i −1.85083 + 0.326352i −0.984808 0.173648i 0.944444π-0.944444\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
1818 0 0
1919 0 0 0.642788 0.766044i 0.277778π-0.277778\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
2020 −1.50881 + 0.266044i −1.50881 + 0.266044i
2121 0 0
2222 0 0
2323 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
2424 0 0
2525 −1.03209 + 0.866025i −1.03209 + 0.866025i
2626 −0.866025 1.50000i −0.866025 1.50000i
2727 0 0
2828 0 0
2929 0.300767 0.173648i 0.300767 0.173648i −0.342020 0.939693i 0.611111π-0.611111\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
3030 0 0
3131 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
3232 0.342020 + 0.939693i 0.342020 + 0.939693i
3333 0 0
3434 1.43969 + 1.20805i 1.43969 + 1.20805i
3535 0 0
3636 0 0
3737 −0.173648 + 0.984808i −0.173648 + 0.984808i
3838 0 0
3939 0 0
4040 1.17365 + 0.984808i 1.17365 + 0.984808i
4141 −0.118782 + 0.673648i −0.118782 + 0.673648i 0.866025 + 0.500000i 0.166667π0.166667\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
4242 0 0
4343 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
4444 0 0
4545 0 0
4646 0 0
4747 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
4848 0 0
4949 0.766044 0.642788i 0.766044 0.642788i
5050 1.32683 + 0.233956i 1.32683 + 0.233956i
5151 0 0
5252 −0.592396 + 1.62760i −0.592396 + 1.62760i
5353 1.62760 + 0.592396i 1.62760 + 0.592396i 0.984808 0.173648i 0.0555556π-0.0555556\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 −0.326352 0.118782i −0.326352 0.118782i
5959 0 0 0.342020 0.939693i 0.388889π-0.388889\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
6060 0 0
6161 −1.93969 0.342020i −1.93969 0.342020i −0.939693 0.342020i 0.888889π-0.888889\pi
−1.00000 π\pi
6262 0 0
6363 0 0
6464 0.500000 0.866025i 0.500000 0.866025i
6565 0.460802 + 2.61334i 0.460802 + 2.61334i
6666 0 0
6767 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
6868 1.87939i 1.87939i
6969 0 0
7070 0 0
7171 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
7272 0 0
7373 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
7474 0.866025 0.500000i 0.866025 0.500000i
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 0 0 −0.342020 0.939693i 0.611111π-0.611111\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
8080 1.53209i 1.53209i
8181 0 0
8282 0.592396 0.342020i 0.592396 0.342020i
8383 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
8484 0 0
8585 −1.43969 2.49362i −1.43969 2.49362i
8686 0 0
8787 0 0
8888 0 0
8989 0.642788 1.76604i 0.642788 1.76604i 1.00000i 0.5π-0.5\pi
0.642788 0.766044i 0.277778π-0.277778\pi
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 1.70574 + 0.984808i 1.70574 + 0.984808i 0.939693 + 0.342020i 0.111111π0.111111\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
9898 −0.984808 0.173648i −0.984808 0.173648i
9999 0 0
100100 −0.673648 1.16679i −0.673648 1.16679i
101101 0.984808 1.70574i 0.984808 1.70574i 0.342020 0.939693i 0.388889π-0.388889\pi
0.642788 0.766044i 0.277778π-0.277778\pi
102102 0 0
103103 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
104104 1.62760 0.592396i 1.62760 0.592396i
105105 0 0
106106 −0.592396 1.62760i −0.592396 1.62760i
107107 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
108108 0 0
109109 −0.439693 0.524005i −0.439693 0.524005i 0.500000 0.866025i 0.333333π-0.333333\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
110110 0 0
111111 0 0
112112 0 0
113113 0.642788 + 0.766044i 0.642788 + 0.766044i 0.984808 0.173648i 0.0555556π-0.0555556\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
114114 0 0
115115 0 0
116116 0.118782 + 0.326352i 0.118782 + 0.326352i
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 −0.500000 + 0.866025i −0.500000 + 0.866025i
122122 0.984808 + 1.70574i 0.984808 + 1.70574i
123123 0 0
124124 0 0
125125 −0.460802 0.266044i −0.460802 0.266044i
126126 0 0
127127 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
128128 −0.984808 + 0.173648i −0.984808 + 0.173648i
129129 0 0
130130 1.70574 2.03282i 1.70574 2.03282i
131131 0 0 0.984808 0.173648i 0.0555556π-0.0555556\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 −1.43969 + 1.20805i −1.43969 + 1.20805i
137137 −0.642788 1.11334i −0.642788 1.11334i −0.984808 0.173648i 0.944444π-0.944444\pi
0.342020 0.939693i 0.388889π-0.388889\pi
138138 0 0
139139 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 0.407604 + 0.342020i 0.407604 + 0.342020i
146146 0.642788 + 0.766044i 0.642788 + 0.766044i
147147 0 0
148148 −0.939693 0.342020i −0.939693 0.342020i
149149 −1.28558 −1.28558 −0.642788 0.766044i 0.722222π-0.722222\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
150150 0 0
151151 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
152152 0 0
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 −0.326352 1.85083i −0.326352 1.85083i −0.500000 0.866025i 0.666667π-0.666667\pi
0.173648 0.984808i 0.444444π-0.444444\pi
158158 0 0
159159 0 0
160160 −1.17365 + 0.984808i −1.17365 + 0.984808i
161161 0 0
162162 0 0
163163 0 0 0.342020 0.939693i 0.388889π-0.388889\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
164164 −0.642788 0.233956i −0.642788 0.233956i
165165 0 0
166166 0 0
167167 0 0 0.642788 0.766044i 0.277778π-0.277778\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
168168 0 0
169169 1.87939 + 0.684040i 1.87939 + 0.684040i
170170 −0.984808 + 2.70574i −0.984808 + 2.70574i
171171 0 0
172172 0 0
173173 0.984808 0.826352i 0.984808 0.826352i 1.00000i 0.5π-0.5\pi
0.984808 + 0.173648i 0.0555556π0.0555556\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 −1.76604 + 0.642788i −1.76604 + 0.642788i
179179 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
180180 0 0
181181 0.266044 1.50881i 0.266044 1.50881i −0.500000 0.866025i 0.666667π-0.666667\pi
0.766044 0.642788i 0.222222π-0.222222\pi
182182 0 0
183183 0 0
184184 0 0
185185 −1.50881 + 0.266044i −1.50881 + 0.266044i
186186 0 0
187187 0 0
188188 0 0
189189 0 0
190190 0 0
191191 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
192192 0 0
193193 −1.70574 + 0.984808i −1.70574 + 0.984808i −0.766044 + 0.642788i 0.777778π0.777778\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
194194 −0.342020 1.93969i −0.342020 1.93969i
195195 0 0
196196 0.500000 + 0.866025i 0.500000 + 0.866025i
197197 −0.524005 + 0.439693i −0.524005 + 0.439693i −0.866025 0.500000i 0.833333π-0.833333\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
198198 0 0
199199 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
200200 −0.460802 + 1.26604i −0.460802 + 1.26604i
201201 0 0
202202 −1.93969 + 0.342020i −1.93969 + 0.342020i
203203 0 0
204204 0 0
205205 −1.03209 + 0.181985i −1.03209 + 0.181985i
206206 0 0
207207 0 0
208208 −1.50000 0.866025i −1.50000 0.866025i
209209 0 0
210210 0 0
211211 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
212212 −0.866025 + 1.50000i −0.866025 + 1.50000i
213213 0 0
214214 0 0
215215 0 0
216216 0 0
217217 0 0
218218 −0.118782 + 0.673648i −0.118782 + 0.673648i
219219 0 0
220220 0 0
221221 −3.25519 −3.25519
222222 0 0
223223 0 0 1.00000 00
−1.00000 π\pi
224224 0 0
225225 0 0
226226 0.173648 0.984808i 0.173648 0.984808i
227227 0 0 −0.342020 0.939693i 0.611111π-0.611111\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
228228 0 0
229229 0.326352 0.118782i 0.326352 0.118782i −0.173648 0.984808i 0.555556π-0.555556\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
230230 0 0
231231 0 0
232232 0.173648 0.300767i 0.173648 0.300767i
233233 0.642788 + 1.11334i 0.642788 + 1.11334i 0.984808 + 0.173648i 0.0555556π0.0555556\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
234234 0 0
235235 0 0
236236 0 0
237237 0 0
238238 0 0
239239 0 0 0.984808 0.173648i 0.0555556π-0.0555556\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
240240 0 0
241241 1.11334 1.32683i 1.11334 1.32683i 0.173648 0.984808i 0.444444π-0.444444\pi
0.939693 0.342020i 0.111111π-0.111111\pi
242242 0.984808 0.173648i 0.984808 0.173648i
243243 0 0
244244 0.673648 1.85083i 0.673648 1.85083i
245245 1.32683 + 0.766044i 1.32683 + 0.766044i
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0.0923963 + 0.524005i 0.0923963 + 0.524005i
251251 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 0.766044 + 0.642788i 0.766044 + 0.642788i
257257 0.223238 + 0.266044i 0.223238 + 0.266044i 0.866025 0.500000i 0.166667π-0.166667\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
258258 0 0
259259 0 0
260260 −2.65366 −2.65366
261261 0 0
262262 0 0
263263 0 0 0.173648 0.984808i 0.444444π-0.444444\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
264264 0 0
265265 2.65366i 2.65366i
266266 0 0
267267 0 0
268268 0 0
269269 0.866025 1.50000i 0.866025 1.50000i 1.00000i 0.5π-0.5\pi
0.866025 0.500000i 0.166667π-0.166667\pi
270270 0 0
271271 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
272272 1.85083 + 0.326352i 1.85083 + 0.326352i
273273 0 0
274274 −0.439693 + 1.20805i −0.439693 + 1.20805i
275275 0 0
276276 0 0
277277 −0.826352 + 0.984808i −0.826352 + 0.984808i 0.173648 + 0.984808i 0.444444π0.444444\pi
−1.00000 π\pi
278278 0 0
279279 0 0
280280 0 0
281281 0.524005 1.43969i 0.524005 1.43969i −0.342020 0.939693i 0.611111π-0.611111\pi
0.866025 0.500000i 0.166667π-0.166667\pi
282282 0 0
283283 0 0 −0.984808 0.173648i 0.944444π-0.944444\pi
0.984808 + 0.173648i 0.0555556π0.0555556\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 2.37939 0.866025i 2.37939 0.866025i
290290 0.532089i 0.532089i
291291 0 0
292292 0.173648 0.984808i 0.173648 0.984808i
293293 −1.50881 1.26604i −1.50881 1.26604i −0.866025 0.500000i 0.833333π-0.833333\pi
−0.642788 0.766044i 0.722222π-0.722222\pi
294294 0 0
295295 0 0
296296 0.342020 + 0.939693i 0.342020 + 0.939693i
297297 0 0
298298 0.826352 + 0.984808i 0.826352 + 0.984808i
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 −0.524005 2.97178i −0.524005 2.97178i
306306 0 0
307307 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 0.342020 0.939693i 0.388889π-0.388889\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
312312 0 0
313313 −1.26604 + 0.223238i −1.26604 + 0.223238i −0.766044 0.642788i 0.777778π-0.777778\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
314314 −1.20805 + 1.43969i −1.20805 + 1.43969i
315315 0 0
316316 0 0
317317 0.642788 + 0.233956i 0.642788 + 0.233956i 0.642788 0.766044i 0.277778π-0.277778\pi
1.00000i 0.5π0.5\pi
318318 0 0
319319 0 0
320320 1.50881 + 0.266044i 1.50881 + 0.266044i
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 −2.02094 + 1.16679i −2.02094 + 1.16679i
326326 0 0
327327 0 0
328328 0.233956 + 0.642788i 0.233956 + 0.642788i
329329 0 0
330330 0 0
331331 0 0 −0.642788 0.766044i 0.722222π-0.722222\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 0.0603074 0.342020i 0.0603074 0.342020i −0.939693 0.342020i 0.888889π-0.888889\pi
1.00000 00
338338 −0.684040 1.87939i −0.684040 1.87939i
339339 0 0
340340 2.70574 0.984808i 2.70574 0.984808i
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 −1.26604 0.223238i −1.26604 0.223238i
347347 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
348348 0 0
349349 0.326352 + 0.118782i 0.326352 + 0.118782i 0.500000 0.866025i 0.333333π-0.333333\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
350350 0 0
351351 0 0
352352 0 0
353353 0.342020 0.0603074i 0.342020 0.0603074i 1.00000i 0.5π-0.5\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
354354 0 0
355355 0 0
356356 1.62760 + 0.939693i 1.62760 + 0.939693i
357357 0 0
358358 0 0
359359 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
360360 0 0
361361 −0.173648 0.984808i −0.173648 0.984808i
362362 −1.32683 + 0.766044i −1.32683 + 0.766044i
363363 0 0
364364 0 0
365365 −0.524005 1.43969i −0.524005 1.43969i
366366 0 0
367367 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
368368 0 0
369369 0 0
370370 1.17365 + 0.984808i 1.17365 + 0.984808i
371371 0 0
372372 0 0
373373 −1.43969 1.20805i −1.43969 1.20805i −0.939693 0.342020i 0.888889π-0.888889\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
374374 0 0
375375 0 0
376376 0 0
377377 0.565258 0.205737i 0.565258 0.205737i
378378 0 0
379379 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 −0.984808 0.173648i 0.944444π-0.944444\pi
0.984808 + 0.173648i 0.0555556π0.0555556\pi
384384 0 0
385385 0 0
386386 1.85083 + 0.673648i 1.85083 + 0.673648i
387387 0 0
388388 −1.26604 + 1.50881i −1.26604 + 1.50881i
389389 −0.984808 + 1.17365i −0.984808 + 1.17365i 1.00000i 0.5π0.5\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
390390 0 0
391391 0 0
392392 0.342020 0.939693i 0.342020 0.939693i
393393 0 0
394394 0.673648 + 0.118782i 0.673648 + 0.118782i
395395 0 0
396396 0 0
397397 0.766044 1.32683i 0.766044 1.32683i −0.173648 0.984808i 0.555556π-0.555556\pi
0.939693 0.342020i 0.111111π-0.111111\pi
398398 0 0
399399 0 0
400400 1.26604 0.460802i 1.26604 0.460802i
401401 1.00000i 1.00000i −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 0.500000i 0.166667π-0.166667\pi
402402 0 0
403403 0 0
404404 1.50881 + 1.26604i 1.50881 + 1.26604i
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 0.826352 + 0.984808i 0.826352 + 0.984808i 1.00000 00
−0.173648 + 0.984808i 0.555556π0.555556\pi
410410 0.802823 + 0.673648i 0.802823 + 0.673648i
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0.300767 + 1.70574i 0.300767 + 1.70574i
417417 0 0
418418 0 0
419419 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
420420 0 0
421421 0.592396 + 0.342020i 0.592396 + 0.342020i 0.766044 0.642788i 0.222222π-0.222222\pi
−0.173648 + 0.984808i 0.555556π0.555556\pi
422422 0 0
423423 0 0
424424 1.70574 0.300767i 1.70574 0.300767i
425425 1.62760 1.93969i 1.62760 1.93969i
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 −0.984808 0.173648i 0.944444π-0.944444\pi
0.984808 + 0.173648i 0.0555556π0.0555556\pi
432432 0 0
433433 −0.939693 1.62760i −0.939693 1.62760i −0.766044 0.642788i 0.777778π-0.777778\pi
−0.173648 0.984808i 0.555556π-0.555556\pi
434434 0 0
435435 0 0
436436 0.592396 0.342020i 0.592396 0.342020i
437437 0 0
438438 0 0
439439 0 0 −0.342020 0.939693i 0.611111π-0.611111\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
440440 0 0
441441 0 0
442442 2.09240 + 2.49362i 2.09240 + 2.49362i
443443 0 0 1.00000 00
−1.00000 π\pi
444444 0 0
445445 2.87939 2.87939
446446 0 0
447447 0 0
448448 0 0
449449 0.342020 + 0.939693i 0.342020 + 0.939693i 0.984808 + 0.173648i 0.0555556π0.0555556\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
450450 0 0
451451 0 0
452452 −0.866025 + 0.500000i −0.866025 + 0.500000i
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 −0.673648 0.118782i −0.673648 0.118782i −0.173648 0.984808i 0.555556π-0.555556\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
458458 −0.300767 0.173648i −0.300767 0.173648i
459459 0 0
460460 0 0
461461 0.984808 0.173648i 0.984808 0.173648i 0.342020 0.939693i 0.388889π-0.388889\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
462462 0 0
463463 0 0 0.642788 0.766044i 0.277778π-0.277778\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
464464 −0.342020 + 0.0603074i −0.342020 + 0.0603074i
465465 0 0
466466 0.439693 1.20805i 0.439693 1.20805i
467467 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 0 0
479479 0 0 −0.642788 0.766044i 0.722222π-0.722222\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
480480 0 0
481481 −0.592396 + 1.62760i −0.592396 + 1.62760i
482482 −1.73205 −1.73205
483483 0 0
484484 −0.766044 0.642788i −0.766044 0.642788i
485485 −0.524005 + 2.97178i −0.524005 + 2.97178i
486486 0 0
487487 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
488488 −1.85083 + 0.673648i −1.85083 + 0.673648i
489489 0 0
490490 −0.266044 1.50881i −0.266044 1.50881i
491491 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
492492 0 0
493493 −0.500000 + 0.419550i −0.500000 + 0.419550i
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 0 0 0.642788 0.766044i 0.277778π-0.277778\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
500500 0.342020 0.407604i 0.342020 0.407604i
501501 0 0
502502 0 0
503503 0 0 0.342020 0.939693i 0.388889π-0.388889\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
504504 0 0
505505 2.97178 + 0.524005i 2.97178 + 0.524005i
506506 0 0
507507 0 0
508508 0 0
509509 −0.223238 1.26604i −0.223238 1.26604i −0.866025 0.500000i 0.833333π-0.833333\pi
0.642788 0.766044i 0.277778π-0.277778\pi
510510 0 0
511511 0 0
512512 1.00000i 1.00000i
513513 0 0
514514 0.0603074 0.342020i 0.0603074 0.342020i
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 1.70574 + 2.03282i 1.70574 + 2.03282i
521521 −1.32683 1.11334i −1.32683 1.11334i −0.984808 0.173648i 0.944444π-0.944444\pi
−0.342020 0.939693i 0.611111π-0.611111\pi
522522 0 0
523523 0 0 −0.342020 0.939693i 0.611111π-0.611111\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
524524 0 0
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 0.500000 + 0.866025i 0.500000 + 0.866025i
530530 2.03282 1.70574i 2.03282 1.70574i
531531 0 0
532532 0 0
533533 −0.405223 + 1.11334i −0.405223 + 1.11334i
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 −1.70574 + 0.300767i −1.70574 + 0.300767i
539539 0 0
540540 0 0
541541 −0.592396 0.342020i −0.592396 0.342020i 0.173648 0.984808i 0.444444π-0.444444\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
542542 0 0
543543 0 0
544544 −0.939693 1.62760i −0.939693 1.62760i
545545 0.524005 0.907604i 0.524005 0.907604i
546546 0 0
547547 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
548548 1.20805 0.439693i 1.20805 0.439693i
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 1.28558 1.28558
555555 0 0
556556 0 0
557557 1.20805 + 1.43969i 1.20805 + 1.43969i 0.866025 + 0.500000i 0.166667π0.166667\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 −1.43969 + 0.524005i −1.43969 + 0.524005i
563563 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
564564 0 0
565565 −0.766044 + 1.32683i −0.766044 + 1.32683i
566566 0 0
567567 0 0
568568 0 0
569569 0.300767 + 0.173648i 0.300767 + 0.173648i 0.642788 0.766044i 0.277778π-0.277778\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
570570 0 0
571571 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 −0.592396 + 1.62760i −0.592396 + 1.62760i 0.173648 + 0.984808i 0.444444π0.444444\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
578578 −2.19285 1.26604i −2.19285 1.26604i
579579 0 0
580580 −0.407604 + 0.342020i −0.407604 + 0.342020i
581581 0 0
582582 0 0
583583 0 0
584584 −0.866025 + 0.500000i −0.866025 + 0.500000i
585585 0 0
586586 1.96962i 1.96962i
587587 0 0 −0.342020 0.939693i 0.611111π-0.611111\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0.500000 0.866025i 0.500000 0.866025i
593593 1.96962 1.96962 0.984808 0.173648i 0.0555556π-0.0555556\pi
0.984808 + 0.173648i 0.0555556π0.0555556\pi
594594 0 0
595595 0 0
596596 0.223238 1.26604i 0.223238 1.26604i
597597 0 0
598598 0 0
599599 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
600600 0 0
601601 0.0603074 + 0.342020i 0.0603074 + 0.342020i 1.00000 00
−0.939693 + 0.342020i 0.888889π0.888889\pi
602602 0 0
603603 0 0
604604 0 0
605605 −1.50881 0.266044i −1.50881 0.266044i
606606 0 0
607607 0 0 0.342020 0.939693i 0.388889π-0.388889\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
608608 0 0
609609 0 0
610610 −1.93969 + 2.31164i −1.93969 + 2.31164i
611611 0 0
612612 0 0
613613 1.43969 + 0.524005i 1.43969 + 0.524005i 0.939693 0.342020i 0.111111π-0.111111\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
614614 0 0
615615 0 0
616616 0 0
617617 −1.32683 + 1.11334i −1.32683 + 1.11334i −0.342020 + 0.939693i 0.611111π0.611111\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
618618 0 0
619619 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 −0.0923963 + 0.524005i −0.0923963 + 0.524005i
626626 0.984808 + 0.826352i 0.984808 + 0.826352i
627627 0 0
628628 1.87939 1.87939
629629 1.87939i 1.87939i
630630 0 0
631631 0 0 −0.642788 0.766044i 0.722222π-0.722222\pi
0.642788 + 0.766044i 0.277778π0.277778\pi
632632 0 0
633633 0 0
634634 −0.233956 0.642788i −0.233956 0.642788i
635635 0 0
636636 0 0
637637 1.50000 0.866025i 1.50000 0.866025i
638638 0 0
639639 0 0
640640 −0.766044 1.32683i −0.766044 1.32683i
641641 −0.984808 + 0.826352i −0.984808 + 0.826352i −0.984808 0.173648i 0.944444π-0.944444\pi
1.00000i 0.5π0.5\pi
642642 0 0
643643 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 0.642788 0.766044i 0.277778π-0.277778\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
648648 0 0
649649 0 0
650650 2.19285 + 0.798133i 2.19285 + 0.798133i
651651 0 0
652652 0 0
653653 1.85083 + 0.326352i 1.85083 + 0.326352i 0.984808 0.173648i 0.0555556π-0.0555556\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
654654 0 0
655655 0 0
656656 0.342020 0.592396i 0.342020 0.592396i
657657 0 0
658658 0 0
659659 0 0 0.939693 0.342020i 0.111111π-0.111111\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
660660 0 0
661661 0.439693 + 1.20805i 0.439693 + 1.20805i 0.939693 + 0.342020i 0.111111π0.111111\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0.939693 0.342020i 0.939693 0.342020i 0.173648 0.984808i 0.444444π-0.444444\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
674674 −0.300767 + 0.173648i −0.300767 + 0.173648i
675675 0 0
676676 −1.00000 + 1.73205i −1.00000 + 1.73205i
677677 −0.984808 1.70574i −0.984808 1.70574i −0.642788 0.766044i 0.722222π-0.722222\pi
−0.342020 0.939693i 0.611111π-0.611111\pi
678678 0 0
679679 0 0
680680 −2.49362 1.43969i −2.49362 1.43969i
681681 0 0
682682 0 0
683683 0 0 0.984808 0.173648i 0.0555556π-0.0555556\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
684684 0 0
685685 1.26604 1.50881i 1.26604 1.50881i
686686 0 0
687687 0 0
688688 0 0
689689 2.59808 + 1.50000i 2.59808 + 1.50000i
690690 0 0
691691 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
692692 0.642788 + 1.11334i 0.642788 + 1.11334i
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 1.28558i 1.28558i
698698 −0.118782 0.326352i −0.118782 0.326352i
699699 0 0
700700 0 0
701701 −0.642788 0.766044i −0.642788 0.766044i 0.342020 0.939693i 0.388889π-0.388889\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 −0.266044 0.223238i −0.266044 0.223238i
707707 0 0
708708 0 0
709709 0 0 1.00000 00
−1.00000 π\pi
710710 0 0
711711 0 0
712712 −0.326352 1.85083i −0.326352 1.85083i
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
720720 0 0
721721 0 0
722722 −0.642788 + 0.766044i −0.642788 + 0.766044i
723723 0 0
724724 1.43969 + 0.524005i 1.43969 + 0.524005i
725725 −0.160035 + 0.439693i −0.160035 + 0.439693i
726726 0 0
727727 0 0 −0.984808 0.173648i 0.944444π-0.944444\pi
0.984808 + 0.173648i 0.0555556π0.0555556\pi
728728 0 0
729729 0 0
730730 −0.766044 + 1.32683i −0.766044 + 1.32683i
731731 0 0
732732 0 0
733733 0.939693 0.342020i 0.939693 0.342020i 0.173648 0.984808i 0.444444π-0.444444\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 0 0 1.00000 00
−1.00000 π\pi
740740 1.53209i 1.53209i
741741 0 0
742742 0 0
743743 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
744744 0 0
745745 −0.673648 1.85083i −0.673648 1.85083i
746746 1.87939i 1.87939i
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
752752 0 0
753753 0 0
754754 −0.520945 0.300767i −0.520945 0.300767i
755755 0 0
756756 0 0
757757 −1.93969 + 0.342020i −1.93969 + 0.342020i −0.939693 + 0.342020i 0.888889π0.888889\pi
−1.00000 π\pi
758758 0 0
759759 0 0
760760 0 0
761761 −1.20805 0.439693i −1.20805 0.439693i −0.342020 0.939693i 0.611111π-0.611111\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
770770 0 0
771771 0 0
772772 −0.673648 1.85083i −0.673648 1.85083i
773773 −0.342020 + 1.93969i −0.342020 + 1.93969i 1.00000i 0.5π0.5\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
774774 0 0
775775 0 0
776776 1.96962 1.96962
777777 0 0
778778 1.53209 1.53209
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 −0.939693 + 0.342020i −0.939693 + 0.342020i
785785 2.49362 1.43969i 2.49362 1.43969i
786786 0 0
787787 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
788788 −0.342020 0.592396i −0.342020 0.592396i
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 −3.20574 1.16679i −3.20574 1.16679i
794794 −1.50881 + 0.266044i −1.50881 + 0.266044i
795795 0 0
796796 0 0
797797 −1.96962 + 0.347296i −1.96962 + 0.347296i −0.984808 + 0.173648i 0.944444π0.944444\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
798798 0 0
799799 0 0
800800 −1.16679 0.673648i −1.16679 0.673648i
801801 0 0
802802 −0.766044 + 0.642788i −0.766044 + 0.642788i
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 1.96962i 1.96962i
809809 0.342020 + 0.939693i 0.342020 + 0.939693i 0.984808 + 0.173648i 0.0555556π0.0555556\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
810810 0 0
811811 0 0 −0.766044 0.642788i 0.777778π-0.777778\pi
0.766044 + 0.642788i 0.222222π0.222222\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0.223238 1.26604i 0.223238 1.26604i
819819 0 0
820820 1.04801i 1.04801i
821821 −1.62760 + 0.592396i −1.62760 + 0.592396i −0.984808 0.173648i 0.944444π-0.944444\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
822822 0 0
823823 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 −0.984808 0.173648i 0.944444π-0.944444\pi
0.984808 + 0.173648i 0.0555556π0.0555556\pi
828828 0 0
829829 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
830830 0 0
831831 0 0
832832 1.11334 1.32683i 1.11334 1.32683i
833833 −1.20805 + 1.43969i −1.20805 + 1.43969i
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
840840 0 0
841841 −0.439693 + 0.761570i −0.439693 + 0.761570i
842842 −0.118782 0.673648i −0.118782 0.673648i
843843 0 0
844844 0 0
845845 3.06418i 3.06418i
846846 0 0
847847 0 0
848848 −1.32683 1.11334i −1.32683 1.11334i
849849 0 0
850850 −2.53209 −2.53209
851851 0 0
852852 0 0
853853 0.439693 + 0.524005i 0.439693 + 0.524005i 0.939693 0.342020i 0.111111π-0.111111\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
854854 0 0
855855 0 0
856856 0 0
857857 1.53209i 1.53209i 0.642788 + 0.766044i 0.277778π0.277778\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
858858 0 0
859859 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
864864 0 0
865865 1.70574 + 0.984808i 1.70574 + 0.984808i
866866 −0.642788 + 1.76604i −0.642788 + 1.76604i
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 −0.642788 0.233956i −0.642788 0.233956i
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i 0.222222π-0.222222\pi
−0.939693 + 0.342020i 0.888889π0.888889\pi
878878 0 0
879879 0 0
880880 0 0
881881 −1.85083 + 0.673648i −1.85083 + 0.673648i −0.866025 + 0.500000i 0.833333π0.833333\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
882882 0 0
883883 0 0 −0.342020 0.939693i 0.611111π-0.611111\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
884884 0.565258 3.20574i 0.565258 3.20574i
885885 0 0
886886 0 0
887887 0 0 1.00000 00
−1.00000 π\pi
888888 0 0
889889 0 0
890890 −1.85083 2.20574i −1.85083 2.20574i
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0.500000 0.866025i 0.500000 0.866025i
899899 0 0
900900 0 0
901901 −3.20574 0.565258i −3.20574 0.565258i
902902 0 0
903903 0 0
904904 0.939693 + 0.342020i 0.939693 + 0.342020i
905905 2.31164 0.407604i 2.31164 0.407604i
906906 0 0
907907 0 0 0.642788 0.766044i 0.277778π-0.277778\pi
−0.642788 + 0.766044i 0.722222π0.722222\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
912912 0 0
913913 0 0
914914 0.342020 + 0.592396i 0.342020 + 0.592396i
915915 0 0
916916 0.0603074 + 0.342020i 0.0603074 + 0.342020i
917917 0 0
918918 0 0
919919 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
920920 0 0
921921 0 0
922922 −0.766044 0.642788i −0.766044 0.642788i
923923 0 0
924924 0 0
925925 −0.673648 1.16679i −0.673648 1.16679i
926926 0 0
927927 0 0
928928 0.266044 + 0.223238i 0.266044 + 0.223238i
929929 −0.223238 + 1.26604i −0.223238 + 1.26604i 0.642788 + 0.766044i 0.277778π0.277778\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
930930 0 0
931931 0 0
932932 −1.20805 + 0.439693i −1.20805 + 0.439693i
933933 0 0
934934 0 0
935935 0 0
936936 0 0
937937 −0.266044 + 0.223238i −0.266044 + 0.223238i −0.766044 0.642788i 0.777778π-0.777778\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
938938 0 0
939939 0 0
940940 0 0
941941 0.642788 + 0.233956i 0.642788 + 0.233956i 0.642788 0.766044i 0.277778π-0.277778\pi
1.00000i 0.5π0.5\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 0 0 0.342020 0.939693i 0.388889π-0.388889\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
948948 0 0
949949 −1.70574 0.300767i −1.70574 0.300767i
950950 0 0
951951 0 0
952952 0 0
953953 0.300767 + 1.70574i 0.300767 + 1.70574i 0.642788 + 0.766044i 0.277778π0.277778\pi
−0.342020 + 0.939693i 0.611111π0.611111\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 −1.00000 −1.00000
962962 1.62760 0.592396i 1.62760 0.592396i
963963 0 0
964964 1.11334 + 1.32683i 1.11334 + 1.32683i
965965 −2.31164 1.93969i −2.31164 1.93969i
966966 0 0
967967 0 0 −0.342020 0.939693i 0.611111π-0.611111\pi
0.342020 + 0.939693i 0.388889π0.388889\pi
968968 1.00000i 1.00000i
969969 0 0
970970 2.61334 1.50881i 2.61334 1.50881i
971971 0 0 −0.173648 0.984808i 0.555556π-0.555556\pi
0.173648 + 0.984808i 0.444444π0.444444\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 1.70574 + 0.984808i 1.70574 + 0.984808i
977977 −0.342020 + 0.939693i −0.342020 + 0.939693i 0.642788 + 0.766044i 0.277778π0.277778\pi
−0.984808 + 0.173648i 0.944444π0.944444\pi
978978 0 0
979979 0 0
980980 −0.984808 + 1.17365i −0.984808 + 1.17365i
981981 0 0
982982 0 0
983983 0 0 −0.939693 0.342020i 0.888889π-0.888889\pi
0.939693 + 0.342020i 0.111111π0.111111\pi
984984 0 0
985985 −0.907604 0.524005i −0.907604 0.524005i
986986 0.642788 + 0.113341i 0.642788 + 0.113341i
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 0 0 0.766044 0.642788i 0.222222π-0.222222\pi
−0.766044 + 0.642788i 0.777778π0.777778\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1332.1.cy.a.1135.1 yes 12
3.2 odd 2 inner 1332.1.cy.a.1135.2 yes 12
4.3 odd 2 CM 1332.1.cy.a.1135.1 yes 12
12.11 even 2 inner 1332.1.cy.a.1135.2 yes 12
37.3 even 18 inner 1332.1.cy.a.595.1 12
111.77 odd 18 inner 1332.1.cy.a.595.2 yes 12
148.3 odd 18 inner 1332.1.cy.a.595.1 12
444.299 even 18 inner 1332.1.cy.a.595.2 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1332.1.cy.a.595.1 12 37.3 even 18 inner
1332.1.cy.a.595.1 12 148.3 odd 18 inner
1332.1.cy.a.595.2 yes 12 111.77 odd 18 inner
1332.1.cy.a.595.2 yes 12 444.299 even 18 inner
1332.1.cy.a.1135.1 yes 12 1.1 even 1 trivial
1332.1.cy.a.1135.1 yes 12 4.3 odd 2 CM
1332.1.cy.a.1135.2 yes 12 3.2 odd 2 inner
1332.1.cy.a.1135.2 yes 12 12.11 even 2 inner