Properties

Label 1332.1.o.a
Level $1332$
Weight $1$
Character orbit 1332.o
Analytic conductor $0.665$
Analytic rank $0$
Dimension $2$
Projective image $S_{4}$
CM/RM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1332,1,Mod(253,1332)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1332, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1332.253");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1332 = 2^{2} \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1332.o (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.664754596827\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 148)
Projective image: \(S_{4}\)
Projective field: Galois closure of 4.0.202612.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - q^{7} - i q^{11} + ( - i + 1) q^{17} + ( - i + 1) q^{19} + ( - i + 1) q^{23} + i q^{25} + (i + 1) q^{29} - i q^{37} + i q^{41} - q^{47} - q^{53} - q^{71} - i q^{73} + i q^{77} + (i - 1) q^{79} + \cdots + (i + 1) q^{89} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{7} + 2 q^{17} + 2 q^{19} + 2 q^{23} + 2 q^{29} - 2 q^{47} - 2 q^{53} - 2 q^{71} - 2 q^{79} + 2 q^{83} + 2 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1332\mathbb{Z}\right)^\times\).

\(n\) \(667\) \(1037\) \(1297\)
\(\chi(n)\) \(1\) \(1\) \(i\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
253.1
1.00000i
1.00000i
0 0 0 0 0 −1.00000 0 0 0
1153.1 0 0 0 0 0 −1.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
37.d odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1332.1.o.a 2
3.b odd 2 1 148.1.f.a 2
12.b even 2 1 592.1.k.b 2
15.d odd 2 1 3700.1.j.c 2
15.e even 4 1 3700.1.t.a 2
15.e even 4 1 3700.1.t.b 2
24.f even 2 1 2368.1.k.b 2
24.h odd 2 1 2368.1.k.a 2
37.d odd 4 1 inner 1332.1.o.a 2
111.g even 4 1 148.1.f.a 2
444.j odd 4 1 592.1.k.b 2
555.k odd 4 1 3700.1.t.b 2
555.m even 4 1 3700.1.j.c 2
555.u odd 4 1 3700.1.t.a 2
888.u odd 4 1 2368.1.k.b 2
888.w even 4 1 2368.1.k.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
148.1.f.a 2 3.b odd 2 1
148.1.f.a 2 111.g even 4 1
592.1.k.b 2 12.b even 2 1
592.1.k.b 2 444.j odd 4 1
1332.1.o.a 2 1.a even 1 1 trivial
1332.1.o.a 2 37.d odd 4 1 inner
2368.1.k.a 2 24.h odd 2 1
2368.1.k.a 2 888.w even 4 1
2368.1.k.b 2 24.f even 2 1
2368.1.k.b 2 888.u odd 4 1
3700.1.j.c 2 15.d odd 2 1
3700.1.j.c 2 555.m even 4 1
3700.1.t.a 2 15.e even 4 1
3700.1.t.a 2 555.u odd 4 1
3700.1.t.b 2 15.e even 4 1
3700.1.t.b 2 555.k odd 4 1

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(1332, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( (T + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 1 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$19$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$23$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$29$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 1 \) Copy content Toggle raw display
$41$ \( T^{2} + 1 \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( (T + 1)^{2} \) Copy content Toggle raw display
$53$ \( (T + 1)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( (T + 1)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 1 \) Copy content Toggle raw display
$79$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$83$ \( (T - 1)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less