Properties

Label 1332.2.j.e.433.1
Level $1332$
Weight $2$
Character 1332.433
Analytic conductor $10.636$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1332,2,Mod(433,1332)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1332, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1332.433");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1332 = 2^{2} \cdot 3^{2} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1332.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.6360735492\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.27870912.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 7x^{4} + 2x^{3} + 38x^{2} - 12x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 148)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 433.1
Root \(1.42789 + 2.47317i\) of defining polynomial
Character \(\chi\) \(=\) 1332.433
Dual form 1332.2.j.e.1009.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{5} +(-2.07772 + 3.59871i) q^{7} +1.29966 q^{11} +(-1.77805 + 3.07968i) q^{13} +(-1.79966 - 3.11711i) q^{17} +(2.42789 - 4.20522i) q^{19} -5.01121 q^{23} +(2.00000 + 3.46410i) q^{25} -8.86698 q^{29} +1.29966 q^{31} +(-2.07772 - 3.59871i) q^{35} +(1.27805 - 5.94698i) q^{37} +(5.35577 - 9.27647i) q^{41} -10.3109 q^{43} -8.72275 q^{47} +(-5.13383 - 8.89205i) q^{49} +(5.07772 + 8.79487i) q^{53} +(-0.649832 + 1.12554i) q^{55} +(-4.63383 - 8.02602i) q^{59} +(-1.35577 + 2.34827i) q^{61} +(-1.77805 - 3.07968i) q^{65} +(-3.98399 + 6.90048i) q^{67} +(-5.63383 + 9.75807i) q^{71} +2.28845 q^{73} +(-2.70034 + 4.67712i) q^{77} +(-1.28366 + 2.22336i) q^{79} +(4.98399 + 8.63253i) q^{83} +3.59933 q^{85} +(-2.21155 - 3.83051i) q^{89} +(-7.38859 - 12.7974i) q^{91} +(2.42789 + 4.20522i) q^{95} +9.97920 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{5} - q^{7} - 7 q^{13} - 3 q^{17} + 7 q^{19} + 8 q^{23} + 12 q^{25} - q^{35} + 4 q^{37} + 17 q^{41} - 16 q^{43} + 16 q^{47} - 12 q^{49} + 19 q^{53} - 9 q^{59} + 7 q^{61} - 7 q^{65} - 9 q^{67}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1332\mathbb{Z}\right)^\times\).

\(n\) \(667\) \(1037\) \(1297\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i −0.955901 0.293691i \(-0.905116\pi\)
0.732294 + 0.680989i \(0.238450\pi\)
\(6\) 0 0
\(7\) −2.07772 + 3.59871i −0.785304 + 1.36019i 0.143514 + 0.989648i \(0.454160\pi\)
−0.928817 + 0.370538i \(0.879173\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.29966 0.391863 0.195932 0.980618i \(-0.437227\pi\)
0.195932 + 0.980618i \(0.437227\pi\)
\(12\) 0 0
\(13\) −1.77805 + 3.07968i −0.493144 + 0.854150i −0.999969 0.00789918i \(-0.997486\pi\)
0.506825 + 0.862049i \(0.330819\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.79966 3.11711i −0.436483 0.756010i 0.560933 0.827861i \(-0.310443\pi\)
−0.997415 + 0.0718513i \(0.977109\pi\)
\(18\) 0 0
\(19\) 2.42789 4.20522i 0.556995 0.964744i −0.440750 0.897630i \(-0.645287\pi\)
0.997745 0.0671143i \(-0.0213792\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −5.01121 −1.04491 −0.522455 0.852667i \(-0.674984\pi\)
−0.522455 + 0.852667i \(0.674984\pi\)
\(24\) 0 0
\(25\) 2.00000 + 3.46410i 0.400000 + 0.692820i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −8.86698 −1.64656 −0.823279 0.567638i \(-0.807858\pi\)
−0.823279 + 0.567638i \(0.807858\pi\)
\(30\) 0 0
\(31\) 1.29966 0.233427 0.116713 0.993166i \(-0.462764\pi\)
0.116713 + 0.993166i \(0.462764\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −2.07772 3.59871i −0.351198 0.608294i
\(36\) 0 0
\(37\) 1.27805 5.94698i 0.210111 0.977678i
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.35577 9.27647i 0.836431 1.44874i −0.0564287 0.998407i \(-0.517971\pi\)
0.892860 0.450335i \(-0.148695\pi\)
\(42\) 0 0
\(43\) −10.3109 −1.57239 −0.786197 0.617976i \(-0.787953\pi\)
−0.786197 + 0.617976i \(0.787953\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −8.72275 −1.27234 −0.636172 0.771547i \(-0.719483\pi\)
−0.636172 + 0.771547i \(0.719483\pi\)
\(48\) 0 0
\(49\) −5.13383 8.89205i −0.733404 1.27029i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 5.07772 + 8.79487i 0.697478 + 1.20807i 0.969338 + 0.245731i \(0.0790280\pi\)
−0.271860 + 0.962337i \(0.587639\pi\)
\(54\) 0 0
\(55\) −0.649832 + 1.12554i −0.0876233 + 0.151768i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −4.63383 8.02602i −0.603273 1.04490i −0.992322 0.123682i \(-0.960530\pi\)
0.389049 0.921217i \(-0.372804\pi\)
\(60\) 0 0
\(61\) −1.35577 + 2.34827i −0.173589 + 0.300665i −0.939672 0.342077i \(-0.888870\pi\)
0.766083 + 0.642741i \(0.222203\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.77805 3.07968i −0.220540 0.381987i
\(66\) 0 0
\(67\) −3.98399 + 6.90048i −0.486722 + 0.843028i −0.999883 0.0152644i \(-0.995141\pi\)
0.513161 + 0.858292i \(0.328474\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −5.63383 + 9.75807i −0.668612 + 1.15807i 0.309680 + 0.950841i \(0.399778\pi\)
−0.978292 + 0.207230i \(0.933555\pi\)
\(72\) 0 0
\(73\) 2.28845 0.267843 0.133922 0.990992i \(-0.457243\pi\)
0.133922 + 0.990992i \(0.457243\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −2.70034 + 4.67712i −0.307732 + 0.533007i
\(78\) 0 0
\(79\) −1.28366 + 2.22336i −0.144423 + 0.250148i −0.929157 0.369684i \(-0.879466\pi\)
0.784735 + 0.619832i \(0.212799\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 4.98399 + 8.63253i 0.547064 + 0.947543i 0.998474 + 0.0552265i \(0.0175881\pi\)
−0.451409 + 0.892317i \(0.649079\pi\)
\(84\) 0 0
\(85\) 3.59933 0.390402
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −2.21155 3.83051i −0.234423 0.406033i 0.724682 0.689084i \(-0.241987\pi\)
−0.959105 + 0.283051i \(0.908654\pi\)
\(90\) 0 0
\(91\) −7.38859 12.7974i −0.774535 1.34153i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 2.42789 + 4.20522i 0.249096 + 0.431447i
\(96\) 0 0
\(97\) 9.97920 1.01323 0.506617 0.862171i \(-0.330896\pi\)
0.506617 + 0.862171i \(0.330896\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −2.84456 −0.283045 −0.141522 0.989935i \(-0.545200\pi\)
−0.141522 + 0.989935i \(0.545200\pi\)
\(102\) 0 0
\(103\) −6.88778 −0.678673 −0.339337 0.940665i \(-0.610203\pi\)
−0.339337 + 0.940665i \(0.610203\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.63383 + 2.82987i −0.157948 + 0.273574i −0.934129 0.356937i \(-0.883821\pi\)
0.776181 + 0.630511i \(0.217155\pi\)
\(108\) 0 0
\(109\) −6.65544 11.5276i −0.637475 1.10414i −0.985985 0.166834i \(-0.946646\pi\)
0.348510 0.937305i \(-0.386688\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −1.93349 3.34890i −0.181888 0.315038i 0.760636 0.649179i \(-0.224887\pi\)
−0.942523 + 0.334140i \(0.891554\pi\)
\(114\) 0 0
\(115\) 2.50560 4.33983i 0.233649 0.404692i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 14.9568 1.37109
\(120\) 0 0
\(121\) −9.31087 −0.846443
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −9.00000 −0.804984
\(126\) 0 0
\(127\) 2.02721 + 3.51124i 0.179886 + 0.311572i 0.941841 0.336058i \(-0.109094\pi\)
−0.761955 + 0.647630i \(0.775760\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 5.58332 + 9.67060i 0.487817 + 0.844924i 0.999902 0.0140108i \(-0.00445993\pi\)
−0.512085 + 0.858935i \(0.671127\pi\)
\(132\) 0 0
\(133\) 10.0889 + 17.4745i 0.874821 + 1.51523i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 1.15544 0.0987156 0.0493578 0.998781i \(-0.484283\pi\)
0.0493578 + 0.998781i \(0.484283\pi\)
\(138\) 0 0
\(139\) 8.72755 + 15.1166i 0.740261 + 1.28217i 0.952376 + 0.304925i \(0.0986315\pi\)
−0.212115 + 0.977245i \(0.568035\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2.31087 + 4.00255i −0.193245 + 0.334710i
\(144\) 0 0
\(145\) 4.43349 7.67903i 0.368181 0.637709i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1.15544 −0.0946571 −0.0473285 0.998879i \(-0.515071\pi\)
−0.0473285 + 0.998879i \(0.515071\pi\)
\(150\) 0 0
\(151\) 3.17144 5.49310i 0.258088 0.447022i −0.707641 0.706572i \(-0.750241\pi\)
0.965730 + 0.259550i \(0.0835741\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.649832 + 1.12554i −0.0521958 + 0.0904057i
\(156\) 0 0
\(157\) 0.355773 + 0.616216i 0.0283937 + 0.0491794i 0.879873 0.475209i \(-0.157627\pi\)
−0.851479 + 0.524388i \(0.824294\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 10.4119 18.0339i 0.820571 1.42127i
\(162\) 0 0
\(163\) −1.63383 2.82987i −0.127971 0.221653i 0.794919 0.606715i \(-0.207513\pi\)
−0.922890 + 0.385063i \(0.874180\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −10.7893 + 18.6876i −0.834898 + 1.44609i 0.0592150 + 0.998245i \(0.481140\pi\)
−0.894113 + 0.447841i \(0.852193\pi\)
\(168\) 0 0
\(169\) 0.177047 + 0.306654i 0.0136190 + 0.0235887i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −5.79966 10.0453i −0.440940 0.763731i 0.556819 0.830634i \(-0.312022\pi\)
−0.997760 + 0.0669027i \(0.978688\pi\)
\(174\) 0 0
\(175\) −16.6217 −1.25649
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 1.19866 0.0895918 0.0447959 0.998996i \(-0.485736\pi\)
0.0447959 + 0.998996i \(0.485736\pi\)
\(180\) 0 0
\(181\) 1.65544 2.86730i 0.123048 0.213125i −0.797920 0.602763i \(-0.794067\pi\)
0.920968 + 0.389638i \(0.127400\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 4.51121 + 4.08032i 0.331671 + 0.299991i
\(186\) 0 0
\(187\) −2.33896 4.05120i −0.171042 0.296253i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −5.58812 −0.404342 −0.202171 0.979350i \(-0.564800\pi\)
−0.202171 + 0.979350i \(0.564800\pi\)
\(192\) 0 0
\(193\) 2.55611 0.183993 0.0919964 0.995759i \(-0.470675\pi\)
0.0919964 + 0.995759i \(0.470675\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −6.76765 11.7219i −0.482175 0.835152i 0.517615 0.855613i \(-0.326820\pi\)
−0.999791 + 0.0204613i \(0.993487\pi\)
\(198\) 0 0
\(199\) 1.68913 0.119739 0.0598695 0.998206i \(-0.480932\pi\)
0.0598695 + 0.998206i \(0.480932\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 18.4231 31.9097i 1.29305 2.23962i
\(204\) 0 0
\(205\) 5.35577 + 9.27647i 0.374063 + 0.647897i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 3.15544 5.46538i 0.218266 0.378048i
\(210\) 0 0
\(211\) 10.8878 0.749546 0.374773 0.927117i \(-0.377721\pi\)
0.374773 + 0.927117i \(0.377721\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 5.15544 8.92948i 0.351598 0.608985i
\(216\) 0 0
\(217\) −2.70034 + 4.67712i −0.183311 + 0.317504i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 12.7996 0.860994
\(222\) 0 0
\(223\) −0.187447 −0.0125524 −0.00627620 0.999980i \(-0.501998\pi\)
−0.00627620 + 0.999980i \(0.501998\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −9.72755 + 16.8486i −0.645640 + 1.11828i 0.338513 + 0.940962i \(0.390076\pi\)
−0.984153 + 0.177320i \(0.943257\pi\)
\(228\) 0 0
\(229\) 8.62343 14.9362i 0.569852 0.987013i −0.426728 0.904380i \(-0.640334\pi\)
0.996580 0.0826327i \(-0.0263328\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 18.6009 1.21859 0.609294 0.792944i \(-0.291453\pi\)
0.609294 + 0.792944i \(0.291453\pi\)
\(234\) 0 0
\(235\) 4.36138 7.55413i 0.284505 0.492777i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −6.67705 11.5650i −0.431902 0.748077i 0.565135 0.824999i \(-0.308824\pi\)
−0.997037 + 0.0769219i \(0.975491\pi\)
\(240\) 0 0
\(241\) −8.08893 + 14.0104i −0.521054 + 0.902491i 0.478647 + 0.878008i \(0.341128\pi\)
−0.999700 + 0.0244837i \(0.992206\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 10.2677 0.655976
\(246\) 0 0
\(247\) 8.63383 + 14.9542i 0.549357 + 0.951515i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −11.5095 −0.726475 −0.363238 0.931697i \(-0.618329\pi\)
−0.363238 + 0.931697i \(0.618329\pi\)
\(252\) 0 0
\(253\) −6.51289 −0.409462
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0.756444 + 1.31020i 0.0471857 + 0.0817280i 0.888654 0.458579i \(-0.151641\pi\)
−0.841468 + 0.540307i \(0.818308\pi\)
\(258\) 0 0
\(259\) 18.7460 + 16.9555i 1.16482 + 1.05356i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 7.52161 13.0278i 0.463802 0.803329i −0.535344 0.844634i \(-0.679818\pi\)
0.999147 + 0.0413047i \(0.0131515\pi\)
\(264\) 0 0
\(265\) −10.1554 −0.623844
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −0.887783 −0.0541291 −0.0270645 0.999634i \(-0.508616\pi\)
−0.0270645 + 0.999634i \(0.508616\pi\)
\(270\) 0 0
\(271\) 9.59453 + 16.6182i 0.582826 + 1.00948i 0.995143 + 0.0984440i \(0.0313865\pi\)
−0.412316 + 0.911041i \(0.635280\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.59933 + 4.50217i 0.156745 + 0.271491i
\(276\) 0 0
\(277\) 1.79966 3.11711i 0.108131 0.187289i −0.806882 0.590713i \(-0.798847\pi\)
0.915013 + 0.403424i \(0.132180\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 14.2660 + 24.7094i 0.851037 + 1.47404i 0.880274 + 0.474466i \(0.157359\pi\)
−0.0292371 + 0.999573i \(0.509308\pi\)
\(282\) 0 0
\(283\) −4.07772 + 7.06282i −0.242395 + 0.419841i −0.961396 0.275168i \(-0.911266\pi\)
0.719001 + 0.695009i \(0.244600\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 22.2556 + 38.5478i 1.31370 + 2.27540i
\(288\) 0 0
\(289\) 2.02242 3.50293i 0.118966 0.206055i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −3.65544 + 6.33140i −0.213553 + 0.369884i −0.952824 0.303524i \(-0.901837\pi\)
0.739271 + 0.673408i \(0.235170\pi\)
\(294\) 0 0
\(295\) 9.26765 0.539584
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 8.91020 15.4329i 0.515290 0.892509i
\(300\) 0 0
\(301\) 21.4231 37.1059i 1.23481 2.13875i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1.35577 2.34827i −0.0776313 0.134461i
\(306\) 0 0
\(307\) −17.1122 −0.976646 −0.488323 0.872663i \(-0.662391\pi\)
−0.488323 + 0.872663i \(0.662391\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 15.0569 + 26.0793i 0.853799 + 1.47882i 0.877754 + 0.479111i \(0.159041\pi\)
−0.0239549 + 0.999713i \(0.507626\pi\)
\(312\) 0 0
\(313\) 15.7789 + 27.3298i 0.891874 + 1.54477i 0.837626 + 0.546244i \(0.183943\pi\)
0.0542477 + 0.998528i \(0.482724\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 15.1105 + 26.1722i 0.848692 + 1.46998i 0.882376 + 0.470546i \(0.155943\pi\)
−0.0336833 + 0.999433i \(0.510724\pi\)
\(318\) 0 0
\(319\) −11.5241 −0.645226
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −17.4775 −0.972475
\(324\) 0 0
\(325\) −14.2244 −0.789030
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 18.1234 31.3907i 0.999177 1.73063i
\(330\) 0 0
\(331\) 1.23315 + 2.13589i 0.0677803 + 0.117399i 0.897924 0.440151i \(-0.145075\pi\)
−0.830144 + 0.557550i \(0.811742\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −3.98399 6.90048i −0.217669 0.377014i
\(336\) 0 0
\(337\) 11.2228 19.4384i 0.611342 1.05888i −0.379672 0.925121i \(-0.623963\pi\)
0.991014 0.133755i \(-0.0427035\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 1.68913 0.0914713
\(342\) 0 0
\(343\) 13.5785 0.733172
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −32.4343 −1.74116 −0.870582 0.492023i \(-0.836258\pi\)
−0.870582 + 0.492023i \(0.836258\pi\)
\(348\) 0 0
\(349\) 5.36698 + 9.29588i 0.287288 + 0.497597i 0.973161 0.230123i \(-0.0739130\pi\)
−0.685873 + 0.727721i \(0.740580\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 12.0785 + 20.9206i 0.642875 + 1.11349i 0.984788 + 0.173761i \(0.0555919\pi\)
−0.341913 + 0.939732i \(0.611075\pi\)
\(354\) 0 0
\(355\) −5.63383 9.75807i −0.299012 0.517905i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 2.84618 0.150216 0.0751078 0.997175i \(-0.476070\pi\)
0.0751078 + 0.997175i \(0.476070\pi\)
\(360\) 0 0
\(361\) −2.28926 3.96512i −0.120488 0.208691i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −1.14423 + 1.98186i −0.0598916 + 0.103735i
\(366\) 0 0
\(367\) −1.23315 + 2.13589i −0.0643702 + 0.111492i −0.896414 0.443217i \(-0.853837\pi\)
0.832044 + 0.554709i \(0.187171\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −42.2003 −2.19093
\(372\) 0 0
\(373\) 7.61222 13.1847i 0.394146 0.682680i −0.598846 0.800864i \(-0.704374\pi\)
0.992992 + 0.118184i \(0.0377072\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 15.7660 27.3075i 0.811989 1.40641i
\(378\) 0 0
\(379\) −15.9447 27.6170i −0.819024 1.41859i −0.906402 0.422416i \(-0.861182\pi\)
0.0873777 0.996175i \(-0.472151\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −3.94470 + 6.83242i −0.201565 + 0.349120i −0.949033 0.315177i \(-0.897936\pi\)
0.747468 + 0.664298i \(0.231269\pi\)
\(384\) 0 0
\(385\) −2.70034 4.67712i −0.137622 0.238368i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 18.1795 31.4879i 0.921739 1.59650i 0.125015 0.992155i \(-0.460102\pi\)
0.796724 0.604344i \(-0.206565\pi\)
\(390\) 0 0
\(391\) 9.01849 + 15.6205i 0.456085 + 0.789962i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1.28366 2.22336i −0.0645879 0.111869i
\(396\) 0 0
\(397\) 5.73235 0.287698 0.143849 0.989600i \(-0.454052\pi\)
0.143849 + 0.989600i \(0.454052\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 13.7115 0.684722 0.342361 0.939569i \(-0.388773\pi\)
0.342361 + 0.939569i \(0.388773\pi\)
\(402\) 0 0
\(403\) −2.31087 + 4.00255i −0.115113 + 0.199381i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.66104 7.72908i 0.0823348 0.383116i
\(408\) 0 0
\(409\) 3.46799 + 6.00673i 0.171481 + 0.297014i 0.938938 0.344087i \(-0.111811\pi\)
−0.767457 + 0.641101i \(0.778478\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 38.5111 1.89501
\(414\) 0 0
\(415\) −9.96799 −0.489309
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 6.21074 + 10.7573i 0.303414 + 0.525529i 0.976907 0.213665i \(-0.0685400\pi\)
−0.673493 + 0.739194i \(0.735207\pi\)
\(420\) 0 0
\(421\) −1.81879 −0.0886422 −0.0443211 0.999017i \(-0.514112\pi\)
−0.0443211 + 0.999017i \(0.514112\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 7.19866 12.4684i 0.349186 0.604808i
\(426\) 0 0
\(427\) −5.63383 9.75807i −0.272640 0.472226i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −5.02721 + 8.70739i −0.242152 + 0.419420i −0.961327 0.275409i \(-0.911187\pi\)
0.719175 + 0.694829i \(0.244520\pi\)
\(432\) 0 0
\(433\) −39.7996 −1.91265 −0.956323 0.292311i \(-0.905576\pi\)
−0.956323 + 0.292311i \(0.905576\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −12.1666 + 21.0732i −0.582010 + 1.00807i
\(438\) 0 0
\(439\) −12.9447 + 22.4209i −0.617817 + 1.07009i 0.372066 + 0.928206i \(0.378649\pi\)
−0.989883 + 0.141884i \(0.954684\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −12.0000 −0.570137 −0.285069 0.958507i \(-0.592016\pi\)
−0.285069 + 0.958507i \(0.592016\pi\)
\(444\) 0 0
\(445\) 4.42309 0.209675
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −15.6450 + 27.0980i −0.738335 + 1.27883i 0.214910 + 0.976634i \(0.431054\pi\)
−0.953245 + 0.302200i \(0.902279\pi\)
\(450\) 0 0
\(451\) 6.96071 12.0563i 0.327767 0.567709i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 14.7772 0.692765
\(456\) 0 0
\(457\) −7.66665 + 13.2790i −0.358631 + 0.621166i −0.987732 0.156157i \(-0.950090\pi\)
0.629102 + 0.777323i \(0.283423\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −3.04571 5.27532i −0.141853 0.245696i 0.786342 0.617792i \(-0.211973\pi\)
−0.928194 + 0.372096i \(0.878639\pi\)
\(462\) 0 0
\(463\) 16.2332 28.1166i 0.754419 1.30669i −0.191244 0.981543i \(-0.561252\pi\)
0.945663 0.325149i \(-0.105414\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 27.4231 1.26899 0.634495 0.772927i \(-0.281208\pi\)
0.634495 + 0.772927i \(0.281208\pi\)
\(468\) 0 0
\(469\) −16.5552 28.6745i −0.764450 1.32407i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −13.4007 −0.616164
\(474\) 0 0
\(475\) 19.4231 0.891192
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −2.32295 4.02347i −0.106138 0.183837i 0.808064 0.589094i \(-0.200515\pi\)
−0.914203 + 0.405257i \(0.867182\pi\)
\(480\) 0 0
\(481\) 16.0423 + 14.5101i 0.731468 + 0.661601i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −4.98960 + 8.64224i −0.226566 + 0.392424i
\(486\) 0 0
\(487\) 13.3861 0.606582 0.303291 0.952898i \(-0.401915\pi\)
0.303291 + 0.952898i \(0.401915\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −17.3445 −0.782746 −0.391373 0.920232i \(-0.628000\pi\)
−0.391373 + 0.920232i \(0.628000\pi\)
\(492\) 0 0
\(493\) 15.9576 + 27.6394i 0.718694 + 1.24481i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −23.4110 40.5491i −1.05013 1.81887i
\(498\) 0 0
\(499\) 14.7388 25.5283i 0.659797 1.14280i −0.320870 0.947123i \(-0.603975\pi\)
0.980668 0.195680i \(-0.0626913\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −0.459897 0.796565i −0.0205058 0.0355171i 0.855590 0.517653i \(-0.173194\pi\)
−0.876096 + 0.482136i \(0.839861\pi\)
\(504\) 0 0
\(505\) 1.42228 2.46346i 0.0632907 0.109623i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 2.48879 + 4.31071i 0.110314 + 0.191069i 0.915897 0.401414i \(-0.131481\pi\)
−0.805583 + 0.592483i \(0.798148\pi\)
\(510\) 0 0
\(511\) −4.75476 + 8.23549i −0.210338 + 0.364317i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 3.44389 5.96500i 0.151756 0.262849i
\(516\) 0 0
\(517\) −11.3367 −0.498585
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −19.1321 + 33.1379i −0.838195 + 1.45180i 0.0532081 + 0.998583i \(0.483055\pi\)
−0.891403 + 0.453212i \(0.850278\pi\)
\(522\) 0 0
\(523\) −19.3269 + 33.4751i −0.845105 + 1.46377i 0.0404243 + 0.999183i \(0.487129\pi\)
−0.885530 + 0.464583i \(0.846204\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −2.33896 4.05120i −0.101887 0.176473i
\(528\) 0 0
\(529\) 2.11222 0.0918355
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 19.0457 + 32.9881i 0.824961 + 1.42887i
\(534\) 0 0
\(535\) −1.63383 2.82987i −0.0706365 0.122346i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −6.67225 11.5567i −0.287394 0.497781i
\(540\) 0 0
\(541\) −34.3125 −1.47521 −0.737605 0.675233i \(-0.764043\pi\)
−0.737605 + 0.675233i \(0.764043\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 13.3109 0.570175
\(546\) 0 0
\(547\) −31.3221 −1.33924 −0.669618 0.742706i \(-0.733542\pi\)
−0.669618 + 0.742706i \(0.733542\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −21.5280 + 37.2876i −0.917125 + 1.58851i
\(552\) 0 0
\(553\) −5.33416 9.23904i −0.226832 0.392884i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −10.3990 18.0116i −0.440619 0.763175i 0.557116 0.830435i \(-0.311908\pi\)
−0.997736 + 0.0672594i \(0.978575\pi\)
\(558\) 0 0
\(559\) 18.3333 31.7542i 0.775416 1.34306i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 16.1874 0.682220 0.341110 0.940023i \(-0.389197\pi\)
0.341110 + 0.940023i \(0.389197\pi\)
\(564\) 0 0
\(565\) 3.86698 0.162685
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1.73235 0.0726237 0.0363119 0.999341i \(-0.488439\pi\)
0.0363119 + 0.999341i \(0.488439\pi\)
\(570\) 0 0
\(571\) 8.82856 + 15.2915i 0.369464 + 0.639930i 0.989482 0.144658i \(-0.0462081\pi\)
−0.620018 + 0.784588i \(0.712875\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −10.0224 17.3593i −0.417964 0.723934i
\(576\) 0 0
\(577\) 6.63383 + 11.4901i 0.276170 + 0.478340i 0.970430 0.241384i \(-0.0776014\pi\)
−0.694260 + 0.719725i \(0.744268\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −41.4213 −1.71845
\(582\) 0 0
\(583\) 6.59933 + 11.4304i 0.273316 + 0.473398i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 9.42789 16.3296i 0.389131 0.673994i −0.603202 0.797588i \(-0.706109\pi\)
0.992333 + 0.123594i \(0.0394422\pi\)
\(588\) 0 0
\(589\) 3.15544 5.46538i 0.130018 0.225197i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −13.8928 −0.570507 −0.285254 0.958452i \(-0.592078\pi\)
−0.285254 + 0.958452i \(0.592078\pi\)
\(594\) 0 0
\(595\) −7.47839 + 12.9530i −0.306584 + 0.531019i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −16.5513 + 28.6677i −0.676268 + 1.17133i 0.299828 + 0.953993i \(0.403071\pi\)
−0.976096 + 0.217338i \(0.930263\pi\)
\(600\) 0 0
\(601\) −5.60101 9.70123i −0.228470 0.395721i 0.728885 0.684636i \(-0.240039\pi\)
−0.957355 + 0.288915i \(0.906706\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 4.65544 8.06345i 0.189270 0.327826i
\(606\) 0 0
\(607\) −13.0496 22.6026i −0.529668 0.917412i −0.999401 0.0346037i \(-0.988983\pi\)
0.469733 0.882809i \(-0.344350\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 15.5095 26.8633i 0.627448 1.08677i
\(612\) 0 0
\(613\) −4.46799 7.73878i −0.180460 0.312567i 0.761577 0.648074i \(-0.224425\pi\)
−0.942037 + 0.335508i \(0.891092\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −4.63383 8.02602i −0.186551 0.323116i 0.757547 0.652780i \(-0.226398\pi\)
−0.944098 + 0.329665i \(0.893064\pi\)
\(618\) 0 0
\(619\) 2.88778 0.116070 0.0580349 0.998315i \(-0.481517\pi\)
0.0580349 + 0.998315i \(0.481517\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 18.3799 0.736374
\(624\) 0 0
\(625\) −5.50000 + 9.52628i −0.220000 + 0.381051i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −20.8375 + 6.71873i −0.830844 + 0.267893i
\(630\) 0 0
\(631\) 9.73876 + 16.8680i 0.387694 + 0.671506i 0.992139 0.125141i \(-0.0399384\pi\)
−0.604445 + 0.796647i \(0.706605\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −4.05443 −0.160895
\(636\) 0 0
\(637\) 36.5129 1.44669
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −3.69866 6.40626i −0.146088 0.253032i 0.783690 0.621152i \(-0.213335\pi\)
−0.929778 + 0.368120i \(0.880002\pi\)
\(642\) 0 0
\(643\) −10.9024 −0.429947 −0.214973 0.976620i \(-0.568966\pi\)
−0.214973 + 0.976620i \(0.568966\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −6.54403 + 11.3346i −0.257272 + 0.445609i −0.965510 0.260365i \(-0.916157\pi\)
0.708238 + 0.705974i \(0.249490\pi\)
\(648\) 0 0
\(649\) −6.02242 10.4311i −0.236401 0.409458i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 19.6234 33.9888i 0.767924 1.33008i −0.170763 0.985312i \(-0.554623\pi\)
0.938687 0.344771i \(-0.112043\pi\)
\(654\) 0 0
\(655\) −11.1666 −0.436317
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 2.65624 4.60075i 0.103473 0.179220i −0.809641 0.586926i \(-0.800338\pi\)
0.913113 + 0.407706i \(0.133671\pi\)
\(660\) 0 0
\(661\) −3.81087 + 6.60063i −0.148226 + 0.256735i −0.930572 0.366109i \(-0.880690\pi\)
0.782346 + 0.622844i \(0.214023\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −20.1779 −0.782464
\(666\) 0 0
\(667\) 44.4343 1.72050
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −1.76205 + 3.05196i −0.0680231 + 0.117820i
\(672\) 0 0
\(673\) −6.00249 + 10.3966i −0.231379 + 0.400760i −0.958214 0.286052i \(-0.907657\pi\)
0.726835 + 0.686812i \(0.240990\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −35.5527 −1.36640 −0.683202 0.730230i \(-0.739413\pi\)
−0.683202 + 0.730230i \(0.739413\pi\)
\(678\) 0 0
\(679\) −20.7340 + 35.9123i −0.795696 + 1.37819i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −15.7893 27.3478i −0.604159 1.04643i −0.992184 0.124786i \(-0.960176\pi\)
0.388024 0.921649i \(-0.373158\pi\)
\(684\) 0 0
\(685\) −0.577718 + 1.00064i −0.0220735 + 0.0382324i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −36.1138 −1.37583
\(690\) 0 0
\(691\) 5.59453 + 9.69001i 0.212826 + 0.368625i 0.952598 0.304232i \(-0.0983999\pi\)
−0.739772 + 0.672858i \(0.765067\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −17.4551 −0.662110
\(696\) 0 0
\(697\) −38.5544 −1.46035
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −13.7893 23.8837i −0.520813 0.902075i −0.999707 0.0242022i \(-0.992295\pi\)
0.478894 0.877873i \(-0.341038\pi\)
\(702\) 0 0
\(703\) −21.9054 19.8131i −0.826178 0.747265i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 5.91020 10.2368i 0.222276 0.384993i
\(708\) 0 0
\(709\) 9.50953 0.357138 0.178569 0.983927i \(-0.442853\pi\)
0.178569 + 0.983927i \(0.442853\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −6.51289 −0.243910
\(714\) 0 0
\(715\) −2.31087 4.00255i −0.0864218 0.149687i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −9.94077 17.2179i −0.370728 0.642120i 0.618949 0.785431i \(-0.287559\pi\)
−0.989678 + 0.143311i \(0.954225\pi\)
\(720\) 0 0
\(721\) 14.3109 24.7872i 0.532965 0.923122i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −17.7340 30.7161i −0.658623 1.14077i
\(726\) 0 0
\(727\) −1.23315 + 2.13589i −0.0457352 + 0.0792157i −0.887987 0.459869i \(-0.847896\pi\)
0.842252 + 0.539085i \(0.181230\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 18.5561 + 32.1401i 0.686322 + 1.18875i
\(732\) 0 0
\(733\) −22.3998 + 38.7976i −0.827356 + 1.43302i 0.0727502 + 0.997350i \(0.476822\pi\)
−0.900106 + 0.435672i \(0.856511\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −5.17785 + 8.96831i −0.190729 + 0.330352i
\(738\) 0 0
\(739\) −27.4085 −1.00824 −0.504119 0.863634i \(-0.668183\pi\)
−0.504119 + 0.863634i \(0.668183\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 5.69554 9.86496i 0.208949 0.361910i −0.742435 0.669918i \(-0.766329\pi\)
0.951384 + 0.308008i \(0.0996624\pi\)
\(744\) 0 0
\(745\) 0.577718 1.00064i 0.0211660 0.0366605i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −6.78926 11.7593i −0.248074 0.429677i
\(750\) 0 0
\(751\) −33.7340 −1.23097 −0.615485 0.788149i \(-0.711040\pi\)
−0.615485 + 0.788149i \(0.711040\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 3.17144 + 5.49310i 0.115421 + 0.199914i
\(756\) 0 0
\(757\) −16.1795 28.0238i −0.588055 1.01854i −0.994487 0.104860i \(-0.966560\pi\)
0.406432 0.913681i \(-0.366773\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 6.05611 + 10.4895i 0.219534 + 0.380244i 0.954666 0.297681i \(-0.0962131\pi\)
−0.735132 + 0.677924i \(0.762880\pi\)
\(762\) 0 0
\(763\) 55.3125 2.00245
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 32.9568 1.19000
\(768\) 0 0
\(769\) −12.5577 −0.452843 −0.226422 0.974029i \(-0.572703\pi\)
−0.226422 + 0.974029i \(0.572703\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 10.3878 17.9922i 0.373623 0.647133i −0.616497 0.787357i \(-0.711449\pi\)
0.990120 + 0.140224i \(0.0447822\pi\)
\(774\) 0 0
\(775\) 2.59933 + 4.50217i 0.0933706 + 0.161723i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −26.0064 45.0444i −0.931776 1.61388i
\(780\) 0 0
\(781\) −7.32208 + 12.6822i −0.262005 + 0.453805i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −0.711545 −0.0253961
\(786\) 0 0
\(787\) 5.02578 0.179150 0.0895748 0.995980i \(-0.471449\pi\)
0.0895748 + 0.995980i \(0.471449\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 16.0690 0.571348
\(792\) 0 0
\(793\) −4.82127 8.35069i −0.171208 0.296542i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 13.1434 + 22.7650i 0.465562 + 0.806376i 0.999227 0.0393196i \(-0.0125190\pi\)
−0.533665 + 0.845696i \(0.679186\pi\)
\(798\) 0 0
\(799\) 15.6980 + 27.1898i 0.555356 + 0.961905i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 2.97422 0.104958
\(804\) 0 0
\(805\) 10.4119 + 18.0339i 0.366971 + 0.635612i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −20.6770 + 35.8137i −0.726966 + 1.25914i 0.231193 + 0.972908i \(0.425737\pi\)
−0.958160 + 0.286235i \(0.907596\pi\)
\(810\) 0 0
\(811\) 23.9239 41.4374i 0.840082 1.45506i −0.0497432 0.998762i \(-0.515840\pi\)
0.889825 0.456302i \(-0.150826\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 3.26765 0.114461
\(816\) 0 0
\(817\) −25.0336 + 43.3595i −0.875816 + 1.51696i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 6.76685 11.7205i 0.236165 0.409049i −0.723446 0.690381i \(-0.757443\pi\)
0.959610 + 0.281332i \(0.0907762\pi\)
\(822\) 0 0
\(823\) 3.30446 + 5.72349i 0.115186 + 0.199508i 0.917854 0.396918i \(-0.129920\pi\)
−0.802668 + 0.596426i \(0.796587\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −1.34376 + 2.32745i −0.0467269 + 0.0809334i −0.888443 0.458987i \(-0.848212\pi\)
0.841716 + 0.539921i \(0.181546\pi\)
\(828\) 0 0
\(829\) 4.51040 + 7.81224i 0.156653 + 0.271330i 0.933660 0.358162i \(-0.116596\pi\)
−0.777007 + 0.629492i \(0.783263\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −18.4783 + 32.0054i −0.640236 + 1.10892i
\(834\) 0 0
\(835\) −10.7893 18.6876i −0.373378 0.646709i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −10.3381 17.9061i −0.356910 0.618187i 0.630533 0.776163i \(-0.282837\pi\)
−0.987443 + 0.157976i \(0.949503\pi\)
\(840\) 0 0
\(841\) 49.6234 1.71115
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −0.354093 −0.0121812
\(846\) 0 0
\(847\) 19.3454 33.5072i 0.664715 1.15132i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −6.40460 + 29.8016i −0.219547 + 1.02158i
\(852\) 0 0
\(853\) −1.81087 3.13652i −0.0620031 0.107393i 0.833358 0.552734i \(-0.186416\pi\)
−0.895361 + 0.445342i \(0.853082\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −12.6201 −0.431095 −0.215548 0.976493i \(-0.569154\pi\)
−0.215548 + 0.976493i \(0.569154\pi\)
\(858\) 0 0
\(859\) −45.6059 −1.55605 −0.778027 0.628231i \(-0.783779\pi\)
−0.778027 + 0.628231i \(0.783779\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 25.9015 + 44.8627i 0.881697 + 1.52714i 0.849454 + 0.527663i \(0.176932\pi\)
0.0322430 + 0.999480i \(0.489735\pi\)
\(864\) 0 0
\(865\) 11.5993 0.394389
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −1.66833 + 2.88962i −0.0565941 + 0.0980238i
\(870\) 0 0
\(871\) −14.1675 24.5389i −0.480048 0.831468i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 18.6995 32.3884i 0.632157 1.09493i
\(876\) 0 0
\(877\) 17.7356 0.598888 0.299444 0.954114i \(-0.403199\pi\)
0.299444 + 0.954114i \(0.403199\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 4.36698 7.56383i 0.147127 0.254832i −0.783037 0.621975i \(-0.786331\pi\)
0.930165 + 0.367143i \(0.119664\pi\)
\(882\) 0 0
\(883\) 26.6170 46.1019i 0.895732 1.55145i 0.0628353 0.998024i \(-0.479986\pi\)
0.832896 0.553429i \(-0.186681\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 20.6363 0.692900 0.346450 0.938069i \(-0.387387\pi\)
0.346450 + 0.938069i \(0.387387\pi\)
\(888\) 0 0
\(889\) −16.8479 −0.565061
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −21.1779 + 36.6811i −0.708690 + 1.22749i
\(894\) 0 0
\(895\) −0.599328 + 1.03807i −0.0200333 + 0.0346987i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −11.5241 −0.384350
\(900\) 0 0
\(901\) 18.2764 31.6556i 0.608874 1.05460i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1.65544 + 2.86730i 0.0550286 + 0.0953123i
\(906\) 0 0
\(907\) −15.0962 + 26.1474i −0.501261 + 0.868210i 0.498737 + 0.866753i \(0.333797\pi\)
−0.999999 + 0.00145724i \(0.999536\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 5.76100 0.190870 0.0954352 0.995436i \(-0.469576\pi\)
0.0954352 + 0.995436i \(0.469576\pi\)
\(912\) 0 0
\(913\) 6.47752 + 11.2194i 0.214375 + 0.371308i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −46.4023 −1.53234
\(918\) 0 0
\(919\) −19.6105 −0.646892 −0.323446 0.946247i \(-0.604841\pi\)
−0.323446 + 0.946247i \(0.604841\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −20.0345 34.7008i −0.659444 1.14219i
\(924\) 0 0
\(925\) 23.1571 7.46665i 0.761399 0.245502i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −26.5016 + 45.9021i −0.869490 + 1.50600i −0.00697095 + 0.999976i \(0.502219\pi\)
−0.862519 + 0.506025i \(0.831114\pi\)
\(930\) 0 0
\(931\) −49.8574 −1.63401
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 4.67792 0.152984
\(936\) 0 0
\(937\) −6.38940 11.0668i −0.208733 0.361535i 0.742583 0.669754i \(-0.233600\pi\)
−0.951316 + 0.308219i \(0.900267\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 11.4360 + 19.8077i 0.372802 + 0.645712i 0.989995 0.141099i \(-0.0450636\pi\)
−0.617193 + 0.786812i \(0.711730\pi\)
\(942\) 0 0
\(943\) −26.8389 + 46.4863i −0.873995 + 1.51380i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −4.34537 7.52640i −0.141206 0.244575i 0.786745 0.617278i \(-0.211765\pi\)
−0.927951 + 0.372703i \(0.878431\pi\)
\(948\) 0 0
\(949\) −4.06900 + 7.04771i −0.132085 + 0.228778i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 20.7460 + 35.9332i 0.672030 + 1.16399i 0.977327 + 0.211733i \(0.0679109\pi\)
−0.305297 + 0.952257i \(0.598756\pi\)
\(954\) 0 0
\(955\) 2.79406 4.83945i 0.0904136 0.156601i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −2.40067 + 4.15809i −0.0775217 + 0.134272i
\(960\) 0 0
\(961\) −29.3109 −0.945512
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −1.27805 + 2.21365i −0.0411420 + 0.0712601i
\(966\) 0 0
\(967\) 12.8117 22.1905i 0.411996 0.713598i −0.583112 0.812392i \(-0.698165\pi\)
0.995108 + 0.0987939i \(0.0314985\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 5.48232 + 9.49565i 0.175936 + 0.304730i 0.940485 0.339836i \(-0.110372\pi\)
−0.764549 + 0.644566i \(0.777038\pi\)
\(972\) 0 0
\(973\) −72.5336 −2.32532
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 11.4672 + 19.8617i 0.366868 + 0.635433i 0.989074 0.147420i \(-0.0470969\pi\)
−0.622206 + 0.782853i \(0.713764\pi\)
\(978\) 0 0
\(979\) −2.87427 4.97837i −0.0918619 0.159110i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 17.1731 + 29.7446i 0.547736 + 0.948706i 0.998429 + 0.0560271i \(0.0178433\pi\)
−0.450694 + 0.892679i \(0.648823\pi\)
\(984\) 0 0
\(985\) 13.5353 0.431271
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 51.6699 1.64301
\(990\) 0 0
\(991\) 59.4263 1.88774 0.943870 0.330318i \(-0.107156\pi\)
0.943870 + 0.330318i \(0.107156\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −0.844563 + 1.46283i −0.0267745 + 0.0463747i
\(996\) 0 0
\(997\) −7.86449 13.6217i −0.249071 0.431404i 0.714197 0.699944i \(-0.246792\pi\)
−0.963268 + 0.268541i \(0.913459\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1332.2.j.e.433.1 6
3.2 odd 2 148.2.e.a.137.1 yes 6
12.11 even 2 592.2.i.f.433.3 6
37.10 even 3 inner 1332.2.j.e.1009.1 6
111.11 odd 6 5476.2.a.g.1.3 3
111.26 odd 6 5476.2.a.f.1.3 3
111.47 odd 6 148.2.e.a.121.1 6
444.47 even 6 592.2.i.f.417.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
148.2.e.a.121.1 6 111.47 odd 6
148.2.e.a.137.1 yes 6 3.2 odd 2
592.2.i.f.417.3 6 444.47 even 6
592.2.i.f.433.3 6 12.11 even 2
1332.2.j.e.433.1 6 1.1 even 1 trivial
1332.2.j.e.1009.1 6 37.10 even 3 inner
5476.2.a.f.1.3 3 111.26 odd 6
5476.2.a.g.1.3 3 111.11 odd 6