Properties

Label 1338.2.a.b.1.1
Level 13381338
Weight 22
Character 1338.1
Self dual yes
Analytic conductor 10.68410.684
Analytic rank 00
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1338,2,Mod(1,1338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1338, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1338.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1338=23223 1338 = 2 \cdot 3 \cdot 223
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1338.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 10.683983790410.6839837904
Analytic rank: 00
Dimension: 22
Coefficient field: Q(ζ10)+\Q(\zeta_{10})^+
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x1 x^{2} - x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.1
Root 0.618034-0.618034 of defining polynomial
Character χ\chi == 1338.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.00000q21.00000q3+1.00000q41.23607q5+1.00000q61.00000q8+1.00000q9+1.23607q104.85410q111.00000q12+1.85410q13+1.23607q15+1.00000q162.47214q171.00000q18+1.38197q191.23607q20+4.85410q22+2.00000q23+1.00000q243.47214q251.85410q261.00000q27+4.09017q291.23607q30+6.00000q311.00000q32+4.85410q33+2.47214q34+1.00000q362.47214q371.38197q381.85410q39+1.23607q4010.0000q41+6.38197q434.85410q441.23607q452.00000q46+5.61803q471.00000q487.00000q49+3.47214q50+2.47214q51+1.85410q52+3.09017q53+1.00000q54+6.00000q551.38197q574.09017q58+0.145898q59+1.23607q60+13.7984q616.00000q62+1.00000q642.29180q654.85410q662.94427q672.47214q682.00000q69+15.4164q711.00000q72+0.909830q73+2.47214q74+3.47214q75+1.38197q76+1.85410q782.38197q791.23607q80+1.00000q81+10.0000q82+12.0000q83+3.05573q856.38197q864.09017q87+4.85410q887.23607q89+1.23607q90+2.00000q926.00000q935.61803q941.70820q95+1.00000q96+7.52786q97+7.00000q984.85410q99+O(q100)q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -1.23607 q^{5} +1.00000 q^{6} -1.00000 q^{8} +1.00000 q^{9} +1.23607 q^{10} -4.85410 q^{11} -1.00000 q^{12} +1.85410 q^{13} +1.23607 q^{15} +1.00000 q^{16} -2.47214 q^{17} -1.00000 q^{18} +1.38197 q^{19} -1.23607 q^{20} +4.85410 q^{22} +2.00000 q^{23} +1.00000 q^{24} -3.47214 q^{25} -1.85410 q^{26} -1.00000 q^{27} +4.09017 q^{29} -1.23607 q^{30} +6.00000 q^{31} -1.00000 q^{32} +4.85410 q^{33} +2.47214 q^{34} +1.00000 q^{36} -2.47214 q^{37} -1.38197 q^{38} -1.85410 q^{39} +1.23607 q^{40} -10.0000 q^{41} +6.38197 q^{43} -4.85410 q^{44} -1.23607 q^{45} -2.00000 q^{46} +5.61803 q^{47} -1.00000 q^{48} -7.00000 q^{49} +3.47214 q^{50} +2.47214 q^{51} +1.85410 q^{52} +3.09017 q^{53} +1.00000 q^{54} +6.00000 q^{55} -1.38197 q^{57} -4.09017 q^{58} +0.145898 q^{59} +1.23607 q^{60} +13.7984 q^{61} -6.00000 q^{62} +1.00000 q^{64} -2.29180 q^{65} -4.85410 q^{66} -2.94427 q^{67} -2.47214 q^{68} -2.00000 q^{69} +15.4164 q^{71} -1.00000 q^{72} +0.909830 q^{73} +2.47214 q^{74} +3.47214 q^{75} +1.38197 q^{76} +1.85410 q^{78} -2.38197 q^{79} -1.23607 q^{80} +1.00000 q^{81} +10.0000 q^{82} +12.0000 q^{83} +3.05573 q^{85} -6.38197 q^{86} -4.09017 q^{87} +4.85410 q^{88} -7.23607 q^{89} +1.23607 q^{90} +2.00000 q^{92} -6.00000 q^{93} -5.61803 q^{94} -1.70820 q^{95} +1.00000 q^{96} +7.52786 q^{97} +7.00000 q^{98} -4.85410 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q2q22q3+2q4+2q5+2q62q8+2q92q103q112q123q132q15+2q16+4q172q18+5q19+2q20+3q22+4q23+3q99+O(q100) 2 q - 2 q^{2} - 2 q^{3} + 2 q^{4} + 2 q^{5} + 2 q^{6} - 2 q^{8} + 2 q^{9} - 2 q^{10} - 3 q^{11} - 2 q^{12} - 3 q^{13} - 2 q^{15} + 2 q^{16} + 4 q^{17} - 2 q^{18} + 5 q^{19} + 2 q^{20} + 3 q^{22} + 4 q^{23}+ \cdots - 3 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −1.00000 −0.707107
33 −1.00000 −0.577350
44 1.00000 0.500000
55 −1.23607 −0.552786 −0.276393 0.961045i 0.589139π-0.589139\pi
−0.276393 + 0.961045i 0.589139π0.589139\pi
66 1.00000 0.408248
77 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
88 −1.00000 −0.353553
99 1.00000 0.333333
1010 1.23607 0.390879
1111 −4.85410 −1.46357 −0.731783 0.681537i 0.761312π-0.761312\pi
−0.731783 + 0.681537i 0.761312π0.761312\pi
1212 −1.00000 −0.288675
1313 1.85410 0.514235 0.257118 0.966380i 0.417227π-0.417227\pi
0.257118 + 0.966380i 0.417227π0.417227\pi
1414 0 0
1515 1.23607 0.319151
1616 1.00000 0.250000
1717 −2.47214 −0.599581 −0.299791 0.954005i 0.596917π-0.596917\pi
−0.299791 + 0.954005i 0.596917π0.596917\pi
1818 −1.00000 −0.235702
1919 1.38197 0.317045 0.158522 0.987355i 0.449327π-0.449327\pi
0.158522 + 0.987355i 0.449327π0.449327\pi
2020 −1.23607 −0.276393
2121 0 0
2222 4.85410 1.03490
2323 2.00000 0.417029 0.208514 0.978019i 0.433137π-0.433137\pi
0.208514 + 0.978019i 0.433137π0.433137\pi
2424 1.00000 0.204124
2525 −3.47214 −0.694427
2626 −1.85410 −0.363619
2727 −1.00000 −0.192450
2828 0 0
2929 4.09017 0.759525 0.379763 0.925084i 0.376006π-0.376006\pi
0.379763 + 0.925084i 0.376006π0.376006\pi
3030 −1.23607 −0.225674
3131 6.00000 1.07763 0.538816 0.842424i 0.318872π-0.318872\pi
0.538816 + 0.842424i 0.318872π0.318872\pi
3232 −1.00000 −0.176777
3333 4.85410 0.844991
3434 2.47214 0.423968
3535 0 0
3636 1.00000 0.166667
3737 −2.47214 −0.406417 −0.203208 0.979136i 0.565137π-0.565137\pi
−0.203208 + 0.979136i 0.565137π0.565137\pi
3838 −1.38197 −0.224184
3939 −1.85410 −0.296894
4040 1.23607 0.195440
4141 −10.0000 −1.56174 −0.780869 0.624695i 0.785223π-0.785223\pi
−0.780869 + 0.624695i 0.785223π0.785223\pi
4242 0 0
4343 6.38197 0.973241 0.486620 0.873614i 0.338230π-0.338230\pi
0.486620 + 0.873614i 0.338230π0.338230\pi
4444 −4.85410 −0.731783
4545 −1.23607 −0.184262
4646 −2.00000 −0.294884
4747 5.61803 0.819474 0.409737 0.912204i 0.365620π-0.365620\pi
0.409737 + 0.912204i 0.365620π0.365620\pi
4848 −1.00000 −0.144338
4949 −7.00000 −1.00000
5050 3.47214 0.491034
5151 2.47214 0.346168
5252 1.85410 0.257118
5353 3.09017 0.424467 0.212234 0.977219i 0.431926π-0.431926\pi
0.212234 + 0.977219i 0.431926π0.431926\pi
5454 1.00000 0.136083
5555 6.00000 0.809040
5656 0 0
5757 −1.38197 −0.183046
5858 −4.09017 −0.537066
5959 0.145898 0.0189943 0.00949715 0.999955i 0.496977π-0.496977\pi
0.00949715 + 0.999955i 0.496977π0.496977\pi
6060 1.23607 0.159576
6161 13.7984 1.76670 0.883350 0.468713i 0.155282π-0.155282\pi
0.883350 + 0.468713i 0.155282π0.155282\pi
6262 −6.00000 −0.762001
6363 0 0
6464 1.00000 0.125000
6565 −2.29180 −0.284262
6666 −4.85410 −0.597499
6767 −2.94427 −0.359700 −0.179850 0.983694i 0.557561π-0.557561\pi
−0.179850 + 0.983694i 0.557561π0.557561\pi
6868 −2.47214 −0.299791
6969 −2.00000 −0.240772
7070 0 0
7171 15.4164 1.82959 0.914796 0.403917i 0.132352π-0.132352\pi
0.914796 + 0.403917i 0.132352π0.132352\pi
7272 −1.00000 −0.117851
7373 0.909830 0.106488 0.0532438 0.998582i 0.483044π-0.483044\pi
0.0532438 + 0.998582i 0.483044π0.483044\pi
7474 2.47214 0.287380
7575 3.47214 0.400928
7676 1.38197 0.158522
7777 0 0
7878 1.85410 0.209936
7979 −2.38197 −0.267992 −0.133996 0.990982i 0.542781π-0.542781\pi
−0.133996 + 0.990982i 0.542781π0.542781\pi
8080 −1.23607 −0.138197
8181 1.00000 0.111111
8282 10.0000 1.10432
8383 12.0000 1.31717 0.658586 0.752506i 0.271155π-0.271155\pi
0.658586 + 0.752506i 0.271155π0.271155\pi
8484 0 0
8585 3.05573 0.331440
8686 −6.38197 −0.688185
8787 −4.09017 −0.438512
8888 4.85410 0.517449
8989 −7.23607 −0.767022 −0.383511 0.923536i 0.625285π-0.625285\pi
−0.383511 + 0.923536i 0.625285π0.625285\pi
9090 1.23607 0.130293
9191 0 0
9292 2.00000 0.208514
9393 −6.00000 −0.622171
9494 −5.61803 −0.579456
9595 −1.70820 −0.175258
9696 1.00000 0.102062
9797 7.52786 0.764339 0.382169 0.924092i 0.375177π-0.375177\pi
0.382169 + 0.924092i 0.375177π0.375177\pi
9898 7.00000 0.707107
9999 −4.85410 −0.487856
100100 −3.47214 −0.347214
101101 −1.85410 −0.184490 −0.0922450 0.995736i 0.529404π-0.529404\pi
−0.0922450 + 0.995736i 0.529404π0.529404\pi
102102 −2.47214 −0.244778
103103 3.56231 0.351004 0.175502 0.984479i 0.443845π-0.443845\pi
0.175502 + 0.984479i 0.443845π0.443845\pi
104104 −1.85410 −0.181810
105105 0 0
106106 −3.09017 −0.300144
107107 9.38197 0.906989 0.453494 0.891259i 0.350177π-0.350177\pi
0.453494 + 0.891259i 0.350177π0.350177\pi
108108 −1.00000 −0.0962250
109109 12.7639 1.22256 0.611281 0.791413i 0.290654π-0.290654\pi
0.611281 + 0.791413i 0.290654π0.290654\pi
110110 −6.00000 −0.572078
111111 2.47214 0.234645
112112 0 0
113113 9.85410 0.926996 0.463498 0.886098i 0.346594π-0.346594\pi
0.463498 + 0.886098i 0.346594π0.346594\pi
114114 1.38197 0.129433
115115 −2.47214 −0.230528
116116 4.09017 0.379763
117117 1.85410 0.171412
118118 −0.145898 −0.0134310
119119 0 0
120120 −1.23607 −0.112837
121121 12.5623 1.14203
122122 −13.7984 −1.24925
123123 10.0000 0.901670
124124 6.00000 0.538816
125125 10.4721 0.936656
126126 0 0
127127 17.7082 1.57135 0.785675 0.618640i 0.212316π-0.212316\pi
0.785675 + 0.618640i 0.212316π0.212316\pi
128128 −1.00000 −0.0883883
129129 −6.38197 −0.561901
130130 2.29180 0.201004
131131 −3.70820 −0.323987 −0.161994 0.986792i 0.551792π-0.551792\pi
−0.161994 + 0.986792i 0.551792π0.551792\pi
132132 4.85410 0.422495
133133 0 0
134134 2.94427 0.254346
135135 1.23607 0.106384
136136 2.47214 0.211984
137137 0.673762 0.0575634 0.0287817 0.999586i 0.490837π-0.490837\pi
0.0287817 + 0.999586i 0.490837π0.490837\pi
138138 2.00000 0.170251
139139 0.0901699 0.00764811 0.00382406 0.999993i 0.498783π-0.498783\pi
0.00382406 + 0.999993i 0.498783π0.498783\pi
140140 0 0
141141 −5.61803 −0.473124
142142 −15.4164 −1.29372
143143 −9.00000 −0.752618
144144 1.00000 0.0833333
145145 −5.05573 −0.419855
146146 −0.909830 −0.0752981
147147 7.00000 0.577350
148148 −2.47214 −0.203208
149149 −8.47214 −0.694064 −0.347032 0.937853i 0.612811π-0.612811\pi
−0.347032 + 0.937853i 0.612811π0.612811\pi
150150 −3.47214 −0.283499
151151 13.3820 1.08901 0.544504 0.838758i 0.316718π-0.316718\pi
0.544504 + 0.838758i 0.316718π0.316718\pi
152152 −1.38197 −0.112092
153153 −2.47214 −0.199860
154154 0 0
155155 −7.41641 −0.595700
156156 −1.85410 −0.148447
157157 5.61803 0.448368 0.224184 0.974547i 0.428028π-0.428028\pi
0.224184 + 0.974547i 0.428028π0.428028\pi
158158 2.38197 0.189499
159159 −3.09017 −0.245066
160160 1.23607 0.0977198
161161 0 0
162162 −1.00000 −0.0785674
163163 14.0000 1.09656 0.548282 0.836293i 0.315282π-0.315282\pi
0.548282 + 0.836293i 0.315282π0.315282\pi
164164 −10.0000 −0.780869
165165 −6.00000 −0.467099
166166 −12.0000 −0.931381
167167 −21.7082 −1.67983 −0.839916 0.542717i 0.817396π-0.817396\pi
−0.839916 + 0.542717i 0.817396π0.817396\pi
168168 0 0
169169 −9.56231 −0.735562
170170 −3.05573 −0.234364
171171 1.38197 0.105682
172172 6.38197 0.486620
173173 15.8885 1.20798 0.603992 0.796991i 0.293576π-0.293576\pi
0.603992 + 0.796991i 0.293576π0.293576\pi
174174 4.09017 0.310075
175175 0 0
176176 −4.85410 −0.365892
177177 −0.145898 −0.0109664
178178 7.23607 0.542366
179179 15.1246 1.13047 0.565233 0.824931i 0.308786π-0.308786\pi
0.565233 + 0.824931i 0.308786π0.308786\pi
180180 −1.23607 −0.0921311
181181 8.00000 0.594635 0.297318 0.954779i 0.403908π-0.403908\pi
0.297318 + 0.954779i 0.403908π0.403908\pi
182182 0 0
183183 −13.7984 −1.02001
184184 −2.00000 −0.147442
185185 3.05573 0.224662
186186 6.00000 0.439941
187187 12.0000 0.877527
188188 5.61803 0.409737
189189 0 0
190190 1.70820 0.123926
191191 −16.1803 −1.17077 −0.585384 0.810756i 0.699056π-0.699056\pi
−0.585384 + 0.810756i 0.699056π0.699056\pi
192192 −1.00000 −0.0721688
193193 −22.4721 −1.61758 −0.808790 0.588098i 0.799877π-0.799877\pi
−0.808790 + 0.588098i 0.799877π0.799877\pi
194194 −7.52786 −0.540469
195195 2.29180 0.164119
196196 −7.00000 −0.500000
197197 3.32624 0.236985 0.118492 0.992955i 0.462194π-0.462194\pi
0.118492 + 0.992955i 0.462194π0.462194\pi
198198 4.85410 0.344966
199199 4.76393 0.337706 0.168853 0.985641i 0.445994π-0.445994\pi
0.168853 + 0.985641i 0.445994π0.445994\pi
200200 3.47214 0.245517
201201 2.94427 0.207673
202202 1.85410 0.130454
203203 0 0
204204 2.47214 0.173084
205205 12.3607 0.863307
206206 −3.56231 −0.248198
207207 2.00000 0.139010
208208 1.85410 0.128559
209209 −6.70820 −0.464016
210210 0 0
211211 −6.38197 −0.439353 −0.219676 0.975573i 0.570500π-0.570500\pi
−0.219676 + 0.975573i 0.570500π0.570500\pi
212212 3.09017 0.212234
213213 −15.4164 −1.05631
214214 −9.38197 −0.641338
215215 −7.88854 −0.537994
216216 1.00000 0.0680414
217217 0 0
218218 −12.7639 −0.864483
219219 −0.909830 −0.0614806
220220 6.00000 0.404520
221221 −4.58359 −0.308326
222222 −2.47214 −0.165919
223223 1.00000 0.0669650
224224 0 0
225225 −3.47214 −0.231476
226226 −9.85410 −0.655485
227227 10.4721 0.695060 0.347530 0.937669i 0.387020π-0.387020\pi
0.347530 + 0.937669i 0.387020π0.387020\pi
228228 −1.38197 −0.0915229
229229 −9.41641 −0.622254 −0.311127 0.950368i 0.600706π-0.600706\pi
−0.311127 + 0.950368i 0.600706π0.600706\pi
230230 2.47214 0.163008
231231 0 0
232232 −4.09017 −0.268533
233233 15.1459 0.992241 0.496120 0.868254i 0.334757π-0.334757\pi
0.496120 + 0.868254i 0.334757π0.334757\pi
234234 −1.85410 −0.121206
235235 −6.94427 −0.452994
236236 0.145898 0.00949715
237237 2.38197 0.154725
238238 0 0
239239 7.56231 0.489165 0.244582 0.969628i 0.421349π-0.421349\pi
0.244582 + 0.969628i 0.421349π0.421349\pi
240240 1.23607 0.0797878
241241 −12.2705 −0.790413 −0.395207 0.918592i 0.629327π-0.629327\pi
−0.395207 + 0.918592i 0.629327π0.629327\pi
242242 −12.5623 −0.807536
243243 −1.00000 −0.0641500
244244 13.7984 0.883350
245245 8.65248 0.552786
246246 −10.0000 −0.637577
247247 2.56231 0.163036
248248 −6.00000 −0.381000
249249 −12.0000 −0.760469
250250 −10.4721 −0.662316
251251 −7.23607 −0.456737 −0.228368 0.973575i 0.573339π-0.573339\pi
−0.228368 + 0.973575i 0.573339π0.573339\pi
252252 0 0
253253 −9.70820 −0.610350
254254 −17.7082 −1.11111
255255 −3.05573 −0.191357
256256 1.00000 0.0625000
257257 18.3607 1.14531 0.572654 0.819797i 0.305914π-0.305914\pi
0.572654 + 0.819797i 0.305914π0.305914\pi
258258 6.38197 0.397324
259259 0 0
260260 −2.29180 −0.142131
261261 4.09017 0.253175
262262 3.70820 0.229094
263263 −21.2361 −1.30947 −0.654736 0.755858i 0.727220π-0.727220\pi
−0.654736 + 0.755858i 0.727220π0.727220\pi
264264 −4.85410 −0.298749
265265 −3.81966 −0.234640
266266 0 0
267267 7.23607 0.442840
268268 −2.94427 −0.179850
269269 −9.41641 −0.574129 −0.287064 0.957911i 0.592679π-0.592679\pi
−0.287064 + 0.957911i 0.592679π0.592679\pi
270270 −1.23607 −0.0752247
271271 −4.67376 −0.283911 −0.141955 0.989873i 0.545339π-0.545339\pi
−0.141955 + 0.989873i 0.545339π0.545339\pi
272272 −2.47214 −0.149895
273273 0 0
274274 −0.673762 −0.0407035
275275 16.8541 1.01634
276276 −2.00000 −0.120386
277277 −19.5279 −1.17332 −0.586658 0.809835i 0.699557π-0.699557\pi
−0.586658 + 0.809835i 0.699557π0.699557\pi
278278 −0.0901699 −0.00540803
279279 6.00000 0.359211
280280 0 0
281281 −23.7082 −1.41431 −0.707156 0.707057i 0.750022π-0.750022\pi
−0.707156 + 0.707057i 0.750022π0.750022\pi
282282 5.61803 0.334549
283283 8.79837 0.523009 0.261505 0.965202i 0.415781π-0.415781\pi
0.261505 + 0.965202i 0.415781π0.415781\pi
284284 15.4164 0.914796
285285 1.70820 0.101185
286286 9.00000 0.532181
287287 0 0
288288 −1.00000 −0.0589256
289289 −10.8885 −0.640503
290290 5.05573 0.296883
291291 −7.52786 −0.441291
292292 0.909830 0.0532438
293293 25.5967 1.49538 0.747689 0.664049i 0.231163π-0.231163\pi
0.747689 + 0.664049i 0.231163π0.231163\pi
294294 −7.00000 −0.408248
295295 −0.180340 −0.0104998
296296 2.47214 0.143690
297297 4.85410 0.281664
298298 8.47214 0.490778
299299 3.70820 0.214451
300300 3.47214 0.200464
301301 0 0
302302 −13.3820 −0.770046
303303 1.85410 0.106515
304304 1.38197 0.0792612
305305 −17.0557 −0.976608
306306 2.47214 0.141323
307307 6.65248 0.379677 0.189838 0.981815i 0.439204π-0.439204\pi
0.189838 + 0.981815i 0.439204π0.439204\pi
308308 0 0
309309 −3.56231 −0.202653
310310 7.41641 0.421224
311311 −6.00000 −0.340229 −0.170114 0.985424i 0.554414π-0.554414\pi
−0.170114 + 0.985424i 0.554414π0.554414\pi
312312 1.85410 0.104968
313313 −10.6525 −0.602114 −0.301057 0.953606i 0.597339π-0.597339\pi
−0.301057 + 0.953606i 0.597339π0.597339\pi
314314 −5.61803 −0.317044
315315 0 0
316316 −2.38197 −0.133996
317317 −9.56231 −0.537073 −0.268536 0.963270i 0.586540π-0.586540\pi
−0.268536 + 0.963270i 0.586540π0.586540\pi
318318 3.09017 0.173288
319319 −19.8541 −1.11162
320320 −1.23607 −0.0690983
321321 −9.38197 −0.523650
322322 0 0
323323 −3.41641 −0.190094
324324 1.00000 0.0555556
325325 −6.43769 −0.357099
326326 −14.0000 −0.775388
327327 −12.7639 −0.705847
328328 10.0000 0.552158
329329 0 0
330330 6.00000 0.330289
331331 −5.41641 −0.297713 −0.148856 0.988859i 0.547559π-0.547559\pi
−0.148856 + 0.988859i 0.547559π0.547559\pi
332332 12.0000 0.658586
333333 −2.47214 −0.135472
334334 21.7082 1.18782
335335 3.63932 0.198837
336336 0 0
337337 32.0689 1.74690 0.873452 0.486911i 0.161876π-0.161876\pi
0.873452 + 0.486911i 0.161876π0.161876\pi
338338 9.56231 0.520121
339339 −9.85410 −0.535201
340340 3.05573 0.165720
341341 −29.1246 −1.57719
342342 −1.38197 −0.0747282
343343 0 0
344344 −6.38197 −0.344093
345345 2.47214 0.133095
346346 −15.8885 −0.854173
347347 −15.4164 −0.827596 −0.413798 0.910369i 0.635798π-0.635798\pi
−0.413798 + 0.910369i 0.635798π0.635798\pi
348348 −4.09017 −0.219256
349349 8.94427 0.478776 0.239388 0.970924i 0.423053π-0.423053\pi
0.239388 + 0.970924i 0.423053π0.423053\pi
350350 0 0
351351 −1.85410 −0.0989646
352352 4.85410 0.258725
353353 −23.7082 −1.26186 −0.630930 0.775840i 0.717327π-0.717327\pi
−0.630930 + 0.775840i 0.717327π0.717327\pi
354354 0.145898 0.00775439
355355 −19.0557 −1.01137
356356 −7.23607 −0.383511
357357 0 0
358358 −15.1246 −0.799361
359359 9.74265 0.514197 0.257099 0.966385i 0.417233π-0.417233\pi
0.257099 + 0.966385i 0.417233π0.417233\pi
360360 1.23607 0.0651465
361361 −17.0902 −0.899483
362362 −8.00000 −0.420471
363363 −12.5623 −0.659350
364364 0 0
365365 −1.12461 −0.0588649
366366 13.7984 0.721253
367367 −25.1246 −1.31149 −0.655747 0.754981i 0.727646π-0.727646\pi
−0.655747 + 0.754981i 0.727646π0.727646\pi
368368 2.00000 0.104257
369369 −10.0000 −0.520579
370370 −3.05573 −0.158860
371371 0 0
372372 −6.00000 −0.311086
373373 −26.3607 −1.36490 −0.682452 0.730930i 0.739086π-0.739086\pi
−0.682452 + 0.730930i 0.739086π0.739086\pi
374374 −12.0000 −0.620505
375375 −10.4721 −0.540779
376376 −5.61803 −0.289728
377377 7.58359 0.390575
378378 0 0
379379 −18.0344 −0.926367 −0.463184 0.886262i 0.653293π-0.653293\pi
−0.463184 + 0.886262i 0.653293π0.653293\pi
380380 −1.70820 −0.0876290
381381 −17.7082 −0.907219
382382 16.1803 0.827858
383383 13.5279 0.691242 0.345621 0.938374i 0.387668π-0.387668\pi
0.345621 + 0.938374i 0.387668π0.387668\pi
384384 1.00000 0.0510310
385385 0 0
386386 22.4721 1.14380
387387 6.38197 0.324414
388388 7.52786 0.382169
389389 32.2705 1.63618 0.818090 0.575090i 0.195033π-0.195033\pi
0.818090 + 0.575090i 0.195033π0.195033\pi
390390 −2.29180 −0.116050
391391 −4.94427 −0.250043
392392 7.00000 0.353553
393393 3.70820 0.187054
394394 −3.32624 −0.167573
395395 2.94427 0.148142
396396 −4.85410 −0.243928
397397 −15.1459 −0.760151 −0.380075 0.924956i 0.624102π-0.624102\pi
−0.380075 + 0.924956i 0.624102π0.624102\pi
398398 −4.76393 −0.238794
399399 0 0
400400 −3.47214 −0.173607
401401 22.6525 1.13121 0.565605 0.824676i 0.308643π-0.308643\pi
0.565605 + 0.824676i 0.308643π0.308643\pi
402402 −2.94427 −0.146847
403403 11.1246 0.554156
404404 −1.85410 −0.0922450
405405 −1.23607 −0.0614207
406406 0 0
407407 12.0000 0.594818
408408 −2.47214 −0.122389
409409 −24.6525 −1.21899 −0.609493 0.792791i 0.708627π-0.708627\pi
−0.609493 + 0.792791i 0.708627π0.708627\pi
410410 −12.3607 −0.610450
411411 −0.673762 −0.0332342
412412 3.56231 0.175502
413413 0 0
414414 −2.00000 −0.0982946
415415 −14.8328 −0.728114
416416 −1.85410 −0.0909048
417417 −0.0901699 −0.00441564
418418 6.70820 0.328109
419419 7.88854 0.385381 0.192690 0.981260i 0.438279π-0.438279\pi
0.192690 + 0.981260i 0.438279π0.438279\pi
420420 0 0
421421 −6.79837 −0.331332 −0.165666 0.986182i 0.552977π-0.552977\pi
−0.165666 + 0.986182i 0.552977π0.552977\pi
422422 6.38197 0.310669
423423 5.61803 0.273158
424424 −3.09017 −0.150072
425425 8.58359 0.416365
426426 15.4164 0.746927
427427 0 0
428428 9.38197 0.453494
429429 9.00000 0.434524
430430 7.88854 0.380419
431431 −8.47214 −0.408088 −0.204044 0.978962i 0.565409π-0.565409\pi
−0.204044 + 0.978962i 0.565409π0.565409\pi
432432 −1.00000 −0.0481125
433433 6.79837 0.326709 0.163354 0.986567i 0.447769π-0.447769\pi
0.163354 + 0.986567i 0.447769π0.447769\pi
434434 0 0
435435 5.05573 0.242404
436436 12.7639 0.611281
437437 2.76393 0.132217
438438 0.909830 0.0434734
439439 26.4721 1.26345 0.631723 0.775194i 0.282348π-0.282348\pi
0.631723 + 0.775194i 0.282348π0.282348\pi
440440 −6.00000 −0.286039
441441 −7.00000 −0.333333
442442 4.58359 0.218019
443443 15.7082 0.746319 0.373160 0.927767i 0.378274π-0.378274\pi
0.373160 + 0.927767i 0.378274π0.378274\pi
444444 2.47214 0.117322
445445 8.94427 0.423999
446446 −1.00000 −0.0473514
447447 8.47214 0.400718
448448 0 0
449449 −17.4164 −0.821931 −0.410966 0.911651i 0.634808π-0.634808\pi
−0.410966 + 0.911651i 0.634808π0.634808\pi
450450 3.47214 0.163678
451451 48.5410 2.28571
452452 9.85410 0.463498
453453 −13.3820 −0.628740
454454 −10.4721 −0.491482
455455 0 0
456456 1.38197 0.0647165
457457 −15.2361 −0.712713 −0.356357 0.934350i 0.615981π-0.615981\pi
−0.356357 + 0.934350i 0.615981π0.615981\pi
458458 9.41641 0.440000
459459 2.47214 0.115389
460460 −2.47214 −0.115264
461461 −12.9098 −0.601271 −0.300635 0.953739i 0.597199π-0.597199\pi
−0.300635 + 0.953739i 0.597199π0.597199\pi
462462 0 0
463463 42.2492 1.96349 0.981744 0.190207i 0.0609160π-0.0609160\pi
0.981744 + 0.190207i 0.0609160π0.0609160\pi
464464 4.09017 0.189881
465465 7.41641 0.343928
466466 −15.1459 −0.701620
467467 34.9787 1.61862 0.809311 0.587380i 0.199841π-0.199841\pi
0.809311 + 0.587380i 0.199841π0.199841\pi
468468 1.85410 0.0857059
469469 0 0
470470 6.94427 0.320315
471471 −5.61803 −0.258865
472472 −0.145898 −0.00671550
473473 −30.9787 −1.42440
474474 −2.38197 −0.109407
475475 −4.79837 −0.220164
476476 0 0
477477 3.09017 0.141489
478478 −7.56231 −0.345892
479479 6.38197 0.291599 0.145800 0.989314i 0.453424π-0.453424\pi
0.145800 + 0.989314i 0.453424π0.453424\pi
480480 −1.23607 −0.0564185
481481 −4.58359 −0.208994
482482 12.2705 0.558906
483483 0 0
484484 12.5623 0.571014
485485 −9.30495 −0.422516
486486 1.00000 0.0453609
487487 11.8885 0.538721 0.269361 0.963039i 0.413188π-0.413188\pi
0.269361 + 0.963039i 0.413188π0.413188\pi
488488 −13.7984 −0.624623
489489 −14.0000 −0.633102
490490 −8.65248 −0.390879
491491 −29.6180 −1.33664 −0.668322 0.743872i 0.732987π-0.732987\pi
−0.668322 + 0.743872i 0.732987π0.732987\pi
492492 10.0000 0.450835
493493 −10.1115 −0.455397
494494 −2.56231 −0.115284
495495 6.00000 0.269680
496496 6.00000 0.269408
497497 0 0
498498 12.0000 0.537733
499499 30.9230 1.38430 0.692151 0.721752i 0.256663π-0.256663\pi
0.692151 + 0.721752i 0.256663π0.256663\pi
500500 10.4721 0.468328
501501 21.7082 0.969851
502502 7.23607 0.322962
503503 −4.76393 −0.212413 −0.106207 0.994344i 0.533870π-0.533870\pi
−0.106207 + 0.994344i 0.533870π0.533870\pi
504504 0 0
505505 2.29180 0.101984
506506 9.70820 0.431582
507507 9.56231 0.424677
508508 17.7082 0.785675
509509 7.90983 0.350597 0.175299 0.984515i 0.443911π-0.443911\pi
0.175299 + 0.984515i 0.443911π0.443911\pi
510510 3.05573 0.135310
511511 0 0
512512 −1.00000 −0.0441942
513513 −1.38197 −0.0610153
514514 −18.3607 −0.809855
515515 −4.40325 −0.194030
516516 −6.38197 −0.280950
517517 −27.2705 −1.19936
518518 0 0
519519 −15.8885 −0.697430
520520 2.29180 0.100502
521521 13.4164 0.587784 0.293892 0.955839i 0.405049π-0.405049\pi
0.293892 + 0.955839i 0.405049π0.405049\pi
522522 −4.09017 −0.179022
523523 11.3475 0.496193 0.248096 0.968735i 0.420195π-0.420195\pi
0.248096 + 0.968735i 0.420195π0.420195\pi
524524 −3.70820 −0.161994
525525 0 0
526526 21.2361 0.925937
527527 −14.8328 −0.646128
528528 4.85410 0.211248
529529 −19.0000 −0.826087
530530 3.81966 0.165915
531531 0.145898 0.00633144
532532 0 0
533533 −18.5410 −0.803101
534534 −7.23607 −0.313135
535535 −11.5967 −0.501371
536536 2.94427 0.127173
537537 −15.1246 −0.652675
538538 9.41641 0.405970
539539 33.9787 1.46357
540540 1.23607 0.0531919
541541 8.61803 0.370518 0.185259 0.982690i 0.440688π-0.440688\pi
0.185259 + 0.982690i 0.440688π0.440688\pi
542542 4.67376 0.200755
543543 −8.00000 −0.343313
544544 2.47214 0.105992
545545 −15.7771 −0.675816
546546 0 0
547547 1.09017 0.0466123 0.0233062 0.999728i 0.492581π-0.492581\pi
0.0233062 + 0.999728i 0.492581π0.492581\pi
548548 0.673762 0.0287817
549549 13.7984 0.588900
550550 −16.8541 −0.718661
551551 5.65248 0.240804
552552 2.00000 0.0851257
553553 0 0
554554 19.5279 0.829659
555555 −3.05573 −0.129708
556556 0.0901699 0.00382406
557557 −24.0689 −1.01983 −0.509916 0.860224i 0.670323π-0.670323\pi
−0.509916 + 0.860224i 0.670323π0.670323\pi
558558 −6.00000 −0.254000
559559 11.8328 0.500475
560560 0 0
561561 −12.0000 −0.506640
562562 23.7082 1.00007
563563 34.7426 1.46423 0.732114 0.681182i 0.238534π-0.238534\pi
0.732114 + 0.681182i 0.238534π0.238534\pi
564564 −5.61803 −0.236562
565565 −12.1803 −0.512431
566566 −8.79837 −0.369823
567567 0 0
568568 −15.4164 −0.646858
569569 −0.618034 −0.0259093 −0.0129547 0.999916i 0.504124π-0.504124\pi
−0.0129547 + 0.999916i 0.504124π0.504124\pi
570570 −1.70820 −0.0715488
571571 −0.875388 −0.0366339 −0.0183169 0.999832i 0.505831π-0.505831\pi
−0.0183169 + 0.999832i 0.505831π0.505831\pi
572572 −9.00000 −0.376309
573573 16.1803 0.675943
574574 0 0
575575 −6.94427 −0.289596
576576 1.00000 0.0416667
577577 −13.4377 −0.559419 −0.279709 0.960085i 0.590238π-0.590238\pi
−0.279709 + 0.960085i 0.590238π0.590238\pi
578578 10.8885 0.452904
579579 22.4721 0.933910
580580 −5.05573 −0.209928
581581 0 0
582582 7.52786 0.312040
583583 −15.0000 −0.621237
584584 −0.909830 −0.0376490
585585 −2.29180 −0.0947541
586586 −25.5967 −1.05739
587587 33.4508 1.38066 0.690332 0.723493i 0.257464π-0.257464\pi
0.690332 + 0.723493i 0.257464π0.257464\pi
588588 7.00000 0.288675
589589 8.29180 0.341658
590590 0.180340 0.00742448
591591 −3.32624 −0.136823
592592 −2.47214 −0.101604
593593 47.3050 1.94258 0.971291 0.237895i 0.0764576π-0.0764576\pi
0.971291 + 0.237895i 0.0764576π0.0764576\pi
594594 −4.85410 −0.199166
595595 0 0
596596 −8.47214 −0.347032
597597 −4.76393 −0.194975
598598 −3.70820 −0.151640
599599 −5.79837 −0.236915 −0.118458 0.992959i 0.537795π-0.537795\pi
−0.118458 + 0.992959i 0.537795π0.537795\pi
600600 −3.47214 −0.141749
601601 −18.7639 −0.765397 −0.382698 0.923873i 0.625005π-0.625005\pi
−0.382698 + 0.923873i 0.625005π0.625005\pi
602602 0 0
603603 −2.94427 −0.119900
604604 13.3820 0.544504
605605 −15.5279 −0.631297
606606 −1.85410 −0.0753177
607607 34.8328 1.41382 0.706910 0.707303i 0.250088π-0.250088\pi
0.706910 + 0.707303i 0.250088π0.250088\pi
608608 −1.38197 −0.0560461
609609 0 0
610610 17.0557 0.690566
611611 10.4164 0.421403
612612 −2.47214 −0.0999302
613613 32.2705 1.30339 0.651697 0.758480i 0.274057π-0.274057\pi
0.651697 + 0.758480i 0.274057π0.274057\pi
614614 −6.65248 −0.268472
615615 −12.3607 −0.498431
616616 0 0
617617 7.70820 0.310321 0.155160 0.987889i 0.450411π-0.450411\pi
0.155160 + 0.987889i 0.450411π0.450411\pi
618618 3.56231 0.143297
619619 27.2361 1.09471 0.547355 0.836901i 0.315635π-0.315635\pi
0.547355 + 0.836901i 0.315635π0.315635\pi
620620 −7.41641 −0.297850
621621 −2.00000 −0.0802572
622622 6.00000 0.240578
623623 0 0
624624 −1.85410 −0.0742235
625625 4.41641 0.176656
626626 10.6525 0.425759
627627 6.70820 0.267900
628628 5.61803 0.224184
629629 6.11146 0.243680
630630 0 0
631631 −34.7426 −1.38308 −0.691541 0.722337i 0.743068π-0.743068\pi
−0.691541 + 0.722337i 0.743068π0.743068\pi
632632 2.38197 0.0947495
633633 6.38197 0.253660
634634 9.56231 0.379768
635635 −21.8885 −0.868620
636636 −3.09017 −0.122533
637637 −12.9787 −0.514235
638638 19.8541 0.786031
639639 15.4164 0.609864
640640 1.23607 0.0488599
641641 28.9787 1.14459 0.572295 0.820048i 0.306053π-0.306053\pi
0.572295 + 0.820048i 0.306053π0.306053\pi
642642 9.38197 0.370277
643643 −29.9787 −1.18225 −0.591123 0.806582i 0.701315π-0.701315\pi
−0.591123 + 0.806582i 0.701315π0.701315\pi
644644 0 0
645645 7.88854 0.310611
646646 3.41641 0.134417
647647 46.0344 1.80980 0.904900 0.425624i 0.139945π-0.139945\pi
0.904900 + 0.425624i 0.139945π0.139945\pi
648648 −1.00000 −0.0392837
649649 −0.708204 −0.0277994
650650 6.43769 0.252507
651651 0 0
652652 14.0000 0.548282
653653 31.3050 1.22506 0.612529 0.790448i 0.290152π-0.290152\pi
0.612529 + 0.790448i 0.290152π0.290152\pi
654654 12.7639 0.499109
655655 4.58359 0.179096
656656 −10.0000 −0.390434
657657 0.909830 0.0354959
658658 0 0
659659 −3.88854 −0.151476 −0.0757381 0.997128i 0.524131π-0.524131\pi
−0.0757381 + 0.997128i 0.524131π0.524131\pi
660660 −6.00000 −0.233550
661661 −45.3951 −1.76567 −0.882833 0.469687i 0.844367π-0.844367\pi
−0.882833 + 0.469687i 0.844367π0.844367\pi
662662 5.41641 0.210515
663663 4.58359 0.178012
664664 −12.0000 −0.465690
665665 0 0
666666 2.47214 0.0957933
667667 8.18034 0.316744
668668 −21.7082 −0.839916
669669 −1.00000 −0.0386622
670670 −3.63932 −0.140599
671671 −66.9787 −2.58568
672672 0 0
673673 40.1033 1.54587 0.772935 0.634485i 0.218788π-0.218788\pi
0.772935 + 0.634485i 0.218788π0.218788\pi
674674 −32.0689 −1.23525
675675 3.47214 0.133643
676676 −9.56231 −0.367781
677677 18.3607 0.705658 0.352829 0.935688i 0.385220π-0.385220\pi
0.352829 + 0.935688i 0.385220π0.385220\pi
678678 9.85410 0.378445
679679 0 0
680680 −3.05573 −0.117182
681681 −10.4721 −0.401293
682682 29.1246 1.11524
683683 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
684684 1.38197 0.0528408
685685 −0.832816 −0.0318203
686686 0 0
687687 9.41641 0.359258
688688 6.38197 0.243310
689689 5.72949 0.218276
690690 −2.47214 −0.0941126
691691 26.9443 1.02501 0.512504 0.858685i 0.328718π-0.328718\pi
0.512504 + 0.858685i 0.328718π0.328718\pi
692692 15.8885 0.603992
693693 0 0
694694 15.4164 0.585199
695695 −0.111456 −0.00422777
696696 4.09017 0.155037
697697 24.7214 0.936388
698698 −8.94427 −0.338546
699699 −15.1459 −0.572870
700700 0 0
701701 7.88854 0.297946 0.148973 0.988841i 0.452403π-0.452403\pi
0.148973 + 0.988841i 0.452403π0.452403\pi
702702 1.85410 0.0699786
703703 −3.41641 −0.128852
704704 −4.85410 −0.182946
705705 6.94427 0.261536
706706 23.7082 0.892270
707707 0 0
708708 −0.145898 −0.00548318
709709 −23.3050 −0.875236 −0.437618 0.899161i 0.644178π-0.644178\pi
−0.437618 + 0.899161i 0.644178π0.644178\pi
710710 19.0557 0.715149
711711 −2.38197 −0.0893307
712712 7.23607 0.271183
713713 12.0000 0.449404
714714 0 0
715715 11.1246 0.416037
716716 15.1246 0.565233
717717 −7.56231 −0.282419
718718 −9.74265 −0.363592
719719 21.8885 0.816305 0.408152 0.912914i 0.366173π-0.366173\pi
0.408152 + 0.912914i 0.366173π0.366173\pi
720720 −1.23607 −0.0460655
721721 0 0
722722 17.0902 0.636030
723723 12.2705 0.456345
724724 8.00000 0.297318
725725 −14.2016 −0.527435
726726 12.5623 0.466231
727727 −16.6525 −0.617606 −0.308803 0.951126i 0.599928π-0.599928\pi
−0.308803 + 0.951126i 0.599928π0.599928\pi
728728 0 0
729729 1.00000 0.0370370
730730 1.12461 0.0416238
731731 −15.7771 −0.583537
732732 −13.7984 −0.510003
733733 −10.6525 −0.393458 −0.196729 0.980458i 0.563032π-0.563032\pi
−0.196729 + 0.980458i 0.563032π0.563032\pi
734734 25.1246 0.927366
735735 −8.65248 −0.319151
736736 −2.00000 −0.0737210
737737 14.2918 0.526445
738738 10.0000 0.368105
739739 −35.4853 −1.30535 −0.652674 0.757639i 0.726353π-0.726353\pi
−0.652674 + 0.757639i 0.726353π0.726353\pi
740740 3.05573 0.112331
741741 −2.56231 −0.0941287
742742 0 0
743743 −37.7426 −1.38464 −0.692322 0.721589i 0.743412π-0.743412\pi
−0.692322 + 0.721589i 0.743412π0.743412\pi
744744 6.00000 0.219971
745745 10.4721 0.383669
746746 26.3607 0.965133
747747 12.0000 0.439057
748748 12.0000 0.438763
749749 0 0
750750 10.4721 0.382388
751751 −18.9443 −0.691286 −0.345643 0.938366i 0.612339π-0.612339\pi
−0.345643 + 0.938366i 0.612339π0.612339\pi
752752 5.61803 0.204869
753753 7.23607 0.263697
754754 −7.58359 −0.276178
755755 −16.5410 −0.601989
756756 0 0
757757 −0.0344419 −0.00125181 −0.000625905 1.00000i 0.500199π-0.500199\pi
−0.000625905 1.00000i 0.500199π0.500199\pi
758758 18.0344 0.655040
759759 9.70820 0.352385
760760 1.70820 0.0619631
761761 18.5066 0.670863 0.335431 0.942065i 0.391118π-0.391118\pi
0.335431 + 0.942065i 0.391118π0.391118\pi
762762 17.7082 0.641501
763763 0 0
764764 −16.1803 −0.585384
765765 3.05573 0.110480
766766 −13.5279 −0.488782
767767 0.270510 0.00976754
768768 −1.00000 −0.0360844
769769 −35.3262 −1.27390 −0.636948 0.770906i 0.719804π-0.719804\pi
−0.636948 + 0.770906i 0.719804π0.719804\pi
770770 0 0
771771 −18.3607 −0.661244
772772 −22.4721 −0.808790
773773 21.4164 0.770295 0.385147 0.922855i 0.374151π-0.374151\pi
0.385147 + 0.922855i 0.374151π0.374151\pi
774774 −6.38197 −0.229395
775775 −20.8328 −0.748337
776776 −7.52786 −0.270235
777777 0 0
778778 −32.2705 −1.15695
779779 −13.8197 −0.495141
780780 2.29180 0.0820595
781781 −74.8328 −2.67773
782782 4.94427 0.176807
783783 −4.09017 −0.146171
784784 −7.00000 −0.250000
785785 −6.94427 −0.247852
786786 −3.70820 −0.132267
787787 1.63932 0.0584355 0.0292177 0.999573i 0.490698π-0.490698\pi
0.0292177 + 0.999573i 0.490698π0.490698\pi
788788 3.32624 0.118492
789789 21.2361 0.756024
790790 −2.94427 −0.104752
791791 0 0
792792 4.85410 0.172483
793793 25.5836 0.908500
794794 15.1459 0.537508
795795 3.81966 0.135469
796796 4.76393 0.168853
797797 39.3050 1.39225 0.696126 0.717919i 0.254905π-0.254905\pi
0.696126 + 0.717919i 0.254905π0.254905\pi
798798 0 0
799799 −13.8885 −0.491341
800800 3.47214 0.122759
801801 −7.23607 −0.255674
802802 −22.6525 −0.799887
803803 −4.41641 −0.155852
804804 2.94427 0.103836
805805 0 0
806806 −11.1246 −0.391848
807807 9.41641 0.331473
808808 1.85410 0.0652271
809809 36.8328 1.29497 0.647486 0.762077i 0.275820π-0.275820\pi
0.647486 + 0.762077i 0.275820π0.275820\pi
810810 1.23607 0.0434310
811811 1.05573 0.0370716 0.0185358 0.999828i 0.494100π-0.494100\pi
0.0185358 + 0.999828i 0.494100π0.494100\pi
812812 0 0
813813 4.67376 0.163916
814814 −12.0000 −0.420600
815815 −17.3050 −0.606166
816816 2.47214 0.0865421
817817 8.81966 0.308561
818818 24.6525 0.861954
819819 0 0
820820 12.3607 0.431654
821821 −41.7984 −1.45877 −0.729387 0.684102i 0.760194π-0.760194\pi
−0.729387 + 0.684102i 0.760194π0.760194\pi
822822 0.673762 0.0235002
823823 −15.4164 −0.537382 −0.268691 0.963226i 0.586591π-0.586591\pi
−0.268691 + 0.963226i 0.586591π0.586591\pi
824824 −3.56231 −0.124099
825825 −16.8541 −0.586785
826826 0 0
827827 55.2705 1.92194 0.960972 0.276646i 0.0892229π-0.0892229\pi
0.960972 + 0.276646i 0.0892229π0.0892229\pi
828828 2.00000 0.0695048
829829 15.3262 0.532302 0.266151 0.963931i 0.414248π-0.414248\pi
0.266151 + 0.963931i 0.414248π0.414248\pi
830830 14.8328 0.514855
831831 19.5279 0.677414
832832 1.85410 0.0642794
833833 17.3050 0.599581
834834 0.0901699 0.00312233
835835 26.8328 0.928588
836836 −6.70820 −0.232008
837837 −6.00000 −0.207390
838838 −7.88854 −0.272505
839839 9.70820 0.335164 0.167582 0.985858i 0.446404π-0.446404\pi
0.167582 + 0.985858i 0.446404π0.446404\pi
840840 0 0
841841 −12.2705 −0.423121
842842 6.79837 0.234287
843843 23.7082 0.816554
844844 −6.38197 −0.219676
845845 11.8197 0.406609
846846 −5.61803 −0.193152
847847 0 0
848848 3.09017 0.106117
849849 −8.79837 −0.301959
850850 −8.58359 −0.294415
851851 −4.94427 −0.169487
852852 −15.4164 −0.528157
853853 26.7426 0.915651 0.457825 0.889042i 0.348628π-0.348628\pi
0.457825 + 0.889042i 0.348628π0.348628\pi
854854 0 0
855855 −1.70820 −0.0584193
856856 −9.38197 −0.320669
857857 −6.94427 −0.237212 −0.118606 0.992941i 0.537843π-0.537843\pi
−0.118606 + 0.992941i 0.537843π0.537843\pi
858858 −9.00000 −0.307255
859859 −29.8197 −1.01743 −0.508717 0.860934i 0.669880π-0.669880\pi
−0.508717 + 0.860934i 0.669880π0.669880\pi
860860 −7.88854 −0.268997
861861 0 0
862862 8.47214 0.288562
863863 −15.1246 −0.514848 −0.257424 0.966299i 0.582874π-0.582874\pi
−0.257424 + 0.966299i 0.582874π0.582874\pi
864864 1.00000 0.0340207
865865 −19.6393 −0.667757
866866 −6.79837 −0.231018
867867 10.8885 0.369794
868868 0 0
869869 11.5623 0.392224
870870 −5.05573 −0.171405
871871 −5.45898 −0.184970
872872 −12.7639 −0.432241
873873 7.52786 0.254780
874874 −2.76393 −0.0934914
875875 0 0
876876 −0.909830 −0.0307403
877877 28.8541 0.974334 0.487167 0.873309i 0.338030π-0.338030\pi
0.487167 + 0.873309i 0.338030π0.338030\pi
878878 −26.4721 −0.893391
879879 −25.5967 −0.863357
880880 6.00000 0.202260
881881 −16.0689 −0.541374 −0.270687 0.962667i 0.587251π-0.587251\pi
−0.270687 + 0.962667i 0.587251π0.587251\pi
882882 7.00000 0.235702
883883 −20.3607 −0.685191 −0.342596 0.939483i 0.611306π-0.611306\pi
−0.342596 + 0.939483i 0.611306π0.611306\pi
884884 −4.58359 −0.154163
885885 0.180340 0.00606206
886886 −15.7082 −0.527727
887887 −13.9656 −0.468918 −0.234459 0.972126i 0.575332π-0.575332\pi
−0.234459 + 0.972126i 0.575332π0.575332\pi
888888 −2.47214 −0.0829595
889889 0 0
890890 −8.94427 −0.299813
891891 −4.85410 −0.162619
892892 1.00000 0.0334825
893893 7.76393 0.259810
894894 −8.47214 −0.283351
895895 −18.6950 −0.624907
896896 0 0
897897 −3.70820 −0.123813
898898 17.4164 0.581193
899899 24.5410 0.818489
900900 −3.47214 −0.115738
901901 −7.63932 −0.254503
902902 −48.5410 −1.61624
903903 0 0
904904 −9.85410 −0.327743
905905 −9.88854 −0.328706
906906 13.3820 0.444586
907907 −28.8673 −0.958522 −0.479261 0.877673i 0.659095π-0.659095\pi
−0.479261 + 0.877673i 0.659095π0.659095\pi
908908 10.4721 0.347530
909909 −1.85410 −0.0614967
910910 0 0
911911 −16.5836 −0.549439 −0.274719 0.961524i 0.588585π-0.588585\pi
−0.274719 + 0.961524i 0.588585π0.588585\pi
912912 −1.38197 −0.0457615
913913 −58.2492 −1.92777
914914 15.2361 0.503964
915915 17.0557 0.563845
916916 −9.41641 −0.311127
917917 0 0
918918 −2.47214 −0.0815926
919919 49.7426 1.64086 0.820429 0.571748i 0.193735π-0.193735\pi
0.820429 + 0.571748i 0.193735π0.193735\pi
920920 2.47214 0.0815039
921921 −6.65248 −0.219207
922922 12.9098 0.425163
923923 28.5836 0.940840
924924 0 0
925925 8.58359 0.282227
926926 −42.2492 −1.38840
927927 3.56231 0.117001
928928 −4.09017 −0.134266
929929 −0.291796 −0.00957352 −0.00478676 0.999989i 0.501524π-0.501524\pi
−0.00478676 + 0.999989i 0.501524π0.501524\pi
930930 −7.41641 −0.243194
931931 −9.67376 −0.317045
932932 15.1459 0.496120
933933 6.00000 0.196431
934934 −34.9787 −1.14454
935935 −14.8328 −0.485085
936936 −1.85410 −0.0606032
937937 2.47214 0.0807612 0.0403806 0.999184i 0.487143π-0.487143\pi
0.0403806 + 0.999184i 0.487143π0.487143\pi
938938 0 0
939939 10.6525 0.347630
940940 −6.94427 −0.226497
941941 25.2705 0.823795 0.411898 0.911230i 0.364866π-0.364866\pi
0.411898 + 0.911230i 0.364866π0.364866\pi
942942 5.61803 0.183045
943943 −20.0000 −0.651290
944944 0.145898 0.00474858
945945 0 0
946946 30.9787 1.00720
947947 −38.4721 −1.25018 −0.625088 0.780554i 0.714937π-0.714937\pi
−0.625088 + 0.780554i 0.714937π0.714937\pi
948948 2.38197 0.0773627
949949 1.68692 0.0547597
950950 4.79837 0.155680
951951 9.56231 0.310079
952952 0 0
953953 −55.3050 −1.79150 −0.895752 0.444555i 0.853362π-0.853362\pi
−0.895752 + 0.444555i 0.853362π0.853362\pi
954954 −3.09017 −0.100048
955955 20.0000 0.647185
956956 7.56231 0.244582
957957 19.8541 0.641792
958958 −6.38197 −0.206192
959959 0 0
960960 1.23607 0.0398939
961961 5.00000 0.161290
962962 4.58359 0.147781
963963 9.38197 0.302330
964964 −12.2705 −0.395207
965965 27.7771 0.894176
966966 0 0
967967 0.437694 0.0140753 0.00703765 0.999975i 0.497760π-0.497760\pi
0.00703765 + 0.999975i 0.497760π0.497760\pi
968968 −12.5623 −0.403768
969969 3.41641 0.109751
970970 9.30495 0.298764
971971 39.6869 1.27361 0.636807 0.771023i 0.280255π-0.280255\pi
0.636807 + 0.771023i 0.280255π0.280255\pi
972972 −1.00000 −0.0320750
973973 0 0
974974 −11.8885 −0.380934
975975 6.43769 0.206171
976976 13.7984 0.441675
977977 15.5066 0.496099 0.248050 0.968747i 0.420210π-0.420210\pi
0.248050 + 0.968747i 0.420210π0.420210\pi
978978 14.0000 0.447671
979979 35.1246 1.12259
980980 8.65248 0.276393
981981 12.7639 0.407521
982982 29.6180 0.945149
983983 −27.8197 −0.887309 −0.443655 0.896198i 0.646318π-0.646318\pi
−0.443655 + 0.896198i 0.646318π0.646318\pi
984984 −10.0000 −0.318788
985985 −4.11146 −0.131002
986986 10.1115 0.322014
987987 0 0
988988 2.56231 0.0815178
989989 12.7639 0.405869
990990 −6.00000 −0.190693
991991 48.7984 1.55013 0.775066 0.631881i 0.217717π-0.217717\pi
0.775066 + 0.631881i 0.217717π0.217717\pi
992992 −6.00000 −0.190500
993993 5.41641 0.171885
994994 0 0
995995 −5.88854 −0.186679
996996 −12.0000 −0.380235
997997 10.9443 0.346609 0.173304 0.984868i 0.444556π-0.444556\pi
0.173304 + 0.984868i 0.444556π0.444556\pi
998998 −30.9230 −0.978850
999999 2.47214 0.0782149
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1338.2.a.b.1.1 2
3.2 odd 2 4014.2.a.k.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1338.2.a.b.1.1 2 1.1 even 1 trivial
4014.2.a.k.1.2 2 3.2 odd 2