Properties

Label 1338.2.a.b.1.1
Level $1338$
Weight $2$
Character 1338.1
Self dual yes
Analytic conductor $10.684$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1338,2,Mod(1,1338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1338, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1338.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1338 = 2 \cdot 3 \cdot 223 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1338.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.6839837904\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{10})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-0.618034\) of defining polynomial
Character \(\chi\) \(=\) 1338.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -1.23607 q^{5} +1.00000 q^{6} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -1.23607 q^{5} +1.00000 q^{6} -1.00000 q^{8} +1.00000 q^{9} +1.23607 q^{10} -4.85410 q^{11} -1.00000 q^{12} +1.85410 q^{13} +1.23607 q^{15} +1.00000 q^{16} -2.47214 q^{17} -1.00000 q^{18} +1.38197 q^{19} -1.23607 q^{20} +4.85410 q^{22} +2.00000 q^{23} +1.00000 q^{24} -3.47214 q^{25} -1.85410 q^{26} -1.00000 q^{27} +4.09017 q^{29} -1.23607 q^{30} +6.00000 q^{31} -1.00000 q^{32} +4.85410 q^{33} +2.47214 q^{34} +1.00000 q^{36} -2.47214 q^{37} -1.38197 q^{38} -1.85410 q^{39} +1.23607 q^{40} -10.0000 q^{41} +6.38197 q^{43} -4.85410 q^{44} -1.23607 q^{45} -2.00000 q^{46} +5.61803 q^{47} -1.00000 q^{48} -7.00000 q^{49} +3.47214 q^{50} +2.47214 q^{51} +1.85410 q^{52} +3.09017 q^{53} +1.00000 q^{54} +6.00000 q^{55} -1.38197 q^{57} -4.09017 q^{58} +0.145898 q^{59} +1.23607 q^{60} +13.7984 q^{61} -6.00000 q^{62} +1.00000 q^{64} -2.29180 q^{65} -4.85410 q^{66} -2.94427 q^{67} -2.47214 q^{68} -2.00000 q^{69} +15.4164 q^{71} -1.00000 q^{72} +0.909830 q^{73} +2.47214 q^{74} +3.47214 q^{75} +1.38197 q^{76} +1.85410 q^{78} -2.38197 q^{79} -1.23607 q^{80} +1.00000 q^{81} +10.0000 q^{82} +12.0000 q^{83} +3.05573 q^{85} -6.38197 q^{86} -4.09017 q^{87} +4.85410 q^{88} -7.23607 q^{89} +1.23607 q^{90} +2.00000 q^{92} -6.00000 q^{93} -5.61803 q^{94} -1.70820 q^{95} +1.00000 q^{96} +7.52786 q^{97} +7.00000 q^{98} -4.85410 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{2} - 2 q^{3} + 2 q^{4} + 2 q^{5} + 2 q^{6} - 2 q^{8} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 2 q^{2} - 2 q^{3} + 2 q^{4} + 2 q^{5} + 2 q^{6} - 2 q^{8} + 2 q^{9} - 2 q^{10} - 3 q^{11} - 2 q^{12} - 3 q^{13} - 2 q^{15} + 2 q^{16} + 4 q^{17} - 2 q^{18} + 5 q^{19} + 2 q^{20} + 3 q^{22} + 4 q^{23} + 2 q^{24} + 2 q^{25} + 3 q^{26} - 2 q^{27} - 3 q^{29} + 2 q^{30} + 12 q^{31} - 2 q^{32} + 3 q^{33} - 4 q^{34} + 2 q^{36} + 4 q^{37} - 5 q^{38} + 3 q^{39} - 2 q^{40} - 20 q^{41} + 15 q^{43} - 3 q^{44} + 2 q^{45} - 4 q^{46} + 9 q^{47} - 2 q^{48} - 14 q^{49} - 2 q^{50} - 4 q^{51} - 3 q^{52} - 5 q^{53} + 2 q^{54} + 12 q^{55} - 5 q^{57} + 3 q^{58} + 7 q^{59} - 2 q^{60} + 3 q^{61} - 12 q^{62} + 2 q^{64} - 18 q^{65} - 3 q^{66} + 12 q^{67} + 4 q^{68} - 4 q^{69} + 4 q^{71} - 2 q^{72} + 13 q^{73} - 4 q^{74} - 2 q^{75} + 5 q^{76} - 3 q^{78} - 7 q^{79} + 2 q^{80} + 2 q^{81} + 20 q^{82} + 24 q^{83} + 24 q^{85} - 15 q^{86} + 3 q^{87} + 3 q^{88} - 10 q^{89} - 2 q^{90} + 4 q^{92} - 12 q^{93} - 9 q^{94} + 10 q^{95} + 2 q^{96} + 24 q^{97} + 14 q^{98} - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) −1.23607 −0.552786 −0.276393 0.961045i \(-0.589139\pi\)
−0.276393 + 0.961045i \(0.589139\pi\)
\(6\) 1.00000 0.408248
\(7\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) 1.23607 0.390879
\(11\) −4.85410 −1.46357 −0.731783 0.681537i \(-0.761312\pi\)
−0.731783 + 0.681537i \(0.761312\pi\)
\(12\) −1.00000 −0.288675
\(13\) 1.85410 0.514235 0.257118 0.966380i \(-0.417227\pi\)
0.257118 + 0.966380i \(0.417227\pi\)
\(14\) 0 0
\(15\) 1.23607 0.319151
\(16\) 1.00000 0.250000
\(17\) −2.47214 −0.599581 −0.299791 0.954005i \(-0.596917\pi\)
−0.299791 + 0.954005i \(0.596917\pi\)
\(18\) −1.00000 −0.235702
\(19\) 1.38197 0.317045 0.158522 0.987355i \(-0.449327\pi\)
0.158522 + 0.987355i \(0.449327\pi\)
\(20\) −1.23607 −0.276393
\(21\) 0 0
\(22\) 4.85410 1.03490
\(23\) 2.00000 0.417029 0.208514 0.978019i \(-0.433137\pi\)
0.208514 + 0.978019i \(0.433137\pi\)
\(24\) 1.00000 0.204124
\(25\) −3.47214 −0.694427
\(26\) −1.85410 −0.363619
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 4.09017 0.759525 0.379763 0.925084i \(-0.376006\pi\)
0.379763 + 0.925084i \(0.376006\pi\)
\(30\) −1.23607 −0.225674
\(31\) 6.00000 1.07763 0.538816 0.842424i \(-0.318872\pi\)
0.538816 + 0.842424i \(0.318872\pi\)
\(32\) −1.00000 −0.176777
\(33\) 4.85410 0.844991
\(34\) 2.47214 0.423968
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) −2.47214 −0.406417 −0.203208 0.979136i \(-0.565137\pi\)
−0.203208 + 0.979136i \(0.565137\pi\)
\(38\) −1.38197 −0.224184
\(39\) −1.85410 −0.296894
\(40\) 1.23607 0.195440
\(41\) −10.0000 −1.56174 −0.780869 0.624695i \(-0.785223\pi\)
−0.780869 + 0.624695i \(0.785223\pi\)
\(42\) 0 0
\(43\) 6.38197 0.973241 0.486620 0.873614i \(-0.338230\pi\)
0.486620 + 0.873614i \(0.338230\pi\)
\(44\) −4.85410 −0.731783
\(45\) −1.23607 −0.184262
\(46\) −2.00000 −0.294884
\(47\) 5.61803 0.819474 0.409737 0.912204i \(-0.365620\pi\)
0.409737 + 0.912204i \(0.365620\pi\)
\(48\) −1.00000 −0.144338
\(49\) −7.00000 −1.00000
\(50\) 3.47214 0.491034
\(51\) 2.47214 0.346168
\(52\) 1.85410 0.257118
\(53\) 3.09017 0.424467 0.212234 0.977219i \(-0.431926\pi\)
0.212234 + 0.977219i \(0.431926\pi\)
\(54\) 1.00000 0.136083
\(55\) 6.00000 0.809040
\(56\) 0 0
\(57\) −1.38197 −0.183046
\(58\) −4.09017 −0.537066
\(59\) 0.145898 0.0189943 0.00949715 0.999955i \(-0.496977\pi\)
0.00949715 + 0.999955i \(0.496977\pi\)
\(60\) 1.23607 0.159576
\(61\) 13.7984 1.76670 0.883350 0.468713i \(-0.155282\pi\)
0.883350 + 0.468713i \(0.155282\pi\)
\(62\) −6.00000 −0.762001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −2.29180 −0.284262
\(66\) −4.85410 −0.597499
\(67\) −2.94427 −0.359700 −0.179850 0.983694i \(-0.557561\pi\)
−0.179850 + 0.983694i \(0.557561\pi\)
\(68\) −2.47214 −0.299791
\(69\) −2.00000 −0.240772
\(70\) 0 0
\(71\) 15.4164 1.82959 0.914796 0.403917i \(-0.132352\pi\)
0.914796 + 0.403917i \(0.132352\pi\)
\(72\) −1.00000 −0.117851
\(73\) 0.909830 0.106488 0.0532438 0.998582i \(-0.483044\pi\)
0.0532438 + 0.998582i \(0.483044\pi\)
\(74\) 2.47214 0.287380
\(75\) 3.47214 0.400928
\(76\) 1.38197 0.158522
\(77\) 0 0
\(78\) 1.85410 0.209936
\(79\) −2.38197 −0.267992 −0.133996 0.990982i \(-0.542781\pi\)
−0.133996 + 0.990982i \(0.542781\pi\)
\(80\) −1.23607 −0.138197
\(81\) 1.00000 0.111111
\(82\) 10.0000 1.10432
\(83\) 12.0000 1.31717 0.658586 0.752506i \(-0.271155\pi\)
0.658586 + 0.752506i \(0.271155\pi\)
\(84\) 0 0
\(85\) 3.05573 0.331440
\(86\) −6.38197 −0.688185
\(87\) −4.09017 −0.438512
\(88\) 4.85410 0.517449
\(89\) −7.23607 −0.767022 −0.383511 0.923536i \(-0.625285\pi\)
−0.383511 + 0.923536i \(0.625285\pi\)
\(90\) 1.23607 0.130293
\(91\) 0 0
\(92\) 2.00000 0.208514
\(93\) −6.00000 −0.622171
\(94\) −5.61803 −0.579456
\(95\) −1.70820 −0.175258
\(96\) 1.00000 0.102062
\(97\) 7.52786 0.764339 0.382169 0.924092i \(-0.375177\pi\)
0.382169 + 0.924092i \(0.375177\pi\)
\(98\) 7.00000 0.707107
\(99\) −4.85410 −0.487856
\(100\) −3.47214 −0.347214
\(101\) −1.85410 −0.184490 −0.0922450 0.995736i \(-0.529404\pi\)
−0.0922450 + 0.995736i \(0.529404\pi\)
\(102\) −2.47214 −0.244778
\(103\) 3.56231 0.351004 0.175502 0.984479i \(-0.443845\pi\)
0.175502 + 0.984479i \(0.443845\pi\)
\(104\) −1.85410 −0.181810
\(105\) 0 0
\(106\) −3.09017 −0.300144
\(107\) 9.38197 0.906989 0.453494 0.891259i \(-0.350177\pi\)
0.453494 + 0.891259i \(0.350177\pi\)
\(108\) −1.00000 −0.0962250
\(109\) 12.7639 1.22256 0.611281 0.791413i \(-0.290654\pi\)
0.611281 + 0.791413i \(0.290654\pi\)
\(110\) −6.00000 −0.572078
\(111\) 2.47214 0.234645
\(112\) 0 0
\(113\) 9.85410 0.926996 0.463498 0.886098i \(-0.346594\pi\)
0.463498 + 0.886098i \(0.346594\pi\)
\(114\) 1.38197 0.129433
\(115\) −2.47214 −0.230528
\(116\) 4.09017 0.379763
\(117\) 1.85410 0.171412
\(118\) −0.145898 −0.0134310
\(119\) 0 0
\(120\) −1.23607 −0.112837
\(121\) 12.5623 1.14203
\(122\) −13.7984 −1.24925
\(123\) 10.0000 0.901670
\(124\) 6.00000 0.538816
\(125\) 10.4721 0.936656
\(126\) 0 0
\(127\) 17.7082 1.57135 0.785675 0.618640i \(-0.212316\pi\)
0.785675 + 0.618640i \(0.212316\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −6.38197 −0.561901
\(130\) 2.29180 0.201004
\(131\) −3.70820 −0.323987 −0.161994 0.986792i \(-0.551792\pi\)
−0.161994 + 0.986792i \(0.551792\pi\)
\(132\) 4.85410 0.422495
\(133\) 0 0
\(134\) 2.94427 0.254346
\(135\) 1.23607 0.106384
\(136\) 2.47214 0.211984
\(137\) 0.673762 0.0575634 0.0287817 0.999586i \(-0.490837\pi\)
0.0287817 + 0.999586i \(0.490837\pi\)
\(138\) 2.00000 0.170251
\(139\) 0.0901699 0.00764811 0.00382406 0.999993i \(-0.498783\pi\)
0.00382406 + 0.999993i \(0.498783\pi\)
\(140\) 0 0
\(141\) −5.61803 −0.473124
\(142\) −15.4164 −1.29372
\(143\) −9.00000 −0.752618
\(144\) 1.00000 0.0833333
\(145\) −5.05573 −0.419855
\(146\) −0.909830 −0.0752981
\(147\) 7.00000 0.577350
\(148\) −2.47214 −0.203208
\(149\) −8.47214 −0.694064 −0.347032 0.937853i \(-0.612811\pi\)
−0.347032 + 0.937853i \(0.612811\pi\)
\(150\) −3.47214 −0.283499
\(151\) 13.3820 1.08901 0.544504 0.838758i \(-0.316718\pi\)
0.544504 + 0.838758i \(0.316718\pi\)
\(152\) −1.38197 −0.112092
\(153\) −2.47214 −0.199860
\(154\) 0 0
\(155\) −7.41641 −0.595700
\(156\) −1.85410 −0.148447
\(157\) 5.61803 0.448368 0.224184 0.974547i \(-0.428028\pi\)
0.224184 + 0.974547i \(0.428028\pi\)
\(158\) 2.38197 0.189499
\(159\) −3.09017 −0.245066
\(160\) 1.23607 0.0977198
\(161\) 0 0
\(162\) −1.00000 −0.0785674
\(163\) 14.0000 1.09656 0.548282 0.836293i \(-0.315282\pi\)
0.548282 + 0.836293i \(0.315282\pi\)
\(164\) −10.0000 −0.780869
\(165\) −6.00000 −0.467099
\(166\) −12.0000 −0.931381
\(167\) −21.7082 −1.67983 −0.839916 0.542717i \(-0.817396\pi\)
−0.839916 + 0.542717i \(0.817396\pi\)
\(168\) 0 0
\(169\) −9.56231 −0.735562
\(170\) −3.05573 −0.234364
\(171\) 1.38197 0.105682
\(172\) 6.38197 0.486620
\(173\) 15.8885 1.20798 0.603992 0.796991i \(-0.293576\pi\)
0.603992 + 0.796991i \(0.293576\pi\)
\(174\) 4.09017 0.310075
\(175\) 0 0
\(176\) −4.85410 −0.365892
\(177\) −0.145898 −0.0109664
\(178\) 7.23607 0.542366
\(179\) 15.1246 1.13047 0.565233 0.824931i \(-0.308786\pi\)
0.565233 + 0.824931i \(0.308786\pi\)
\(180\) −1.23607 −0.0921311
\(181\) 8.00000 0.594635 0.297318 0.954779i \(-0.403908\pi\)
0.297318 + 0.954779i \(0.403908\pi\)
\(182\) 0 0
\(183\) −13.7984 −1.02001
\(184\) −2.00000 −0.147442
\(185\) 3.05573 0.224662
\(186\) 6.00000 0.439941
\(187\) 12.0000 0.877527
\(188\) 5.61803 0.409737
\(189\) 0 0
\(190\) 1.70820 0.123926
\(191\) −16.1803 −1.17077 −0.585384 0.810756i \(-0.699056\pi\)
−0.585384 + 0.810756i \(0.699056\pi\)
\(192\) −1.00000 −0.0721688
\(193\) −22.4721 −1.61758 −0.808790 0.588098i \(-0.799877\pi\)
−0.808790 + 0.588098i \(0.799877\pi\)
\(194\) −7.52786 −0.540469
\(195\) 2.29180 0.164119
\(196\) −7.00000 −0.500000
\(197\) 3.32624 0.236985 0.118492 0.992955i \(-0.462194\pi\)
0.118492 + 0.992955i \(0.462194\pi\)
\(198\) 4.85410 0.344966
\(199\) 4.76393 0.337706 0.168853 0.985641i \(-0.445994\pi\)
0.168853 + 0.985641i \(0.445994\pi\)
\(200\) 3.47214 0.245517
\(201\) 2.94427 0.207673
\(202\) 1.85410 0.130454
\(203\) 0 0
\(204\) 2.47214 0.173084
\(205\) 12.3607 0.863307
\(206\) −3.56231 −0.248198
\(207\) 2.00000 0.139010
\(208\) 1.85410 0.128559
\(209\) −6.70820 −0.464016
\(210\) 0 0
\(211\) −6.38197 −0.439353 −0.219676 0.975573i \(-0.570500\pi\)
−0.219676 + 0.975573i \(0.570500\pi\)
\(212\) 3.09017 0.212234
\(213\) −15.4164 −1.05631
\(214\) −9.38197 −0.641338
\(215\) −7.88854 −0.537994
\(216\) 1.00000 0.0680414
\(217\) 0 0
\(218\) −12.7639 −0.864483
\(219\) −0.909830 −0.0614806
\(220\) 6.00000 0.404520
\(221\) −4.58359 −0.308326
\(222\) −2.47214 −0.165919
\(223\) 1.00000 0.0669650
\(224\) 0 0
\(225\) −3.47214 −0.231476
\(226\) −9.85410 −0.655485
\(227\) 10.4721 0.695060 0.347530 0.937669i \(-0.387020\pi\)
0.347530 + 0.937669i \(0.387020\pi\)
\(228\) −1.38197 −0.0915229
\(229\) −9.41641 −0.622254 −0.311127 0.950368i \(-0.600706\pi\)
−0.311127 + 0.950368i \(0.600706\pi\)
\(230\) 2.47214 0.163008
\(231\) 0 0
\(232\) −4.09017 −0.268533
\(233\) 15.1459 0.992241 0.496120 0.868254i \(-0.334757\pi\)
0.496120 + 0.868254i \(0.334757\pi\)
\(234\) −1.85410 −0.121206
\(235\) −6.94427 −0.452994
\(236\) 0.145898 0.00949715
\(237\) 2.38197 0.154725
\(238\) 0 0
\(239\) 7.56231 0.489165 0.244582 0.969628i \(-0.421349\pi\)
0.244582 + 0.969628i \(0.421349\pi\)
\(240\) 1.23607 0.0797878
\(241\) −12.2705 −0.790413 −0.395207 0.918592i \(-0.629327\pi\)
−0.395207 + 0.918592i \(0.629327\pi\)
\(242\) −12.5623 −0.807536
\(243\) −1.00000 −0.0641500
\(244\) 13.7984 0.883350
\(245\) 8.65248 0.552786
\(246\) −10.0000 −0.637577
\(247\) 2.56231 0.163036
\(248\) −6.00000 −0.381000
\(249\) −12.0000 −0.760469
\(250\) −10.4721 −0.662316
\(251\) −7.23607 −0.456737 −0.228368 0.973575i \(-0.573339\pi\)
−0.228368 + 0.973575i \(0.573339\pi\)
\(252\) 0 0
\(253\) −9.70820 −0.610350
\(254\) −17.7082 −1.11111
\(255\) −3.05573 −0.191357
\(256\) 1.00000 0.0625000
\(257\) 18.3607 1.14531 0.572654 0.819797i \(-0.305914\pi\)
0.572654 + 0.819797i \(0.305914\pi\)
\(258\) 6.38197 0.397324
\(259\) 0 0
\(260\) −2.29180 −0.142131
\(261\) 4.09017 0.253175
\(262\) 3.70820 0.229094
\(263\) −21.2361 −1.30947 −0.654736 0.755858i \(-0.727220\pi\)
−0.654736 + 0.755858i \(0.727220\pi\)
\(264\) −4.85410 −0.298749
\(265\) −3.81966 −0.234640
\(266\) 0 0
\(267\) 7.23607 0.442840
\(268\) −2.94427 −0.179850
\(269\) −9.41641 −0.574129 −0.287064 0.957911i \(-0.592679\pi\)
−0.287064 + 0.957911i \(0.592679\pi\)
\(270\) −1.23607 −0.0752247
\(271\) −4.67376 −0.283911 −0.141955 0.989873i \(-0.545339\pi\)
−0.141955 + 0.989873i \(0.545339\pi\)
\(272\) −2.47214 −0.149895
\(273\) 0 0
\(274\) −0.673762 −0.0407035
\(275\) 16.8541 1.01634
\(276\) −2.00000 −0.120386
\(277\) −19.5279 −1.17332 −0.586658 0.809835i \(-0.699557\pi\)
−0.586658 + 0.809835i \(0.699557\pi\)
\(278\) −0.0901699 −0.00540803
\(279\) 6.00000 0.359211
\(280\) 0 0
\(281\) −23.7082 −1.41431 −0.707156 0.707057i \(-0.750022\pi\)
−0.707156 + 0.707057i \(0.750022\pi\)
\(282\) 5.61803 0.334549
\(283\) 8.79837 0.523009 0.261505 0.965202i \(-0.415781\pi\)
0.261505 + 0.965202i \(0.415781\pi\)
\(284\) 15.4164 0.914796
\(285\) 1.70820 0.101185
\(286\) 9.00000 0.532181
\(287\) 0 0
\(288\) −1.00000 −0.0589256
\(289\) −10.8885 −0.640503
\(290\) 5.05573 0.296883
\(291\) −7.52786 −0.441291
\(292\) 0.909830 0.0532438
\(293\) 25.5967 1.49538 0.747689 0.664049i \(-0.231163\pi\)
0.747689 + 0.664049i \(0.231163\pi\)
\(294\) −7.00000 −0.408248
\(295\) −0.180340 −0.0104998
\(296\) 2.47214 0.143690
\(297\) 4.85410 0.281664
\(298\) 8.47214 0.490778
\(299\) 3.70820 0.214451
\(300\) 3.47214 0.200464
\(301\) 0 0
\(302\) −13.3820 −0.770046
\(303\) 1.85410 0.106515
\(304\) 1.38197 0.0792612
\(305\) −17.0557 −0.976608
\(306\) 2.47214 0.141323
\(307\) 6.65248 0.379677 0.189838 0.981815i \(-0.439204\pi\)
0.189838 + 0.981815i \(0.439204\pi\)
\(308\) 0 0
\(309\) −3.56231 −0.202653
\(310\) 7.41641 0.421224
\(311\) −6.00000 −0.340229 −0.170114 0.985424i \(-0.554414\pi\)
−0.170114 + 0.985424i \(0.554414\pi\)
\(312\) 1.85410 0.104968
\(313\) −10.6525 −0.602114 −0.301057 0.953606i \(-0.597339\pi\)
−0.301057 + 0.953606i \(0.597339\pi\)
\(314\) −5.61803 −0.317044
\(315\) 0 0
\(316\) −2.38197 −0.133996
\(317\) −9.56231 −0.537073 −0.268536 0.963270i \(-0.586540\pi\)
−0.268536 + 0.963270i \(0.586540\pi\)
\(318\) 3.09017 0.173288
\(319\) −19.8541 −1.11162
\(320\) −1.23607 −0.0690983
\(321\) −9.38197 −0.523650
\(322\) 0 0
\(323\) −3.41641 −0.190094
\(324\) 1.00000 0.0555556
\(325\) −6.43769 −0.357099
\(326\) −14.0000 −0.775388
\(327\) −12.7639 −0.705847
\(328\) 10.0000 0.552158
\(329\) 0 0
\(330\) 6.00000 0.330289
\(331\) −5.41641 −0.297713 −0.148856 0.988859i \(-0.547559\pi\)
−0.148856 + 0.988859i \(0.547559\pi\)
\(332\) 12.0000 0.658586
\(333\) −2.47214 −0.135472
\(334\) 21.7082 1.18782
\(335\) 3.63932 0.198837
\(336\) 0 0
\(337\) 32.0689 1.74690 0.873452 0.486911i \(-0.161876\pi\)
0.873452 + 0.486911i \(0.161876\pi\)
\(338\) 9.56231 0.520121
\(339\) −9.85410 −0.535201
\(340\) 3.05573 0.165720
\(341\) −29.1246 −1.57719
\(342\) −1.38197 −0.0747282
\(343\) 0 0
\(344\) −6.38197 −0.344093
\(345\) 2.47214 0.133095
\(346\) −15.8885 −0.854173
\(347\) −15.4164 −0.827596 −0.413798 0.910369i \(-0.635798\pi\)
−0.413798 + 0.910369i \(0.635798\pi\)
\(348\) −4.09017 −0.219256
\(349\) 8.94427 0.478776 0.239388 0.970924i \(-0.423053\pi\)
0.239388 + 0.970924i \(0.423053\pi\)
\(350\) 0 0
\(351\) −1.85410 −0.0989646
\(352\) 4.85410 0.258725
\(353\) −23.7082 −1.26186 −0.630930 0.775840i \(-0.717327\pi\)
−0.630930 + 0.775840i \(0.717327\pi\)
\(354\) 0.145898 0.00775439
\(355\) −19.0557 −1.01137
\(356\) −7.23607 −0.383511
\(357\) 0 0
\(358\) −15.1246 −0.799361
\(359\) 9.74265 0.514197 0.257099 0.966385i \(-0.417233\pi\)
0.257099 + 0.966385i \(0.417233\pi\)
\(360\) 1.23607 0.0651465
\(361\) −17.0902 −0.899483
\(362\) −8.00000 −0.420471
\(363\) −12.5623 −0.659350
\(364\) 0 0
\(365\) −1.12461 −0.0588649
\(366\) 13.7984 0.721253
\(367\) −25.1246 −1.31149 −0.655747 0.754981i \(-0.727646\pi\)
−0.655747 + 0.754981i \(0.727646\pi\)
\(368\) 2.00000 0.104257
\(369\) −10.0000 −0.520579
\(370\) −3.05573 −0.158860
\(371\) 0 0
\(372\) −6.00000 −0.311086
\(373\) −26.3607 −1.36490 −0.682452 0.730930i \(-0.739086\pi\)
−0.682452 + 0.730930i \(0.739086\pi\)
\(374\) −12.0000 −0.620505
\(375\) −10.4721 −0.540779
\(376\) −5.61803 −0.289728
\(377\) 7.58359 0.390575
\(378\) 0 0
\(379\) −18.0344 −0.926367 −0.463184 0.886262i \(-0.653293\pi\)
−0.463184 + 0.886262i \(0.653293\pi\)
\(380\) −1.70820 −0.0876290
\(381\) −17.7082 −0.907219
\(382\) 16.1803 0.827858
\(383\) 13.5279 0.691242 0.345621 0.938374i \(-0.387668\pi\)
0.345621 + 0.938374i \(0.387668\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) 22.4721 1.14380
\(387\) 6.38197 0.324414
\(388\) 7.52786 0.382169
\(389\) 32.2705 1.63618 0.818090 0.575090i \(-0.195033\pi\)
0.818090 + 0.575090i \(0.195033\pi\)
\(390\) −2.29180 −0.116050
\(391\) −4.94427 −0.250043
\(392\) 7.00000 0.353553
\(393\) 3.70820 0.187054
\(394\) −3.32624 −0.167573
\(395\) 2.94427 0.148142
\(396\) −4.85410 −0.243928
\(397\) −15.1459 −0.760151 −0.380075 0.924956i \(-0.624102\pi\)
−0.380075 + 0.924956i \(0.624102\pi\)
\(398\) −4.76393 −0.238794
\(399\) 0 0
\(400\) −3.47214 −0.173607
\(401\) 22.6525 1.13121 0.565605 0.824676i \(-0.308643\pi\)
0.565605 + 0.824676i \(0.308643\pi\)
\(402\) −2.94427 −0.146847
\(403\) 11.1246 0.554156
\(404\) −1.85410 −0.0922450
\(405\) −1.23607 −0.0614207
\(406\) 0 0
\(407\) 12.0000 0.594818
\(408\) −2.47214 −0.122389
\(409\) −24.6525 −1.21899 −0.609493 0.792791i \(-0.708627\pi\)
−0.609493 + 0.792791i \(0.708627\pi\)
\(410\) −12.3607 −0.610450
\(411\) −0.673762 −0.0332342
\(412\) 3.56231 0.175502
\(413\) 0 0
\(414\) −2.00000 −0.0982946
\(415\) −14.8328 −0.728114
\(416\) −1.85410 −0.0909048
\(417\) −0.0901699 −0.00441564
\(418\) 6.70820 0.328109
\(419\) 7.88854 0.385381 0.192690 0.981260i \(-0.438279\pi\)
0.192690 + 0.981260i \(0.438279\pi\)
\(420\) 0 0
\(421\) −6.79837 −0.331332 −0.165666 0.986182i \(-0.552977\pi\)
−0.165666 + 0.986182i \(0.552977\pi\)
\(422\) 6.38197 0.310669
\(423\) 5.61803 0.273158
\(424\) −3.09017 −0.150072
\(425\) 8.58359 0.416365
\(426\) 15.4164 0.746927
\(427\) 0 0
\(428\) 9.38197 0.453494
\(429\) 9.00000 0.434524
\(430\) 7.88854 0.380419
\(431\) −8.47214 −0.408088 −0.204044 0.978962i \(-0.565409\pi\)
−0.204044 + 0.978962i \(0.565409\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 6.79837 0.326709 0.163354 0.986567i \(-0.447769\pi\)
0.163354 + 0.986567i \(0.447769\pi\)
\(434\) 0 0
\(435\) 5.05573 0.242404
\(436\) 12.7639 0.611281
\(437\) 2.76393 0.132217
\(438\) 0.909830 0.0434734
\(439\) 26.4721 1.26345 0.631723 0.775194i \(-0.282348\pi\)
0.631723 + 0.775194i \(0.282348\pi\)
\(440\) −6.00000 −0.286039
\(441\) −7.00000 −0.333333
\(442\) 4.58359 0.218019
\(443\) 15.7082 0.746319 0.373160 0.927767i \(-0.378274\pi\)
0.373160 + 0.927767i \(0.378274\pi\)
\(444\) 2.47214 0.117322
\(445\) 8.94427 0.423999
\(446\) −1.00000 −0.0473514
\(447\) 8.47214 0.400718
\(448\) 0 0
\(449\) −17.4164 −0.821931 −0.410966 0.911651i \(-0.634808\pi\)
−0.410966 + 0.911651i \(0.634808\pi\)
\(450\) 3.47214 0.163678
\(451\) 48.5410 2.28571
\(452\) 9.85410 0.463498
\(453\) −13.3820 −0.628740
\(454\) −10.4721 −0.491482
\(455\) 0 0
\(456\) 1.38197 0.0647165
\(457\) −15.2361 −0.712713 −0.356357 0.934350i \(-0.615981\pi\)
−0.356357 + 0.934350i \(0.615981\pi\)
\(458\) 9.41641 0.440000
\(459\) 2.47214 0.115389
\(460\) −2.47214 −0.115264
\(461\) −12.9098 −0.601271 −0.300635 0.953739i \(-0.597199\pi\)
−0.300635 + 0.953739i \(0.597199\pi\)
\(462\) 0 0
\(463\) 42.2492 1.96349 0.981744 0.190207i \(-0.0609160\pi\)
0.981744 + 0.190207i \(0.0609160\pi\)
\(464\) 4.09017 0.189881
\(465\) 7.41641 0.343928
\(466\) −15.1459 −0.701620
\(467\) 34.9787 1.61862 0.809311 0.587380i \(-0.199841\pi\)
0.809311 + 0.587380i \(0.199841\pi\)
\(468\) 1.85410 0.0857059
\(469\) 0 0
\(470\) 6.94427 0.320315
\(471\) −5.61803 −0.258865
\(472\) −0.145898 −0.00671550
\(473\) −30.9787 −1.42440
\(474\) −2.38197 −0.109407
\(475\) −4.79837 −0.220164
\(476\) 0 0
\(477\) 3.09017 0.141489
\(478\) −7.56231 −0.345892
\(479\) 6.38197 0.291599 0.145800 0.989314i \(-0.453424\pi\)
0.145800 + 0.989314i \(0.453424\pi\)
\(480\) −1.23607 −0.0564185
\(481\) −4.58359 −0.208994
\(482\) 12.2705 0.558906
\(483\) 0 0
\(484\) 12.5623 0.571014
\(485\) −9.30495 −0.422516
\(486\) 1.00000 0.0453609
\(487\) 11.8885 0.538721 0.269361 0.963039i \(-0.413188\pi\)
0.269361 + 0.963039i \(0.413188\pi\)
\(488\) −13.7984 −0.624623
\(489\) −14.0000 −0.633102
\(490\) −8.65248 −0.390879
\(491\) −29.6180 −1.33664 −0.668322 0.743872i \(-0.732987\pi\)
−0.668322 + 0.743872i \(0.732987\pi\)
\(492\) 10.0000 0.450835
\(493\) −10.1115 −0.455397
\(494\) −2.56231 −0.115284
\(495\) 6.00000 0.269680
\(496\) 6.00000 0.269408
\(497\) 0 0
\(498\) 12.0000 0.537733
\(499\) 30.9230 1.38430 0.692151 0.721752i \(-0.256663\pi\)
0.692151 + 0.721752i \(0.256663\pi\)
\(500\) 10.4721 0.468328
\(501\) 21.7082 0.969851
\(502\) 7.23607 0.322962
\(503\) −4.76393 −0.212413 −0.106207 0.994344i \(-0.533870\pi\)
−0.106207 + 0.994344i \(0.533870\pi\)
\(504\) 0 0
\(505\) 2.29180 0.101984
\(506\) 9.70820 0.431582
\(507\) 9.56231 0.424677
\(508\) 17.7082 0.785675
\(509\) 7.90983 0.350597 0.175299 0.984515i \(-0.443911\pi\)
0.175299 + 0.984515i \(0.443911\pi\)
\(510\) 3.05573 0.135310
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) −1.38197 −0.0610153
\(514\) −18.3607 −0.809855
\(515\) −4.40325 −0.194030
\(516\) −6.38197 −0.280950
\(517\) −27.2705 −1.19936
\(518\) 0 0
\(519\) −15.8885 −0.697430
\(520\) 2.29180 0.100502
\(521\) 13.4164 0.587784 0.293892 0.955839i \(-0.405049\pi\)
0.293892 + 0.955839i \(0.405049\pi\)
\(522\) −4.09017 −0.179022
\(523\) 11.3475 0.496193 0.248096 0.968735i \(-0.420195\pi\)
0.248096 + 0.968735i \(0.420195\pi\)
\(524\) −3.70820 −0.161994
\(525\) 0 0
\(526\) 21.2361 0.925937
\(527\) −14.8328 −0.646128
\(528\) 4.85410 0.211248
\(529\) −19.0000 −0.826087
\(530\) 3.81966 0.165915
\(531\) 0.145898 0.00633144
\(532\) 0 0
\(533\) −18.5410 −0.803101
\(534\) −7.23607 −0.313135
\(535\) −11.5967 −0.501371
\(536\) 2.94427 0.127173
\(537\) −15.1246 −0.652675
\(538\) 9.41641 0.405970
\(539\) 33.9787 1.46357
\(540\) 1.23607 0.0531919
\(541\) 8.61803 0.370518 0.185259 0.982690i \(-0.440688\pi\)
0.185259 + 0.982690i \(0.440688\pi\)
\(542\) 4.67376 0.200755
\(543\) −8.00000 −0.343313
\(544\) 2.47214 0.105992
\(545\) −15.7771 −0.675816
\(546\) 0 0
\(547\) 1.09017 0.0466123 0.0233062 0.999728i \(-0.492581\pi\)
0.0233062 + 0.999728i \(0.492581\pi\)
\(548\) 0.673762 0.0287817
\(549\) 13.7984 0.588900
\(550\) −16.8541 −0.718661
\(551\) 5.65248 0.240804
\(552\) 2.00000 0.0851257
\(553\) 0 0
\(554\) 19.5279 0.829659
\(555\) −3.05573 −0.129708
\(556\) 0.0901699 0.00382406
\(557\) −24.0689 −1.01983 −0.509916 0.860224i \(-0.670323\pi\)
−0.509916 + 0.860224i \(0.670323\pi\)
\(558\) −6.00000 −0.254000
\(559\) 11.8328 0.500475
\(560\) 0 0
\(561\) −12.0000 −0.506640
\(562\) 23.7082 1.00007
\(563\) 34.7426 1.46423 0.732114 0.681182i \(-0.238534\pi\)
0.732114 + 0.681182i \(0.238534\pi\)
\(564\) −5.61803 −0.236562
\(565\) −12.1803 −0.512431
\(566\) −8.79837 −0.369823
\(567\) 0 0
\(568\) −15.4164 −0.646858
\(569\) −0.618034 −0.0259093 −0.0129547 0.999916i \(-0.504124\pi\)
−0.0129547 + 0.999916i \(0.504124\pi\)
\(570\) −1.70820 −0.0715488
\(571\) −0.875388 −0.0366339 −0.0183169 0.999832i \(-0.505831\pi\)
−0.0183169 + 0.999832i \(0.505831\pi\)
\(572\) −9.00000 −0.376309
\(573\) 16.1803 0.675943
\(574\) 0 0
\(575\) −6.94427 −0.289596
\(576\) 1.00000 0.0416667
\(577\) −13.4377 −0.559419 −0.279709 0.960085i \(-0.590238\pi\)
−0.279709 + 0.960085i \(0.590238\pi\)
\(578\) 10.8885 0.452904
\(579\) 22.4721 0.933910
\(580\) −5.05573 −0.209928
\(581\) 0 0
\(582\) 7.52786 0.312040
\(583\) −15.0000 −0.621237
\(584\) −0.909830 −0.0376490
\(585\) −2.29180 −0.0947541
\(586\) −25.5967 −1.05739
\(587\) 33.4508 1.38066 0.690332 0.723493i \(-0.257464\pi\)
0.690332 + 0.723493i \(0.257464\pi\)
\(588\) 7.00000 0.288675
\(589\) 8.29180 0.341658
\(590\) 0.180340 0.00742448
\(591\) −3.32624 −0.136823
\(592\) −2.47214 −0.101604
\(593\) 47.3050 1.94258 0.971291 0.237895i \(-0.0764576\pi\)
0.971291 + 0.237895i \(0.0764576\pi\)
\(594\) −4.85410 −0.199166
\(595\) 0 0
\(596\) −8.47214 −0.347032
\(597\) −4.76393 −0.194975
\(598\) −3.70820 −0.151640
\(599\) −5.79837 −0.236915 −0.118458 0.992959i \(-0.537795\pi\)
−0.118458 + 0.992959i \(0.537795\pi\)
\(600\) −3.47214 −0.141749
\(601\) −18.7639 −0.765397 −0.382698 0.923873i \(-0.625005\pi\)
−0.382698 + 0.923873i \(0.625005\pi\)
\(602\) 0 0
\(603\) −2.94427 −0.119900
\(604\) 13.3820 0.544504
\(605\) −15.5279 −0.631297
\(606\) −1.85410 −0.0753177
\(607\) 34.8328 1.41382 0.706910 0.707303i \(-0.250088\pi\)
0.706910 + 0.707303i \(0.250088\pi\)
\(608\) −1.38197 −0.0560461
\(609\) 0 0
\(610\) 17.0557 0.690566
\(611\) 10.4164 0.421403
\(612\) −2.47214 −0.0999302
\(613\) 32.2705 1.30339 0.651697 0.758480i \(-0.274057\pi\)
0.651697 + 0.758480i \(0.274057\pi\)
\(614\) −6.65248 −0.268472
\(615\) −12.3607 −0.498431
\(616\) 0 0
\(617\) 7.70820 0.310321 0.155160 0.987889i \(-0.450411\pi\)
0.155160 + 0.987889i \(0.450411\pi\)
\(618\) 3.56231 0.143297
\(619\) 27.2361 1.09471 0.547355 0.836901i \(-0.315635\pi\)
0.547355 + 0.836901i \(0.315635\pi\)
\(620\) −7.41641 −0.297850
\(621\) −2.00000 −0.0802572
\(622\) 6.00000 0.240578
\(623\) 0 0
\(624\) −1.85410 −0.0742235
\(625\) 4.41641 0.176656
\(626\) 10.6525 0.425759
\(627\) 6.70820 0.267900
\(628\) 5.61803 0.224184
\(629\) 6.11146 0.243680
\(630\) 0 0
\(631\) −34.7426 −1.38308 −0.691541 0.722337i \(-0.743068\pi\)
−0.691541 + 0.722337i \(0.743068\pi\)
\(632\) 2.38197 0.0947495
\(633\) 6.38197 0.253660
\(634\) 9.56231 0.379768
\(635\) −21.8885 −0.868620
\(636\) −3.09017 −0.122533
\(637\) −12.9787 −0.514235
\(638\) 19.8541 0.786031
\(639\) 15.4164 0.609864
\(640\) 1.23607 0.0488599
\(641\) 28.9787 1.14459 0.572295 0.820048i \(-0.306053\pi\)
0.572295 + 0.820048i \(0.306053\pi\)
\(642\) 9.38197 0.370277
\(643\) −29.9787 −1.18225 −0.591123 0.806582i \(-0.701315\pi\)
−0.591123 + 0.806582i \(0.701315\pi\)
\(644\) 0 0
\(645\) 7.88854 0.310611
\(646\) 3.41641 0.134417
\(647\) 46.0344 1.80980 0.904900 0.425624i \(-0.139945\pi\)
0.904900 + 0.425624i \(0.139945\pi\)
\(648\) −1.00000 −0.0392837
\(649\) −0.708204 −0.0277994
\(650\) 6.43769 0.252507
\(651\) 0 0
\(652\) 14.0000 0.548282
\(653\) 31.3050 1.22506 0.612529 0.790448i \(-0.290152\pi\)
0.612529 + 0.790448i \(0.290152\pi\)
\(654\) 12.7639 0.499109
\(655\) 4.58359 0.179096
\(656\) −10.0000 −0.390434
\(657\) 0.909830 0.0354959
\(658\) 0 0
\(659\) −3.88854 −0.151476 −0.0757381 0.997128i \(-0.524131\pi\)
−0.0757381 + 0.997128i \(0.524131\pi\)
\(660\) −6.00000 −0.233550
\(661\) −45.3951 −1.76567 −0.882833 0.469687i \(-0.844367\pi\)
−0.882833 + 0.469687i \(0.844367\pi\)
\(662\) 5.41641 0.210515
\(663\) 4.58359 0.178012
\(664\) −12.0000 −0.465690
\(665\) 0 0
\(666\) 2.47214 0.0957933
\(667\) 8.18034 0.316744
\(668\) −21.7082 −0.839916
\(669\) −1.00000 −0.0386622
\(670\) −3.63932 −0.140599
\(671\) −66.9787 −2.58568
\(672\) 0 0
\(673\) 40.1033 1.54587 0.772935 0.634485i \(-0.218788\pi\)
0.772935 + 0.634485i \(0.218788\pi\)
\(674\) −32.0689 −1.23525
\(675\) 3.47214 0.133643
\(676\) −9.56231 −0.367781
\(677\) 18.3607 0.705658 0.352829 0.935688i \(-0.385220\pi\)
0.352829 + 0.935688i \(0.385220\pi\)
\(678\) 9.85410 0.378445
\(679\) 0 0
\(680\) −3.05573 −0.117182
\(681\) −10.4721 −0.401293
\(682\) 29.1246 1.11524
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 1.38197 0.0528408
\(685\) −0.832816 −0.0318203
\(686\) 0 0
\(687\) 9.41641 0.359258
\(688\) 6.38197 0.243310
\(689\) 5.72949 0.218276
\(690\) −2.47214 −0.0941126
\(691\) 26.9443 1.02501 0.512504 0.858685i \(-0.328718\pi\)
0.512504 + 0.858685i \(0.328718\pi\)
\(692\) 15.8885 0.603992
\(693\) 0 0
\(694\) 15.4164 0.585199
\(695\) −0.111456 −0.00422777
\(696\) 4.09017 0.155037
\(697\) 24.7214 0.936388
\(698\) −8.94427 −0.338546
\(699\) −15.1459 −0.572870
\(700\) 0 0
\(701\) 7.88854 0.297946 0.148973 0.988841i \(-0.452403\pi\)
0.148973 + 0.988841i \(0.452403\pi\)
\(702\) 1.85410 0.0699786
\(703\) −3.41641 −0.128852
\(704\) −4.85410 −0.182946
\(705\) 6.94427 0.261536
\(706\) 23.7082 0.892270
\(707\) 0 0
\(708\) −0.145898 −0.00548318
\(709\) −23.3050 −0.875236 −0.437618 0.899161i \(-0.644178\pi\)
−0.437618 + 0.899161i \(0.644178\pi\)
\(710\) 19.0557 0.715149
\(711\) −2.38197 −0.0893307
\(712\) 7.23607 0.271183
\(713\) 12.0000 0.449404
\(714\) 0 0
\(715\) 11.1246 0.416037
\(716\) 15.1246 0.565233
\(717\) −7.56231 −0.282419
\(718\) −9.74265 −0.363592
\(719\) 21.8885 0.816305 0.408152 0.912914i \(-0.366173\pi\)
0.408152 + 0.912914i \(0.366173\pi\)
\(720\) −1.23607 −0.0460655
\(721\) 0 0
\(722\) 17.0902 0.636030
\(723\) 12.2705 0.456345
\(724\) 8.00000 0.297318
\(725\) −14.2016 −0.527435
\(726\) 12.5623 0.466231
\(727\) −16.6525 −0.617606 −0.308803 0.951126i \(-0.599928\pi\)
−0.308803 + 0.951126i \(0.599928\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 1.12461 0.0416238
\(731\) −15.7771 −0.583537
\(732\) −13.7984 −0.510003
\(733\) −10.6525 −0.393458 −0.196729 0.980458i \(-0.563032\pi\)
−0.196729 + 0.980458i \(0.563032\pi\)
\(734\) 25.1246 0.927366
\(735\) −8.65248 −0.319151
\(736\) −2.00000 −0.0737210
\(737\) 14.2918 0.526445
\(738\) 10.0000 0.368105
\(739\) −35.4853 −1.30535 −0.652674 0.757639i \(-0.726353\pi\)
−0.652674 + 0.757639i \(0.726353\pi\)
\(740\) 3.05573 0.112331
\(741\) −2.56231 −0.0941287
\(742\) 0 0
\(743\) −37.7426 −1.38464 −0.692322 0.721589i \(-0.743412\pi\)
−0.692322 + 0.721589i \(0.743412\pi\)
\(744\) 6.00000 0.219971
\(745\) 10.4721 0.383669
\(746\) 26.3607 0.965133
\(747\) 12.0000 0.439057
\(748\) 12.0000 0.438763
\(749\) 0 0
\(750\) 10.4721 0.382388
\(751\) −18.9443 −0.691286 −0.345643 0.938366i \(-0.612339\pi\)
−0.345643 + 0.938366i \(0.612339\pi\)
\(752\) 5.61803 0.204869
\(753\) 7.23607 0.263697
\(754\) −7.58359 −0.276178
\(755\) −16.5410 −0.601989
\(756\) 0 0
\(757\) −0.0344419 −0.00125181 −0.000625905 1.00000i \(-0.500199\pi\)
−0.000625905 1.00000i \(0.500199\pi\)
\(758\) 18.0344 0.655040
\(759\) 9.70820 0.352385
\(760\) 1.70820 0.0619631
\(761\) 18.5066 0.670863 0.335431 0.942065i \(-0.391118\pi\)
0.335431 + 0.942065i \(0.391118\pi\)
\(762\) 17.7082 0.641501
\(763\) 0 0
\(764\) −16.1803 −0.585384
\(765\) 3.05573 0.110480
\(766\) −13.5279 −0.488782
\(767\) 0.270510 0.00976754
\(768\) −1.00000 −0.0360844
\(769\) −35.3262 −1.27390 −0.636948 0.770906i \(-0.719804\pi\)
−0.636948 + 0.770906i \(0.719804\pi\)
\(770\) 0 0
\(771\) −18.3607 −0.661244
\(772\) −22.4721 −0.808790
\(773\) 21.4164 0.770295 0.385147 0.922855i \(-0.374151\pi\)
0.385147 + 0.922855i \(0.374151\pi\)
\(774\) −6.38197 −0.229395
\(775\) −20.8328 −0.748337
\(776\) −7.52786 −0.270235
\(777\) 0 0
\(778\) −32.2705 −1.15695
\(779\) −13.8197 −0.495141
\(780\) 2.29180 0.0820595
\(781\) −74.8328 −2.67773
\(782\) 4.94427 0.176807
\(783\) −4.09017 −0.146171
\(784\) −7.00000 −0.250000
\(785\) −6.94427 −0.247852
\(786\) −3.70820 −0.132267
\(787\) 1.63932 0.0584355 0.0292177 0.999573i \(-0.490698\pi\)
0.0292177 + 0.999573i \(0.490698\pi\)
\(788\) 3.32624 0.118492
\(789\) 21.2361 0.756024
\(790\) −2.94427 −0.104752
\(791\) 0 0
\(792\) 4.85410 0.172483
\(793\) 25.5836 0.908500
\(794\) 15.1459 0.537508
\(795\) 3.81966 0.135469
\(796\) 4.76393 0.168853
\(797\) 39.3050 1.39225 0.696126 0.717919i \(-0.254905\pi\)
0.696126 + 0.717919i \(0.254905\pi\)
\(798\) 0 0
\(799\) −13.8885 −0.491341
\(800\) 3.47214 0.122759
\(801\) −7.23607 −0.255674
\(802\) −22.6525 −0.799887
\(803\) −4.41641 −0.155852
\(804\) 2.94427 0.103836
\(805\) 0 0
\(806\) −11.1246 −0.391848
\(807\) 9.41641 0.331473
\(808\) 1.85410 0.0652271
\(809\) 36.8328 1.29497 0.647486 0.762077i \(-0.275820\pi\)
0.647486 + 0.762077i \(0.275820\pi\)
\(810\) 1.23607 0.0434310
\(811\) 1.05573 0.0370716 0.0185358 0.999828i \(-0.494100\pi\)
0.0185358 + 0.999828i \(0.494100\pi\)
\(812\) 0 0
\(813\) 4.67376 0.163916
\(814\) −12.0000 −0.420600
\(815\) −17.3050 −0.606166
\(816\) 2.47214 0.0865421
\(817\) 8.81966 0.308561
\(818\) 24.6525 0.861954
\(819\) 0 0
\(820\) 12.3607 0.431654
\(821\) −41.7984 −1.45877 −0.729387 0.684102i \(-0.760194\pi\)
−0.729387 + 0.684102i \(0.760194\pi\)
\(822\) 0.673762 0.0235002
\(823\) −15.4164 −0.537382 −0.268691 0.963226i \(-0.586591\pi\)
−0.268691 + 0.963226i \(0.586591\pi\)
\(824\) −3.56231 −0.124099
\(825\) −16.8541 −0.586785
\(826\) 0 0
\(827\) 55.2705 1.92194 0.960972 0.276646i \(-0.0892229\pi\)
0.960972 + 0.276646i \(0.0892229\pi\)
\(828\) 2.00000 0.0695048
\(829\) 15.3262 0.532302 0.266151 0.963931i \(-0.414248\pi\)
0.266151 + 0.963931i \(0.414248\pi\)
\(830\) 14.8328 0.514855
\(831\) 19.5279 0.677414
\(832\) 1.85410 0.0642794
\(833\) 17.3050 0.599581
\(834\) 0.0901699 0.00312233
\(835\) 26.8328 0.928588
\(836\) −6.70820 −0.232008
\(837\) −6.00000 −0.207390
\(838\) −7.88854 −0.272505
\(839\) 9.70820 0.335164 0.167582 0.985858i \(-0.446404\pi\)
0.167582 + 0.985858i \(0.446404\pi\)
\(840\) 0 0
\(841\) −12.2705 −0.423121
\(842\) 6.79837 0.234287
\(843\) 23.7082 0.816554
\(844\) −6.38197 −0.219676
\(845\) 11.8197 0.406609
\(846\) −5.61803 −0.193152
\(847\) 0 0
\(848\) 3.09017 0.106117
\(849\) −8.79837 −0.301959
\(850\) −8.58359 −0.294415
\(851\) −4.94427 −0.169487
\(852\) −15.4164 −0.528157
\(853\) 26.7426 0.915651 0.457825 0.889042i \(-0.348628\pi\)
0.457825 + 0.889042i \(0.348628\pi\)
\(854\) 0 0
\(855\) −1.70820 −0.0584193
\(856\) −9.38197 −0.320669
\(857\) −6.94427 −0.237212 −0.118606 0.992941i \(-0.537843\pi\)
−0.118606 + 0.992941i \(0.537843\pi\)
\(858\) −9.00000 −0.307255
\(859\) −29.8197 −1.01743 −0.508717 0.860934i \(-0.669880\pi\)
−0.508717 + 0.860934i \(0.669880\pi\)
\(860\) −7.88854 −0.268997
\(861\) 0 0
\(862\) 8.47214 0.288562
\(863\) −15.1246 −0.514848 −0.257424 0.966299i \(-0.582874\pi\)
−0.257424 + 0.966299i \(0.582874\pi\)
\(864\) 1.00000 0.0340207
\(865\) −19.6393 −0.667757
\(866\) −6.79837 −0.231018
\(867\) 10.8885 0.369794
\(868\) 0 0
\(869\) 11.5623 0.392224
\(870\) −5.05573 −0.171405
\(871\) −5.45898 −0.184970
\(872\) −12.7639 −0.432241
\(873\) 7.52786 0.254780
\(874\) −2.76393 −0.0934914
\(875\) 0 0
\(876\) −0.909830 −0.0307403
\(877\) 28.8541 0.974334 0.487167 0.873309i \(-0.338030\pi\)
0.487167 + 0.873309i \(0.338030\pi\)
\(878\) −26.4721 −0.893391
\(879\) −25.5967 −0.863357
\(880\) 6.00000 0.202260
\(881\) −16.0689 −0.541374 −0.270687 0.962667i \(-0.587251\pi\)
−0.270687 + 0.962667i \(0.587251\pi\)
\(882\) 7.00000 0.235702
\(883\) −20.3607 −0.685191 −0.342596 0.939483i \(-0.611306\pi\)
−0.342596 + 0.939483i \(0.611306\pi\)
\(884\) −4.58359 −0.154163
\(885\) 0.180340 0.00606206
\(886\) −15.7082 −0.527727
\(887\) −13.9656 −0.468918 −0.234459 0.972126i \(-0.575332\pi\)
−0.234459 + 0.972126i \(0.575332\pi\)
\(888\) −2.47214 −0.0829595
\(889\) 0 0
\(890\) −8.94427 −0.299813
\(891\) −4.85410 −0.162619
\(892\) 1.00000 0.0334825
\(893\) 7.76393 0.259810
\(894\) −8.47214 −0.283351
\(895\) −18.6950 −0.624907
\(896\) 0 0
\(897\) −3.70820 −0.123813
\(898\) 17.4164 0.581193
\(899\) 24.5410 0.818489
\(900\) −3.47214 −0.115738
\(901\) −7.63932 −0.254503
\(902\) −48.5410 −1.61624
\(903\) 0 0
\(904\) −9.85410 −0.327743
\(905\) −9.88854 −0.328706
\(906\) 13.3820 0.444586
\(907\) −28.8673 −0.958522 −0.479261 0.877673i \(-0.659095\pi\)
−0.479261 + 0.877673i \(0.659095\pi\)
\(908\) 10.4721 0.347530
\(909\) −1.85410 −0.0614967
\(910\) 0 0
\(911\) −16.5836 −0.549439 −0.274719 0.961524i \(-0.588585\pi\)
−0.274719 + 0.961524i \(0.588585\pi\)
\(912\) −1.38197 −0.0457615
\(913\) −58.2492 −1.92777
\(914\) 15.2361 0.503964
\(915\) 17.0557 0.563845
\(916\) −9.41641 −0.311127
\(917\) 0 0
\(918\) −2.47214 −0.0815926
\(919\) 49.7426 1.64086 0.820429 0.571748i \(-0.193735\pi\)
0.820429 + 0.571748i \(0.193735\pi\)
\(920\) 2.47214 0.0815039
\(921\) −6.65248 −0.219207
\(922\) 12.9098 0.425163
\(923\) 28.5836 0.940840
\(924\) 0 0
\(925\) 8.58359 0.282227
\(926\) −42.2492 −1.38840
\(927\) 3.56231 0.117001
\(928\) −4.09017 −0.134266
\(929\) −0.291796 −0.00957352 −0.00478676 0.999989i \(-0.501524\pi\)
−0.00478676 + 0.999989i \(0.501524\pi\)
\(930\) −7.41641 −0.243194
\(931\) −9.67376 −0.317045
\(932\) 15.1459 0.496120
\(933\) 6.00000 0.196431
\(934\) −34.9787 −1.14454
\(935\) −14.8328 −0.485085
\(936\) −1.85410 −0.0606032
\(937\) 2.47214 0.0807612 0.0403806 0.999184i \(-0.487143\pi\)
0.0403806 + 0.999184i \(0.487143\pi\)
\(938\) 0 0
\(939\) 10.6525 0.347630
\(940\) −6.94427 −0.226497
\(941\) 25.2705 0.823795 0.411898 0.911230i \(-0.364866\pi\)
0.411898 + 0.911230i \(0.364866\pi\)
\(942\) 5.61803 0.183045
\(943\) −20.0000 −0.651290
\(944\) 0.145898 0.00474858
\(945\) 0 0
\(946\) 30.9787 1.00720
\(947\) −38.4721 −1.25018 −0.625088 0.780554i \(-0.714937\pi\)
−0.625088 + 0.780554i \(0.714937\pi\)
\(948\) 2.38197 0.0773627
\(949\) 1.68692 0.0547597
\(950\) 4.79837 0.155680
\(951\) 9.56231 0.310079
\(952\) 0 0
\(953\) −55.3050 −1.79150 −0.895752 0.444555i \(-0.853362\pi\)
−0.895752 + 0.444555i \(0.853362\pi\)
\(954\) −3.09017 −0.100048
\(955\) 20.0000 0.647185
\(956\) 7.56231 0.244582
\(957\) 19.8541 0.641792
\(958\) −6.38197 −0.206192
\(959\) 0 0
\(960\) 1.23607 0.0398939
\(961\) 5.00000 0.161290
\(962\) 4.58359 0.147781
\(963\) 9.38197 0.302330
\(964\) −12.2705 −0.395207
\(965\) 27.7771 0.894176
\(966\) 0 0
\(967\) 0.437694 0.0140753 0.00703765 0.999975i \(-0.497760\pi\)
0.00703765 + 0.999975i \(0.497760\pi\)
\(968\) −12.5623 −0.403768
\(969\) 3.41641 0.109751
\(970\) 9.30495 0.298764
\(971\) 39.6869 1.27361 0.636807 0.771023i \(-0.280255\pi\)
0.636807 + 0.771023i \(0.280255\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 0 0
\(974\) −11.8885 −0.380934
\(975\) 6.43769 0.206171
\(976\) 13.7984 0.441675
\(977\) 15.5066 0.496099 0.248050 0.968747i \(-0.420210\pi\)
0.248050 + 0.968747i \(0.420210\pi\)
\(978\) 14.0000 0.447671
\(979\) 35.1246 1.12259
\(980\) 8.65248 0.276393
\(981\) 12.7639 0.407521
\(982\) 29.6180 0.945149
\(983\) −27.8197 −0.887309 −0.443655 0.896198i \(-0.646318\pi\)
−0.443655 + 0.896198i \(0.646318\pi\)
\(984\) −10.0000 −0.318788
\(985\) −4.11146 −0.131002
\(986\) 10.1115 0.322014
\(987\) 0 0
\(988\) 2.56231 0.0815178
\(989\) 12.7639 0.405869
\(990\) −6.00000 −0.190693
\(991\) 48.7984 1.55013 0.775066 0.631881i \(-0.217717\pi\)
0.775066 + 0.631881i \(0.217717\pi\)
\(992\) −6.00000 −0.190500
\(993\) 5.41641 0.171885
\(994\) 0 0
\(995\) −5.88854 −0.186679
\(996\) −12.0000 −0.380235
\(997\) 10.9443 0.346609 0.173304 0.984868i \(-0.444556\pi\)
0.173304 + 0.984868i \(0.444556\pi\)
\(998\) −30.9230 −0.978850
\(999\) 2.47214 0.0782149
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1338.2.a.b.1.1 2
3.2 odd 2 4014.2.a.k.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1338.2.a.b.1.1 2 1.1 even 1 trivial
4014.2.a.k.1.2 2 3.2 odd 2