Properties

Label 1338.2.a.f.1.1
Level $1338$
Weight $2$
Character 1338.1
Self dual yes
Analytic conductor $10.684$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1338,2,Mod(1,1338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1338, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1338.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1338 = 2 \cdot 3 \cdot 223 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1338.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.6839837904\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.80194\) of defining polynomial
Character \(\chi\) \(=\) 1338.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -3.80194 q^{5} +1.00000 q^{6} +0.0489173 q^{7} +1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -3.80194 q^{5} +1.00000 q^{6} +0.0489173 q^{7} +1.00000 q^{8} +1.00000 q^{9} -3.80194 q^{10} -4.82908 q^{11} +1.00000 q^{12} +2.29590 q^{13} +0.0489173 q^{14} -3.80194 q^{15} +1.00000 q^{16} -7.51573 q^{17} +1.00000 q^{18} -1.46681 q^{19} -3.80194 q^{20} +0.0489173 q^{21} -4.82908 q^{22} -0.951083 q^{23} +1.00000 q^{24} +9.45473 q^{25} +2.29590 q^{26} +1.00000 q^{27} +0.0489173 q^{28} -8.54288 q^{29} -3.80194 q^{30} -3.24698 q^{31} +1.00000 q^{32} -4.82908 q^{33} -7.51573 q^{34} -0.185981 q^{35} +1.00000 q^{36} +1.26875 q^{37} -1.46681 q^{38} +2.29590 q^{39} -3.80194 q^{40} -2.91723 q^{41} +0.0489173 q^{42} -3.35690 q^{43} -4.82908 q^{44} -3.80194 q^{45} -0.951083 q^{46} +9.67994 q^{47} +1.00000 q^{48} -6.99761 q^{49} +9.45473 q^{50} -7.51573 q^{51} +2.29590 q^{52} +8.94869 q^{53} +1.00000 q^{54} +18.3599 q^{55} +0.0489173 q^{56} -1.46681 q^{57} -8.54288 q^{58} +1.86831 q^{59} -3.80194 q^{60} -2.62133 q^{61} -3.24698 q^{62} +0.0489173 q^{63} +1.00000 q^{64} -8.72886 q^{65} -4.82908 q^{66} +6.47219 q^{67} -7.51573 q^{68} -0.951083 q^{69} -0.185981 q^{70} -10.9215 q^{71} +1.00000 q^{72} -2.18598 q^{73} +1.26875 q^{74} +9.45473 q^{75} -1.46681 q^{76} -0.236226 q^{77} +2.29590 q^{78} -17.2446 q^{79} -3.80194 q^{80} +1.00000 q^{81} -2.91723 q^{82} -4.85086 q^{83} +0.0489173 q^{84} +28.5743 q^{85} -3.35690 q^{86} -8.54288 q^{87} -4.82908 q^{88} -8.66487 q^{89} -3.80194 q^{90} +0.112309 q^{91} -0.951083 q^{92} -3.24698 q^{93} +9.67994 q^{94} +5.57673 q^{95} +1.00000 q^{96} +9.12498 q^{97} -6.99761 q^{98} -4.82908 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{2} + 3 q^{3} + 3 q^{4} - 7 q^{5} + 3 q^{6} - 9 q^{7} + 3 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + 3 q^{2} + 3 q^{3} + 3 q^{4} - 7 q^{5} + 3 q^{6} - 9 q^{7} + 3 q^{8} + 3 q^{9} - 7 q^{10} - 4 q^{11} + 3 q^{12} - 7 q^{13} - 9 q^{14} - 7 q^{15} + 3 q^{16} - 10 q^{17} + 3 q^{18} - q^{19} - 7 q^{20} - 9 q^{21} - 4 q^{22} - 12 q^{23} + 3 q^{24} + 6 q^{25} - 7 q^{26} + 3 q^{27} - 9 q^{28} - 7 q^{29} - 7 q^{30} - 5 q^{31} + 3 q^{32} - 4 q^{33} - 10 q^{34} + 14 q^{35} + 3 q^{36} - 4 q^{37} - q^{38} - 7 q^{39} - 7 q^{40} - 2 q^{41} - 9 q^{42} - 6 q^{43} - 4 q^{44} - 7 q^{45} - 12 q^{46} + 5 q^{47} + 3 q^{48} + 20 q^{49} + 6 q^{50} - 10 q^{51} - 7 q^{52} - 5 q^{53} + 3 q^{54} + 7 q^{55} - 9 q^{56} - q^{57} - 7 q^{58} + 8 q^{59} - 7 q^{60} - 15 q^{61} - 5 q^{62} - 9 q^{63} + 3 q^{64} + 7 q^{65} - 4 q^{66} + 13 q^{67} - 10 q^{68} - 12 q^{69} + 14 q^{70} - 7 q^{71} + 3 q^{72} + 8 q^{73} - 4 q^{74} + 6 q^{75} - q^{76} - 2 q^{77} - 7 q^{78} - 6 q^{79} - 7 q^{80} + 3 q^{81} - 2 q^{82} - q^{83} - 9 q^{84} + 42 q^{85} - 6 q^{86} - 7 q^{87} - 4 q^{88} - 27 q^{89} - 7 q^{90} + 42 q^{91} - 12 q^{92} - 5 q^{93} + 5 q^{94} + 14 q^{95} + 3 q^{96} + 3 q^{97} + 20 q^{98} - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) −3.80194 −1.70028 −0.850139 0.526558i \(-0.823482\pi\)
−0.850139 + 0.526558i \(0.823482\pi\)
\(6\) 1.00000 0.408248
\(7\) 0.0489173 0.0184890 0.00924451 0.999957i \(-0.497057\pi\)
0.00924451 + 0.999957i \(0.497057\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) −3.80194 −1.20228
\(11\) −4.82908 −1.45602 −0.728012 0.685564i \(-0.759555\pi\)
−0.728012 + 0.685564i \(0.759555\pi\)
\(12\) 1.00000 0.288675
\(13\) 2.29590 0.636767 0.318384 0.947962i \(-0.396860\pi\)
0.318384 + 0.947962i \(0.396860\pi\)
\(14\) 0.0489173 0.0130737
\(15\) −3.80194 −0.981656
\(16\) 1.00000 0.250000
\(17\) −7.51573 −1.82283 −0.911416 0.411486i \(-0.865010\pi\)
−0.911416 + 0.411486i \(0.865010\pi\)
\(18\) 1.00000 0.235702
\(19\) −1.46681 −0.336510 −0.168255 0.985744i \(-0.553813\pi\)
−0.168255 + 0.985744i \(0.553813\pi\)
\(20\) −3.80194 −0.850139
\(21\) 0.0489173 0.0106746
\(22\) −4.82908 −1.02956
\(23\) −0.951083 −0.198314 −0.0991572 0.995072i \(-0.531615\pi\)
−0.0991572 + 0.995072i \(0.531615\pi\)
\(24\) 1.00000 0.204124
\(25\) 9.45473 1.89095
\(26\) 2.29590 0.450262
\(27\) 1.00000 0.192450
\(28\) 0.0489173 0.00924451
\(29\) −8.54288 −1.58637 −0.793186 0.608979i \(-0.791579\pi\)
−0.793186 + 0.608979i \(0.791579\pi\)
\(30\) −3.80194 −0.694136
\(31\) −3.24698 −0.583175 −0.291587 0.956544i \(-0.594183\pi\)
−0.291587 + 0.956544i \(0.594183\pi\)
\(32\) 1.00000 0.176777
\(33\) −4.82908 −0.840636
\(34\) −7.51573 −1.28894
\(35\) −0.185981 −0.0314365
\(36\) 1.00000 0.166667
\(37\) 1.26875 0.208581 0.104291 0.994547i \(-0.466743\pi\)
0.104291 + 0.994547i \(0.466743\pi\)
\(38\) −1.46681 −0.237948
\(39\) 2.29590 0.367638
\(40\) −3.80194 −0.601139
\(41\) −2.91723 −0.455595 −0.227797 0.973709i \(-0.573152\pi\)
−0.227797 + 0.973709i \(0.573152\pi\)
\(42\) 0.0489173 0.00754811
\(43\) −3.35690 −0.511922 −0.255961 0.966687i \(-0.582392\pi\)
−0.255961 + 0.966687i \(0.582392\pi\)
\(44\) −4.82908 −0.728012
\(45\) −3.80194 −0.566759
\(46\) −0.951083 −0.140229
\(47\) 9.67994 1.41196 0.705982 0.708230i \(-0.250506\pi\)
0.705982 + 0.708230i \(0.250506\pi\)
\(48\) 1.00000 0.144338
\(49\) −6.99761 −0.999658
\(50\) 9.45473 1.33710
\(51\) −7.51573 −1.05241
\(52\) 2.29590 0.318384
\(53\) 8.94869 1.22920 0.614599 0.788840i \(-0.289318\pi\)
0.614599 + 0.788840i \(0.289318\pi\)
\(54\) 1.00000 0.136083
\(55\) 18.3599 2.47565
\(56\) 0.0489173 0.00653685
\(57\) −1.46681 −0.194284
\(58\) −8.54288 −1.12173
\(59\) 1.86831 0.243234 0.121617 0.992577i \(-0.461192\pi\)
0.121617 + 0.992577i \(0.461192\pi\)
\(60\) −3.80194 −0.490828
\(61\) −2.62133 −0.335627 −0.167814 0.985819i \(-0.553671\pi\)
−0.167814 + 0.985819i \(0.553671\pi\)
\(62\) −3.24698 −0.412367
\(63\) 0.0489173 0.00616301
\(64\) 1.00000 0.125000
\(65\) −8.72886 −1.08268
\(66\) −4.82908 −0.594419
\(67\) 6.47219 0.790704 0.395352 0.918530i \(-0.370623\pi\)
0.395352 + 0.918530i \(0.370623\pi\)
\(68\) −7.51573 −0.911416
\(69\) −0.951083 −0.114497
\(70\) −0.185981 −0.0222289
\(71\) −10.9215 −1.29615 −0.648074 0.761577i \(-0.724425\pi\)
−0.648074 + 0.761577i \(0.724425\pi\)
\(72\) 1.00000 0.117851
\(73\) −2.18598 −0.255850 −0.127925 0.991784i \(-0.540832\pi\)
−0.127925 + 0.991784i \(0.540832\pi\)
\(74\) 1.26875 0.147489
\(75\) 9.45473 1.09174
\(76\) −1.46681 −0.168255
\(77\) −0.236226 −0.0269204
\(78\) 2.29590 0.259959
\(79\) −17.2446 −1.94017 −0.970084 0.242770i \(-0.921944\pi\)
−0.970084 + 0.242770i \(0.921944\pi\)
\(80\) −3.80194 −0.425070
\(81\) 1.00000 0.111111
\(82\) −2.91723 −0.322154
\(83\) −4.85086 −0.532451 −0.266225 0.963911i \(-0.585777\pi\)
−0.266225 + 0.963911i \(0.585777\pi\)
\(84\) 0.0489173 0.00533732
\(85\) 28.5743 3.09932
\(86\) −3.35690 −0.361983
\(87\) −8.54288 −0.915893
\(88\) −4.82908 −0.514782
\(89\) −8.66487 −0.918475 −0.459237 0.888314i \(-0.651877\pi\)
−0.459237 + 0.888314i \(0.651877\pi\)
\(90\) −3.80194 −0.400759
\(91\) 0.112309 0.0117732
\(92\) −0.951083 −0.0991572
\(93\) −3.24698 −0.336696
\(94\) 9.67994 0.998410
\(95\) 5.57673 0.572160
\(96\) 1.00000 0.102062
\(97\) 9.12498 0.926502 0.463251 0.886227i \(-0.346683\pi\)
0.463251 + 0.886227i \(0.346683\pi\)
\(98\) −6.99761 −0.706865
\(99\) −4.82908 −0.485341
\(100\) 9.45473 0.945473
\(101\) 15.1347 1.50596 0.752978 0.658046i \(-0.228617\pi\)
0.752978 + 0.658046i \(0.228617\pi\)
\(102\) −7.51573 −0.744168
\(103\) −16.9638 −1.67149 −0.835744 0.549119i \(-0.814963\pi\)
−0.835744 + 0.549119i \(0.814963\pi\)
\(104\) 2.29590 0.225131
\(105\) −0.185981 −0.0181499
\(106\) 8.94869 0.869174
\(107\) 12.7724 1.23475 0.617377 0.786667i \(-0.288195\pi\)
0.617377 + 0.786667i \(0.288195\pi\)
\(108\) 1.00000 0.0962250
\(109\) 6.80731 0.652022 0.326011 0.945366i \(-0.394295\pi\)
0.326011 + 0.945366i \(0.394295\pi\)
\(110\) 18.3599 1.75055
\(111\) 1.26875 0.120424
\(112\) 0.0489173 0.00462225
\(113\) 9.97046 0.937942 0.468971 0.883214i \(-0.344625\pi\)
0.468971 + 0.883214i \(0.344625\pi\)
\(114\) −1.46681 −0.137380
\(115\) 3.61596 0.337190
\(116\) −8.54288 −0.793186
\(117\) 2.29590 0.212256
\(118\) 1.86831 0.171992
\(119\) −0.367649 −0.0337024
\(120\) −3.80194 −0.347068
\(121\) 12.3201 1.12001
\(122\) −2.62133 −0.237324
\(123\) −2.91723 −0.263038
\(124\) −3.24698 −0.291587
\(125\) −16.9366 −1.51486
\(126\) 0.0489173 0.00435790
\(127\) −6.74094 −0.598162 −0.299081 0.954228i \(-0.596680\pi\)
−0.299081 + 0.954228i \(0.596680\pi\)
\(128\) 1.00000 0.0883883
\(129\) −3.35690 −0.295558
\(130\) −8.72886 −0.765571
\(131\) 15.9879 1.39687 0.698435 0.715673i \(-0.253880\pi\)
0.698435 + 0.715673i \(0.253880\pi\)
\(132\) −4.82908 −0.420318
\(133\) −0.0717525 −0.00622173
\(134\) 6.47219 0.559112
\(135\) −3.80194 −0.327219
\(136\) −7.51573 −0.644468
\(137\) 12.8823 1.10061 0.550305 0.834964i \(-0.314511\pi\)
0.550305 + 0.834964i \(0.314511\pi\)
\(138\) −0.951083 −0.0809615
\(139\) 12.1860 1.03360 0.516801 0.856106i \(-0.327123\pi\)
0.516801 + 0.856106i \(0.327123\pi\)
\(140\) −0.185981 −0.0157182
\(141\) 9.67994 0.815198
\(142\) −10.9215 −0.916516
\(143\) −11.0871 −0.927148
\(144\) 1.00000 0.0833333
\(145\) 32.4795 2.69727
\(146\) −2.18598 −0.180913
\(147\) −6.99761 −0.577153
\(148\) 1.26875 0.104291
\(149\) −1.36898 −0.112151 −0.0560755 0.998427i \(-0.517859\pi\)
−0.0560755 + 0.998427i \(0.517859\pi\)
\(150\) 9.45473 0.771976
\(151\) 13.0707 1.06368 0.531839 0.846846i \(-0.321501\pi\)
0.531839 + 0.846846i \(0.321501\pi\)
\(152\) −1.46681 −0.118974
\(153\) −7.51573 −0.607611
\(154\) −0.236226 −0.0190356
\(155\) 12.3448 0.991559
\(156\) 2.29590 0.183819
\(157\) −12.1347 −0.968452 −0.484226 0.874943i \(-0.660899\pi\)
−0.484226 + 0.874943i \(0.660899\pi\)
\(158\) −17.2446 −1.37191
\(159\) 8.94869 0.709677
\(160\) −3.80194 −0.300570
\(161\) −0.0465244 −0.00366664
\(162\) 1.00000 0.0785674
\(163\) −9.86725 −0.772863 −0.386431 0.922318i \(-0.626292\pi\)
−0.386431 + 0.922318i \(0.626292\pi\)
\(164\) −2.91723 −0.227797
\(165\) 18.3599 1.42931
\(166\) −4.85086 −0.376499
\(167\) −11.4306 −0.884524 −0.442262 0.896886i \(-0.645824\pi\)
−0.442262 + 0.896886i \(0.645824\pi\)
\(168\) 0.0489173 0.00377405
\(169\) −7.72886 −0.594527
\(170\) 28.5743 2.19155
\(171\) −1.46681 −0.112170
\(172\) −3.35690 −0.255961
\(173\) −7.91185 −0.601527 −0.300764 0.953699i \(-0.597242\pi\)
−0.300764 + 0.953699i \(0.597242\pi\)
\(174\) −8.54288 −0.647634
\(175\) 0.462500 0.0349617
\(176\) −4.82908 −0.364006
\(177\) 1.86831 0.140431
\(178\) −8.66487 −0.649460
\(179\) 11.9162 0.890656 0.445328 0.895367i \(-0.353087\pi\)
0.445328 + 0.895367i \(0.353087\pi\)
\(180\) −3.80194 −0.283380
\(181\) −17.0097 −1.26432 −0.632160 0.774838i \(-0.717832\pi\)
−0.632160 + 0.774838i \(0.717832\pi\)
\(182\) 0.112309 0.00832491
\(183\) −2.62133 −0.193775
\(184\) −0.951083 −0.0701147
\(185\) −4.82371 −0.354646
\(186\) −3.24698 −0.238080
\(187\) 36.2941 2.65409
\(188\) 9.67994 0.705982
\(189\) 0.0489173 0.00355821
\(190\) 5.57673 0.404578
\(191\) 8.43057 0.610014 0.305007 0.952350i \(-0.401341\pi\)
0.305007 + 0.952350i \(0.401341\pi\)
\(192\) 1.00000 0.0721688
\(193\) 21.8920 1.57582 0.787910 0.615790i \(-0.211163\pi\)
0.787910 + 0.615790i \(0.211163\pi\)
\(194\) 9.12498 0.655136
\(195\) −8.72886 −0.625086
\(196\) −6.99761 −0.499829
\(197\) −1.07606 −0.0766664 −0.0383332 0.999265i \(-0.512205\pi\)
−0.0383332 + 0.999265i \(0.512205\pi\)
\(198\) −4.82908 −0.343188
\(199\) −19.1588 −1.35813 −0.679067 0.734076i \(-0.737615\pi\)
−0.679067 + 0.734076i \(0.737615\pi\)
\(200\) 9.45473 0.668550
\(201\) 6.47219 0.456513
\(202\) 15.1347 1.06487
\(203\) −0.417895 −0.0293305
\(204\) −7.51573 −0.526206
\(205\) 11.0911 0.774638
\(206\) −16.9638 −1.18192
\(207\) −0.951083 −0.0661048
\(208\) 2.29590 0.159192
\(209\) 7.08336 0.489966
\(210\) −0.185981 −0.0128339
\(211\) 17.1414 1.18006 0.590030 0.807381i \(-0.299116\pi\)
0.590030 + 0.807381i \(0.299116\pi\)
\(212\) 8.94869 0.614599
\(213\) −10.9215 −0.748332
\(214\) 12.7724 0.873103
\(215\) 12.7627 0.870410
\(216\) 1.00000 0.0680414
\(217\) −0.158834 −0.0107823
\(218\) 6.80731 0.461050
\(219\) −2.18598 −0.147715
\(220\) 18.3599 1.23782
\(221\) −17.2553 −1.16072
\(222\) 1.26875 0.0851529
\(223\) −1.00000 −0.0669650
\(224\) 0.0489173 0.00326843
\(225\) 9.45473 0.630315
\(226\) 9.97046 0.663225
\(227\) 13.8605 0.919957 0.459978 0.887930i \(-0.347857\pi\)
0.459978 + 0.887930i \(0.347857\pi\)
\(228\) −1.46681 −0.0971420
\(229\) −1.16852 −0.0772181 −0.0386091 0.999254i \(-0.512293\pi\)
−0.0386091 + 0.999254i \(0.512293\pi\)
\(230\) 3.61596 0.238429
\(231\) −0.236226 −0.0155425
\(232\) −8.54288 −0.560867
\(233\) 21.3381 1.39791 0.698953 0.715168i \(-0.253650\pi\)
0.698953 + 0.715168i \(0.253650\pi\)
\(234\) 2.29590 0.150087
\(235\) −36.8025 −2.40073
\(236\) 1.86831 0.121617
\(237\) −17.2446 −1.12016
\(238\) −0.367649 −0.0238312
\(239\) −2.81940 −0.182372 −0.0911858 0.995834i \(-0.529066\pi\)
−0.0911858 + 0.995834i \(0.529066\pi\)
\(240\) −3.80194 −0.245414
\(241\) −28.5555 −1.83942 −0.919712 0.392593i \(-0.871578\pi\)
−0.919712 + 0.392593i \(0.871578\pi\)
\(242\) 12.3201 0.791963
\(243\) 1.00000 0.0641500
\(244\) −2.62133 −0.167814
\(245\) 26.6045 1.69970
\(246\) −2.91723 −0.185996
\(247\) −3.36765 −0.214278
\(248\) −3.24698 −0.206183
\(249\) −4.85086 −0.307410
\(250\) −16.9366 −1.07117
\(251\) −29.3260 −1.85104 −0.925521 0.378696i \(-0.876373\pi\)
−0.925521 + 0.378696i \(0.876373\pi\)
\(252\) 0.0489173 0.00308150
\(253\) 4.59286 0.288751
\(254\) −6.74094 −0.422964
\(255\) 28.5743 1.78939
\(256\) 1.00000 0.0625000
\(257\) −25.6256 −1.59848 −0.799242 0.601009i \(-0.794765\pi\)
−0.799242 + 0.601009i \(0.794765\pi\)
\(258\) −3.35690 −0.208991
\(259\) 0.0620639 0.00385646
\(260\) −8.72886 −0.541341
\(261\) −8.54288 −0.528791
\(262\) 15.9879 0.987737
\(263\) −21.5066 −1.32616 −0.663078 0.748550i \(-0.730750\pi\)
−0.663078 + 0.748550i \(0.730750\pi\)
\(264\) −4.82908 −0.297210
\(265\) −34.0224 −2.08998
\(266\) −0.0717525 −0.00439943
\(267\) −8.66487 −0.530282
\(268\) 6.47219 0.395352
\(269\) −2.54527 −0.155188 −0.0775939 0.996985i \(-0.524724\pi\)
−0.0775939 + 0.996985i \(0.524724\pi\)
\(270\) −3.80194 −0.231379
\(271\) −16.6896 −1.01382 −0.506911 0.861998i \(-0.669213\pi\)
−0.506911 + 0.861998i \(0.669213\pi\)
\(272\) −7.51573 −0.455708
\(273\) 0.112309 0.00679726
\(274\) 12.8823 0.778249
\(275\) −45.6577 −2.75326
\(276\) −0.951083 −0.0572484
\(277\) −21.1957 −1.27352 −0.636762 0.771060i \(-0.719727\pi\)
−0.636762 + 0.771060i \(0.719727\pi\)
\(278\) 12.1860 0.730867
\(279\) −3.24698 −0.194392
\(280\) −0.185981 −0.0111145
\(281\) −3.09246 −0.184481 −0.0922403 0.995737i \(-0.529403\pi\)
−0.0922403 + 0.995737i \(0.529403\pi\)
\(282\) 9.67994 0.576432
\(283\) 0.987918 0.0587257 0.0293628 0.999569i \(-0.490652\pi\)
0.0293628 + 0.999569i \(0.490652\pi\)
\(284\) −10.9215 −0.648074
\(285\) 5.57673 0.330337
\(286\) −11.0871 −0.655593
\(287\) −0.142703 −0.00842350
\(288\) 1.00000 0.0589256
\(289\) 39.4862 2.32272
\(290\) 32.4795 1.90726
\(291\) 9.12498 0.534916
\(292\) −2.18598 −0.127925
\(293\) 12.7657 0.745780 0.372890 0.927876i \(-0.378367\pi\)
0.372890 + 0.927876i \(0.378367\pi\)
\(294\) −6.99761 −0.408109
\(295\) −7.10321 −0.413565
\(296\) 1.26875 0.0737446
\(297\) −4.82908 −0.280212
\(298\) −1.36898 −0.0793027
\(299\) −2.18359 −0.126280
\(300\) 9.45473 0.545869
\(301\) −0.164210 −0.00946493
\(302\) 13.0707 0.752134
\(303\) 15.1347 0.869464
\(304\) −1.46681 −0.0841274
\(305\) 9.96615 0.570660
\(306\) −7.51573 −0.429646
\(307\) 18.7211 1.06847 0.534234 0.845336i \(-0.320600\pi\)
0.534234 + 0.845336i \(0.320600\pi\)
\(308\) −0.236226 −0.0134602
\(309\) −16.9638 −0.965034
\(310\) 12.3448 0.701138
\(311\) 7.89977 0.447955 0.223977 0.974594i \(-0.428096\pi\)
0.223977 + 0.974594i \(0.428096\pi\)
\(312\) 2.29590 0.129980
\(313\) −32.3448 −1.82824 −0.914118 0.405447i \(-0.867116\pi\)
−0.914118 + 0.405447i \(0.867116\pi\)
\(314\) −12.1347 −0.684799
\(315\) −0.185981 −0.0104788
\(316\) −17.2446 −0.970084
\(317\) −27.3967 −1.53875 −0.769376 0.638796i \(-0.779433\pi\)
−0.769376 + 0.638796i \(0.779433\pi\)
\(318\) 8.94869 0.501818
\(319\) 41.2543 2.30980
\(320\) −3.80194 −0.212535
\(321\) 12.7724 0.712886
\(322\) −0.0465244 −0.00259271
\(323\) 11.0242 0.613401
\(324\) 1.00000 0.0555556
\(325\) 21.7071 1.20409
\(326\) −9.86725 −0.546496
\(327\) 6.80731 0.376445
\(328\) −2.91723 −0.161077
\(329\) 0.473517 0.0261058
\(330\) 18.3599 1.01068
\(331\) 27.7071 1.52292 0.761460 0.648212i \(-0.224483\pi\)
0.761460 + 0.648212i \(0.224483\pi\)
\(332\) −4.85086 −0.266225
\(333\) 1.26875 0.0695271
\(334\) −11.4306 −0.625453
\(335\) −24.6069 −1.34442
\(336\) 0.0489173 0.00266866
\(337\) 25.2403 1.37493 0.687463 0.726220i \(-0.258724\pi\)
0.687463 + 0.726220i \(0.258724\pi\)
\(338\) −7.72886 −0.420394
\(339\) 9.97046 0.541521
\(340\) 28.5743 1.54966
\(341\) 15.6799 0.849116
\(342\) −1.46681 −0.0793161
\(343\) −0.684726 −0.0369717
\(344\) −3.35690 −0.180992
\(345\) 3.61596 0.194677
\(346\) −7.91185 −0.425344
\(347\) 4.34242 0.233113 0.116557 0.993184i \(-0.462814\pi\)
0.116557 + 0.993184i \(0.462814\pi\)
\(348\) −8.54288 −0.457946
\(349\) −17.7942 −0.952500 −0.476250 0.879310i \(-0.658004\pi\)
−0.476250 + 0.879310i \(0.658004\pi\)
\(350\) 0.462500 0.0247217
\(351\) 2.29590 0.122546
\(352\) −4.82908 −0.257391
\(353\) 3.17821 0.169159 0.0845796 0.996417i \(-0.473045\pi\)
0.0845796 + 0.996417i \(0.473045\pi\)
\(354\) 1.86831 0.0992997
\(355\) 41.5230 2.20381
\(356\) −8.66487 −0.459237
\(357\) −0.367649 −0.0194581
\(358\) 11.9162 0.629789
\(359\) 6.82238 0.360071 0.180036 0.983660i \(-0.442379\pi\)
0.180036 + 0.983660i \(0.442379\pi\)
\(360\) −3.80194 −0.200380
\(361\) −16.8485 −0.886761
\(362\) −17.0097 −0.894009
\(363\) 12.3201 0.646635
\(364\) 0.112309 0.00588660
\(365\) 8.31096 0.435016
\(366\) −2.62133 −0.137019
\(367\) 7.61655 0.397581 0.198790 0.980042i \(-0.436299\pi\)
0.198790 + 0.980042i \(0.436299\pi\)
\(368\) −0.951083 −0.0495786
\(369\) −2.91723 −0.151865
\(370\) −4.82371 −0.250773
\(371\) 0.437746 0.0227266
\(372\) −3.24698 −0.168348
\(373\) 9.86161 0.510615 0.255307 0.966860i \(-0.417823\pi\)
0.255307 + 0.966860i \(0.417823\pi\)
\(374\) 36.2941 1.87672
\(375\) −16.9366 −0.874603
\(376\) 9.67994 0.499205
\(377\) −19.6136 −1.01015
\(378\) 0.0489173 0.00251604
\(379\) −9.93469 −0.510311 −0.255155 0.966900i \(-0.582127\pi\)
−0.255155 + 0.966900i \(0.582127\pi\)
\(380\) 5.57673 0.286080
\(381\) −6.74094 −0.345349
\(382\) 8.43057 0.431345
\(383\) 12.9245 0.660412 0.330206 0.943909i \(-0.392882\pi\)
0.330206 + 0.943909i \(0.392882\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0.898116 0.0457723
\(386\) 21.8920 1.11427
\(387\) −3.35690 −0.170641
\(388\) 9.12498 0.463251
\(389\) −28.8726 −1.46390 −0.731950 0.681358i \(-0.761390\pi\)
−0.731950 + 0.681358i \(0.761390\pi\)
\(390\) −8.72886 −0.442003
\(391\) 7.14808 0.361494
\(392\) −6.99761 −0.353433
\(393\) 15.9879 0.806484
\(394\) −1.07606 −0.0542113
\(395\) 65.5628 3.29882
\(396\) −4.82908 −0.242671
\(397\) 0.423272 0.0212434 0.0106217 0.999944i \(-0.496619\pi\)
0.0106217 + 0.999944i \(0.496619\pi\)
\(398\) −19.1588 −0.960346
\(399\) −0.0717525 −0.00359212
\(400\) 9.45473 0.472737
\(401\) −27.8998 −1.39325 −0.696624 0.717436i \(-0.745315\pi\)
−0.696624 + 0.717436i \(0.745315\pi\)
\(402\) 6.47219 0.322803
\(403\) −7.45473 −0.371347
\(404\) 15.1347 0.752978
\(405\) −3.80194 −0.188920
\(406\) −0.417895 −0.0207398
\(407\) −6.12690 −0.303699
\(408\) −7.51573 −0.372084
\(409\) 7.20882 0.356453 0.178227 0.983989i \(-0.442964\pi\)
0.178227 + 0.983989i \(0.442964\pi\)
\(410\) 11.0911 0.547752
\(411\) 12.8823 0.635438
\(412\) −16.9638 −0.835744
\(413\) 0.0913929 0.00449715
\(414\) −0.951083 −0.0467432
\(415\) 18.4426 0.905314
\(416\) 2.29590 0.112566
\(417\) 12.1860 0.596750
\(418\) 7.08336 0.346458
\(419\) −3.50365 −0.171164 −0.0855822 0.996331i \(-0.527275\pi\)
−0.0855822 + 0.996331i \(0.527275\pi\)
\(420\) −0.185981 −0.00907493
\(421\) 25.0965 1.22313 0.611564 0.791195i \(-0.290541\pi\)
0.611564 + 0.791195i \(0.290541\pi\)
\(422\) 17.1414 0.834429
\(423\) 9.67994 0.470655
\(424\) 8.94869 0.434587
\(425\) −71.0592 −3.44688
\(426\) −10.9215 −0.529150
\(427\) −0.128229 −0.00620542
\(428\) 12.7724 0.617377
\(429\) −11.0871 −0.535289
\(430\) 12.7627 0.615472
\(431\) −3.33944 −0.160855 −0.0804275 0.996760i \(-0.525629\pi\)
−0.0804275 + 0.996760i \(0.525629\pi\)
\(432\) 1.00000 0.0481125
\(433\) 17.3980 0.836097 0.418048 0.908425i \(-0.362714\pi\)
0.418048 + 0.908425i \(0.362714\pi\)
\(434\) −0.158834 −0.00762426
\(435\) 32.4795 1.55727
\(436\) 6.80731 0.326011
\(437\) 1.39506 0.0667348
\(438\) −2.18598 −0.104450
\(439\) −14.7869 −0.705739 −0.352869 0.935673i \(-0.614794\pi\)
−0.352869 + 0.935673i \(0.614794\pi\)
\(440\) 18.3599 0.875273
\(441\) −6.99761 −0.333219
\(442\) −17.2553 −0.820753
\(443\) −6.95407 −0.330398 −0.165199 0.986260i \(-0.552827\pi\)
−0.165199 + 0.986260i \(0.552827\pi\)
\(444\) 1.26875 0.0602122
\(445\) 32.9433 1.56166
\(446\) −1.00000 −0.0473514
\(447\) −1.36898 −0.0647504
\(448\) 0.0489173 0.00231113
\(449\) −39.0930 −1.84492 −0.922458 0.386099i \(-0.873822\pi\)
−0.922458 + 0.386099i \(0.873822\pi\)
\(450\) 9.45473 0.445700
\(451\) 14.0876 0.663357
\(452\) 9.97046 0.468971
\(453\) 13.0707 0.614114
\(454\) 13.8605 0.650508
\(455\) −0.426992 −0.0200177
\(456\) −1.46681 −0.0686898
\(457\) −15.6896 −0.733930 −0.366965 0.930235i \(-0.619603\pi\)
−0.366965 + 0.930235i \(0.619603\pi\)
\(458\) −1.16852 −0.0546015
\(459\) −7.51573 −0.350804
\(460\) 3.61596 0.168595
\(461\) 4.28382 0.199517 0.0997586 0.995012i \(-0.468193\pi\)
0.0997586 + 0.995012i \(0.468193\pi\)
\(462\) −0.236226 −0.0109902
\(463\) 1.21014 0.0562402 0.0281201 0.999605i \(-0.491048\pi\)
0.0281201 + 0.999605i \(0.491048\pi\)
\(464\) −8.54288 −0.396593
\(465\) 12.3448 0.572477
\(466\) 21.3381 0.988469
\(467\) −24.7006 −1.14301 −0.571505 0.820599i \(-0.693640\pi\)
−0.571505 + 0.820599i \(0.693640\pi\)
\(468\) 2.29590 0.106128
\(469\) 0.316602 0.0146193
\(470\) −36.8025 −1.69757
\(471\) −12.1347 −0.559136
\(472\) 1.86831 0.0859961
\(473\) 16.2107 0.745370
\(474\) −17.2446 −0.792070
\(475\) −13.8683 −0.636322
\(476\) −0.367649 −0.0168512
\(477\) 8.94869 0.409732
\(478\) −2.81940 −0.128956
\(479\) −13.9366 −0.636780 −0.318390 0.947960i \(-0.603142\pi\)
−0.318390 + 0.947960i \(0.603142\pi\)
\(480\) −3.80194 −0.173534
\(481\) 2.91292 0.132818
\(482\) −28.5555 −1.30067
\(483\) −0.0465244 −0.00211694
\(484\) 12.3201 0.560003
\(485\) −34.6926 −1.57531
\(486\) 1.00000 0.0453609
\(487\) −11.1304 −0.504365 −0.252182 0.967680i \(-0.581148\pi\)
−0.252182 + 0.967680i \(0.581148\pi\)
\(488\) −2.62133 −0.118662
\(489\) −9.86725 −0.446212
\(490\) 26.6045 1.20187
\(491\) 1.41550 0.0638807 0.0319404 0.999490i \(-0.489831\pi\)
0.0319404 + 0.999490i \(0.489831\pi\)
\(492\) −2.91723 −0.131519
\(493\) 64.2059 2.89169
\(494\) −3.36765 −0.151518
\(495\) 18.3599 0.825215
\(496\) −3.24698 −0.145794
\(497\) −0.534253 −0.0239645
\(498\) −4.85086 −0.217372
\(499\) 37.2771 1.66875 0.834376 0.551195i \(-0.185828\pi\)
0.834376 + 0.551195i \(0.185828\pi\)
\(500\) −16.9366 −0.757428
\(501\) −11.4306 −0.510680
\(502\) −29.3260 −1.30888
\(503\) −1.42865 −0.0637003 −0.0318501 0.999493i \(-0.510140\pi\)
−0.0318501 + 0.999493i \(0.510140\pi\)
\(504\) 0.0489173 0.00217895
\(505\) −57.5411 −2.56054
\(506\) 4.59286 0.204177
\(507\) −7.72886 −0.343251
\(508\) −6.74094 −0.299081
\(509\) −31.7802 −1.40863 −0.704316 0.709887i \(-0.748746\pi\)
−0.704316 + 0.709887i \(0.748746\pi\)
\(510\) 28.5743 1.26529
\(511\) −0.106932 −0.00473041
\(512\) 1.00000 0.0441942
\(513\) −1.46681 −0.0647613
\(514\) −25.6256 −1.13030
\(515\) 64.4951 2.84200
\(516\) −3.35690 −0.147779
\(517\) −46.7453 −2.05585
\(518\) 0.0620639 0.00272693
\(519\) −7.91185 −0.347292
\(520\) −8.72886 −0.382786
\(521\) −42.3099 −1.85363 −0.926815 0.375518i \(-0.877465\pi\)
−0.926815 + 0.375518i \(0.877465\pi\)
\(522\) −8.54288 −0.373912
\(523\) 2.18731 0.0956443 0.0478222 0.998856i \(-0.484772\pi\)
0.0478222 + 0.998856i \(0.484772\pi\)
\(524\) 15.9879 0.698435
\(525\) 0.462500 0.0201852
\(526\) −21.5066 −0.937734
\(527\) 24.4034 1.06303
\(528\) −4.82908 −0.210159
\(529\) −22.0954 −0.960671
\(530\) −34.0224 −1.47784
\(531\) 1.86831 0.0810779
\(532\) −0.0717525 −0.00311087
\(533\) −6.69766 −0.290108
\(534\) −8.66487 −0.374966
\(535\) −48.5599 −2.09943
\(536\) 6.47219 0.279556
\(537\) 11.9162 0.514221
\(538\) −2.54527 −0.109734
\(539\) 33.7920 1.45553
\(540\) −3.80194 −0.163609
\(541\) 1.76941 0.0760730 0.0380365 0.999276i \(-0.487890\pi\)
0.0380365 + 0.999276i \(0.487890\pi\)
\(542\) −16.6896 −0.716881
\(543\) −17.0097 −0.729956
\(544\) −7.51573 −0.322234
\(545\) −25.8810 −1.10862
\(546\) 0.112309 0.00480639
\(547\) −34.7657 −1.48647 −0.743237 0.669028i \(-0.766710\pi\)
−0.743237 + 0.669028i \(0.766710\pi\)
\(548\) 12.8823 0.550305
\(549\) −2.62133 −0.111876
\(550\) −45.6577 −1.94685
\(551\) 12.5308 0.533830
\(552\) −0.951083 −0.0404808
\(553\) −0.843559 −0.0358718
\(554\) −21.1957 −0.900518
\(555\) −4.82371 −0.204755
\(556\) 12.1860 0.516801
\(557\) 18.4179 0.780391 0.390196 0.920732i \(-0.372407\pi\)
0.390196 + 0.920732i \(0.372407\pi\)
\(558\) −3.24698 −0.137456
\(559\) −7.70709 −0.325975
\(560\) −0.185981 −0.00785912
\(561\) 36.2941 1.53234
\(562\) −3.09246 −0.130447
\(563\) 42.1836 1.77783 0.888913 0.458076i \(-0.151461\pi\)
0.888913 + 0.458076i \(0.151461\pi\)
\(564\) 9.67994 0.407599
\(565\) −37.9071 −1.59476
\(566\) 0.987918 0.0415253
\(567\) 0.0489173 0.00205434
\(568\) −10.9215 −0.458258
\(569\) −33.2121 −1.39232 −0.696161 0.717886i \(-0.745110\pi\)
−0.696161 + 0.717886i \(0.745110\pi\)
\(570\) 5.57673 0.233583
\(571\) 28.1540 1.17821 0.589105 0.808056i \(-0.299480\pi\)
0.589105 + 0.808056i \(0.299480\pi\)
\(572\) −11.0871 −0.463574
\(573\) 8.43057 0.352192
\(574\) −0.142703 −0.00595632
\(575\) −8.99223 −0.375002
\(576\) 1.00000 0.0416667
\(577\) 18.3448 0.763705 0.381852 0.924223i \(-0.375286\pi\)
0.381852 + 0.924223i \(0.375286\pi\)
\(578\) 39.4862 1.64241
\(579\) 21.8920 0.909801
\(580\) 32.4795 1.34864
\(581\) −0.237291 −0.00984449
\(582\) 9.12498 0.378243
\(583\) −43.2140 −1.78974
\(584\) −2.18598 −0.0904565
\(585\) −8.72886 −0.360894
\(586\) 12.7657 0.527346
\(587\) −36.2252 −1.49517 −0.747587 0.664164i \(-0.768788\pi\)
−0.747587 + 0.664164i \(0.768788\pi\)
\(588\) −6.99761 −0.288576
\(589\) 4.76271 0.196244
\(590\) −7.10321 −0.292435
\(591\) −1.07606 −0.0442634
\(592\) 1.26875 0.0521453
\(593\) 12.5399 0.514952 0.257476 0.966285i \(-0.417109\pi\)
0.257476 + 0.966285i \(0.417109\pi\)
\(594\) −4.82908 −0.198140
\(595\) 1.39778 0.0573034
\(596\) −1.36898 −0.0560755
\(597\) −19.1588 −0.784119
\(598\) −2.18359 −0.0892935
\(599\) 25.6612 1.04849 0.524243 0.851569i \(-0.324348\pi\)
0.524243 + 0.851569i \(0.324348\pi\)
\(600\) 9.45473 0.385988
\(601\) −0.963164 −0.0392883 −0.0196441 0.999807i \(-0.506253\pi\)
−0.0196441 + 0.999807i \(0.506253\pi\)
\(602\) −0.164210 −0.00669272
\(603\) 6.47219 0.263568
\(604\) 13.0707 0.531839
\(605\) −46.8401 −1.90432
\(606\) 15.1347 0.614804
\(607\) −4.67217 −0.189638 −0.0948188 0.995495i \(-0.530227\pi\)
−0.0948188 + 0.995495i \(0.530227\pi\)
\(608\) −1.46681 −0.0594871
\(609\) −0.417895 −0.0169340
\(610\) 9.96615 0.403518
\(611\) 22.2241 0.899093
\(612\) −7.51573 −0.303805
\(613\) −14.2392 −0.575116 −0.287558 0.957763i \(-0.592843\pi\)
−0.287558 + 0.957763i \(0.592843\pi\)
\(614\) 18.7211 0.755522
\(615\) 11.0911 0.447238
\(616\) −0.236226 −0.00951782
\(617\) −6.56571 −0.264326 −0.132163 0.991228i \(-0.542192\pi\)
−0.132163 + 0.991228i \(0.542192\pi\)
\(618\) −16.9638 −0.682382
\(619\) 15.6552 0.629235 0.314618 0.949219i \(-0.398124\pi\)
0.314618 + 0.949219i \(0.398124\pi\)
\(620\) 12.3448 0.495780
\(621\) −0.951083 −0.0381656
\(622\) 7.89977 0.316752
\(623\) −0.423863 −0.0169817
\(624\) 2.29590 0.0919094
\(625\) 17.1183 0.684731
\(626\) −32.3448 −1.29276
\(627\) 7.08336 0.282882
\(628\) −12.1347 −0.484226
\(629\) −9.53558 −0.380209
\(630\) −0.185981 −0.00740965
\(631\) 31.5013 1.25405 0.627023 0.779001i \(-0.284273\pi\)
0.627023 + 0.779001i \(0.284273\pi\)
\(632\) −17.2446 −0.685953
\(633\) 17.1414 0.681308
\(634\) −27.3967 −1.08806
\(635\) 25.6286 1.01704
\(636\) 8.94869 0.354839
\(637\) −16.0658 −0.636550
\(638\) 41.2543 1.63327
\(639\) −10.9215 −0.432050
\(640\) −3.80194 −0.150285
\(641\) 35.6316 1.40736 0.703682 0.710515i \(-0.251538\pi\)
0.703682 + 0.710515i \(0.251538\pi\)
\(642\) 12.7724 0.504086
\(643\) 11.1142 0.438302 0.219151 0.975691i \(-0.429671\pi\)
0.219151 + 0.975691i \(0.429671\pi\)
\(644\) −0.0465244 −0.00183332
\(645\) 12.7627 0.502531
\(646\) 11.0242 0.433740
\(647\) 24.9729 0.981784 0.490892 0.871220i \(-0.336671\pi\)
0.490892 + 0.871220i \(0.336671\pi\)
\(648\) 1.00000 0.0392837
\(649\) −9.02224 −0.354154
\(650\) 21.7071 0.851422
\(651\) −0.158834 −0.00622518
\(652\) −9.86725 −0.386431
\(653\) −33.9245 −1.32757 −0.663785 0.747924i \(-0.731051\pi\)
−0.663785 + 0.747924i \(0.731051\pi\)
\(654\) 6.80731 0.266187
\(655\) −60.7851 −2.37507
\(656\) −2.91723 −0.113899
\(657\) −2.18598 −0.0852832
\(658\) 0.473517 0.0184596
\(659\) −7.03923 −0.274209 −0.137105 0.990557i \(-0.543780\pi\)
−0.137105 + 0.990557i \(0.543780\pi\)
\(660\) 18.3599 0.714657
\(661\) −3.83685 −0.149236 −0.0746182 0.997212i \(-0.523774\pi\)
−0.0746182 + 0.997212i \(0.523774\pi\)
\(662\) 27.7071 1.07687
\(663\) −17.2553 −0.670142
\(664\) −4.85086 −0.188250
\(665\) 0.272799 0.0105787
\(666\) 1.26875 0.0491631
\(667\) 8.12498 0.314601
\(668\) −11.4306 −0.442262
\(669\) −1.00000 −0.0386622
\(670\) −24.6069 −0.950646
\(671\) 12.6586 0.488682
\(672\) 0.0489173 0.00188703
\(673\) −46.9004 −1.80788 −0.903938 0.427663i \(-0.859337\pi\)
−0.903938 + 0.427663i \(0.859337\pi\)
\(674\) 25.2403 0.972219
\(675\) 9.45473 0.363913
\(676\) −7.72886 −0.297264
\(677\) −7.27519 −0.279608 −0.139804 0.990179i \(-0.544647\pi\)
−0.139804 + 0.990179i \(0.544647\pi\)
\(678\) 9.97046 0.382913
\(679\) 0.446370 0.0171301
\(680\) 28.5743 1.09578
\(681\) 13.8605 0.531137
\(682\) 15.6799 0.600416
\(683\) 8.80061 0.336746 0.168373 0.985723i \(-0.446149\pi\)
0.168373 + 0.985723i \(0.446149\pi\)
\(684\) −1.46681 −0.0560850
\(685\) −48.9778 −1.87134
\(686\) −0.684726 −0.0261429
\(687\) −1.16852 −0.0445819
\(688\) −3.35690 −0.127980
\(689\) 20.5453 0.782712
\(690\) 3.61596 0.137657
\(691\) −18.9084 −0.719309 −0.359655 0.933085i \(-0.617105\pi\)
−0.359655 + 0.933085i \(0.617105\pi\)
\(692\) −7.91185 −0.300764
\(693\) −0.236226 −0.00897348
\(694\) 4.34242 0.164836
\(695\) −46.3303 −1.75741
\(696\) −8.54288 −0.323817
\(697\) 21.9251 0.830473
\(698\) −17.7942 −0.673519
\(699\) 21.3381 0.807081
\(700\) 0.462500 0.0174809
\(701\) 3.34721 0.126422 0.0632111 0.998000i \(-0.479866\pi\)
0.0632111 + 0.998000i \(0.479866\pi\)
\(702\) 2.29590 0.0866530
\(703\) −1.86102 −0.0701896
\(704\) −4.82908 −0.182003
\(705\) −36.8025 −1.38606
\(706\) 3.17821 0.119614
\(707\) 0.740348 0.0278436
\(708\) 1.86831 0.0702155
\(709\) 18.5907 0.698189 0.349095 0.937087i \(-0.386489\pi\)
0.349095 + 0.937087i \(0.386489\pi\)
\(710\) 41.5230 1.55833
\(711\) −17.2446 −0.646723
\(712\) −8.66487 −0.324730
\(713\) 3.08815 0.115652
\(714\) −0.367649 −0.0137589
\(715\) 42.1524 1.57641
\(716\) 11.9162 0.445328
\(717\) −2.81940 −0.105292
\(718\) 6.82238 0.254609
\(719\) −23.3787 −0.871877 −0.435939 0.899976i \(-0.643584\pi\)
−0.435939 + 0.899976i \(0.643584\pi\)
\(720\) −3.80194 −0.141690
\(721\) −0.829822 −0.0309042
\(722\) −16.8485 −0.627035
\(723\) −28.5555 −1.06199
\(724\) −17.0097 −0.632160
\(725\) −80.7706 −2.99974
\(726\) 12.3201 0.457240
\(727\) −18.4993 −0.686102 −0.343051 0.939317i \(-0.611460\pi\)
−0.343051 + 0.939317i \(0.611460\pi\)
\(728\) 0.112309 0.00416245
\(729\) 1.00000 0.0370370
\(730\) 8.31096 0.307603
\(731\) 25.2295 0.933148
\(732\) −2.62133 −0.0968873
\(733\) −26.1575 −0.966150 −0.483075 0.875579i \(-0.660480\pi\)
−0.483075 + 0.875579i \(0.660480\pi\)
\(734\) 7.61655 0.281132
\(735\) 26.6045 0.981321
\(736\) −0.951083 −0.0350574
\(737\) −31.2547 −1.15128
\(738\) −2.91723 −0.107385
\(739\) −45.8316 −1.68594 −0.842971 0.537959i \(-0.819196\pi\)
−0.842971 + 0.537959i \(0.819196\pi\)
\(740\) −4.82371 −0.177323
\(741\) −3.36765 −0.123714
\(742\) 0.437746 0.0160702
\(743\) 26.4058 0.968735 0.484368 0.874865i \(-0.339050\pi\)
0.484368 + 0.874865i \(0.339050\pi\)
\(744\) −3.24698 −0.119040
\(745\) 5.20477 0.190688
\(746\) 9.86161 0.361059
\(747\) −4.85086 −0.177484
\(748\) 36.2941 1.32704
\(749\) 0.624792 0.0228294
\(750\) −16.9366 −0.618437
\(751\) 3.32842 0.121456 0.0607279 0.998154i \(-0.480658\pi\)
0.0607279 + 0.998154i \(0.480658\pi\)
\(752\) 9.67994 0.352991
\(753\) −29.3260 −1.06870
\(754\) −19.6136 −0.714284
\(755\) −49.6939 −1.80855
\(756\) 0.0489173 0.00177911
\(757\) −29.7875 −1.08264 −0.541322 0.840815i \(-0.682076\pi\)
−0.541322 + 0.840815i \(0.682076\pi\)
\(758\) −9.93469 −0.360844
\(759\) 4.59286 0.166710
\(760\) 5.57673 0.202289
\(761\) 31.2194 1.13170 0.565850 0.824508i \(-0.308548\pi\)
0.565850 + 0.824508i \(0.308548\pi\)
\(762\) −6.74094 −0.244198
\(763\) 0.332996 0.0120553
\(764\) 8.43057 0.305007
\(765\) 28.5743 1.03311
\(766\) 12.9245 0.466982
\(767\) 4.28946 0.154883
\(768\) 1.00000 0.0360844
\(769\) −14.7178 −0.530739 −0.265369 0.964147i \(-0.585494\pi\)
−0.265369 + 0.964147i \(0.585494\pi\)
\(770\) 0.898116 0.0323659
\(771\) −25.6256 −0.922885
\(772\) 21.8920 0.787910
\(773\) 18.5670 0.667810 0.333905 0.942607i \(-0.391634\pi\)
0.333905 + 0.942607i \(0.391634\pi\)
\(774\) −3.35690 −0.120661
\(775\) −30.6993 −1.10275
\(776\) 9.12498 0.327568
\(777\) 0.0620639 0.00222653
\(778\) −28.8726 −1.03513
\(779\) 4.27903 0.153312
\(780\) −8.72886 −0.312543
\(781\) 52.7411 1.88722
\(782\) 7.14808 0.255615
\(783\) −8.54288 −0.305298
\(784\) −6.99761 −0.249915
\(785\) 46.1353 1.64664
\(786\) 15.9879 0.570270
\(787\) 36.9670 1.31773 0.658866 0.752261i \(-0.271037\pi\)
0.658866 + 0.752261i \(0.271037\pi\)
\(788\) −1.07606 −0.0383332
\(789\) −21.5066 −0.765656
\(790\) 65.5628 2.33262
\(791\) 0.487728 0.0173416
\(792\) −4.82908 −0.171594
\(793\) −6.01831 −0.213717
\(794\) 0.423272 0.0150213
\(795\) −34.0224 −1.20665
\(796\) −19.1588 −0.679067
\(797\) −35.2717 −1.24939 −0.624694 0.780869i \(-0.714776\pi\)
−0.624694 + 0.780869i \(0.714776\pi\)
\(798\) −0.0717525 −0.00254001
\(799\) −72.7518 −2.57377
\(800\) 9.45473 0.334275
\(801\) −8.66487 −0.306158
\(802\) −27.8998 −0.985175
\(803\) 10.5563 0.372523
\(804\) 6.47219 0.228257
\(805\) 0.176883 0.00623431
\(806\) −7.45473 −0.262582
\(807\) −2.54527 −0.0895977
\(808\) 15.1347 0.532436
\(809\) 36.1430 1.27072 0.635361 0.772216i \(-0.280851\pi\)
0.635361 + 0.772216i \(0.280851\pi\)
\(810\) −3.80194 −0.133586
\(811\) −22.4239 −0.787408 −0.393704 0.919237i \(-0.628807\pi\)
−0.393704 + 0.919237i \(0.628807\pi\)
\(812\) −0.417895 −0.0146652
\(813\) −16.6896 −0.585331
\(814\) −6.12690 −0.214748
\(815\) 37.5147 1.31408
\(816\) −7.51573 −0.263103
\(817\) 4.92394 0.172267
\(818\) 7.20882 0.252050
\(819\) 0.112309 0.00392440
\(820\) 11.0911 0.387319
\(821\) −53.6577 −1.87267 −0.936333 0.351113i \(-0.885803\pi\)
−0.936333 + 0.351113i \(0.885803\pi\)
\(822\) 12.8823 0.449322
\(823\) −42.9144 −1.49590 −0.747950 0.663755i \(-0.768962\pi\)
−0.747950 + 0.663755i \(0.768962\pi\)
\(824\) −16.9638 −0.590960
\(825\) −45.6577 −1.58960
\(826\) 0.0913929 0.00317997
\(827\) −17.7657 −0.617774 −0.308887 0.951099i \(-0.599956\pi\)
−0.308887 + 0.951099i \(0.599956\pi\)
\(828\) −0.951083 −0.0330524
\(829\) −7.95300 −0.276219 −0.138110 0.990417i \(-0.544103\pi\)
−0.138110 + 0.990417i \(0.544103\pi\)
\(830\) 18.4426 0.640154
\(831\) −21.1957 −0.735270
\(832\) 2.29590 0.0795959
\(833\) 52.5921 1.82221
\(834\) 12.1860 0.421966
\(835\) 43.4583 1.50394
\(836\) 7.08336 0.244983
\(837\) −3.24698 −0.112232
\(838\) −3.50365 −0.121032
\(839\) 19.5894 0.676301 0.338151 0.941092i \(-0.390199\pi\)
0.338151 + 0.941092i \(0.390199\pi\)
\(840\) −0.185981 −0.00641694
\(841\) 43.9807 1.51658
\(842\) 25.0965 0.864883
\(843\) −3.09246 −0.106510
\(844\) 17.1414 0.590030
\(845\) 29.3846 1.01086
\(846\) 9.67994 0.332803
\(847\) 0.602665 0.0207078
\(848\) 8.94869 0.307299
\(849\) 0.987918 0.0339053
\(850\) −71.0592 −2.43731
\(851\) −1.20669 −0.0413647
\(852\) −10.9215 −0.374166
\(853\) −16.5810 −0.567724 −0.283862 0.958865i \(-0.591616\pi\)
−0.283862 + 0.958865i \(0.591616\pi\)
\(854\) −0.128229 −0.00438790
\(855\) 5.57673 0.190720
\(856\) 12.7724 0.436552
\(857\) 11.4558 0.391323 0.195661 0.980672i \(-0.437315\pi\)
0.195661 + 0.980672i \(0.437315\pi\)
\(858\) −11.0871 −0.378507
\(859\) −26.0549 −0.888981 −0.444491 0.895784i \(-0.646615\pi\)
−0.444491 + 0.895784i \(0.646615\pi\)
\(860\) 12.7627 0.435205
\(861\) −0.142703 −0.00486331
\(862\) −3.33944 −0.113742
\(863\) 35.0586 1.19341 0.596704 0.802461i \(-0.296476\pi\)
0.596704 + 0.802461i \(0.296476\pi\)
\(864\) 1.00000 0.0340207
\(865\) 30.0804 1.02276
\(866\) 17.3980 0.591210
\(867\) 39.4862 1.34102
\(868\) −0.158834 −0.00539116
\(869\) 83.2756 2.82493
\(870\) 32.4795 1.10116
\(871\) 14.8595 0.503494
\(872\) 6.80731 0.230525
\(873\) 9.12498 0.308834
\(874\) 1.39506 0.0471886
\(875\) −0.828494 −0.0280082
\(876\) −2.18598 −0.0738574
\(877\) 11.3860 0.384477 0.192238 0.981348i \(-0.438425\pi\)
0.192238 + 0.981348i \(0.438425\pi\)
\(878\) −14.7869 −0.499033
\(879\) 12.7657 0.430576
\(880\) 18.3599 0.618911
\(881\) 36.0858 1.21576 0.607880 0.794029i \(-0.292020\pi\)
0.607880 + 0.794029i \(0.292020\pi\)
\(882\) −6.99761 −0.235622
\(883\) 17.4432 0.587012 0.293506 0.955957i \(-0.405178\pi\)
0.293506 + 0.955957i \(0.405178\pi\)
\(884\) −17.2553 −0.580360
\(885\) −7.10321 −0.238772
\(886\) −6.95407 −0.233626
\(887\) −0.745251 −0.0250231 −0.0125115 0.999922i \(-0.503983\pi\)
−0.0125115 + 0.999922i \(0.503983\pi\)
\(888\) 1.26875 0.0425765
\(889\) −0.329749 −0.0110594
\(890\) 32.9433 1.10426
\(891\) −4.82908 −0.161780
\(892\) −1.00000 −0.0334825
\(893\) −14.1987 −0.475140
\(894\) −1.36898 −0.0457855
\(895\) −45.3045 −1.51436
\(896\) 0.0489173 0.00163421
\(897\) −2.18359 −0.0729079
\(898\) −39.0930 −1.30455
\(899\) 27.7385 0.925132
\(900\) 9.45473 0.315158
\(901\) −67.2559 −2.24062
\(902\) 14.0876 0.469064
\(903\) −0.164210 −0.00546458
\(904\) 9.97046 0.331613
\(905\) 64.6698 2.14970
\(906\) 13.0707 0.434245
\(907\) −8.46980 −0.281235 −0.140617 0.990064i \(-0.544909\pi\)
−0.140617 + 0.990064i \(0.544909\pi\)
\(908\) 13.8605 0.459978
\(909\) 15.1347 0.501985
\(910\) −0.426992 −0.0141547
\(911\) −34.1075 −1.13003 −0.565016 0.825080i \(-0.691130\pi\)
−0.565016 + 0.825080i \(0.691130\pi\)
\(912\) −1.46681 −0.0485710
\(913\) 23.4252 0.775261
\(914\) −15.6896 −0.518967
\(915\) 9.96615 0.329471
\(916\) −1.16852 −0.0386091
\(917\) 0.782086 0.0258268
\(918\) −7.51573 −0.248056
\(919\) −6.24804 −0.206104 −0.103052 0.994676i \(-0.532861\pi\)
−0.103052 + 0.994676i \(0.532861\pi\)
\(920\) 3.61596 0.119215
\(921\) 18.7211 0.616881
\(922\) 4.28382 0.141080
\(923\) −25.0747 −0.825345
\(924\) −0.236226 −0.00777126
\(925\) 11.9957 0.394416
\(926\) 1.21014 0.0397678
\(927\) −16.9638 −0.557163
\(928\) −8.54288 −0.280434
\(929\) −32.9071 −1.07965 −0.539823 0.841779i \(-0.681509\pi\)
−0.539823 + 0.841779i \(0.681509\pi\)
\(930\) 12.3448 0.404802
\(931\) 10.2642 0.336395
\(932\) 21.3381 0.698953
\(933\) 7.89977 0.258627
\(934\) −24.7006 −0.808230
\(935\) −137.988 −4.51269
\(936\) 2.29590 0.0750437
\(937\) −56.2804 −1.83860 −0.919300 0.393559i \(-0.871244\pi\)
−0.919300 + 0.393559i \(0.871244\pi\)
\(938\) 0.316602 0.0103374
\(939\) −32.3448 −1.05553
\(940\) −36.8025 −1.20037
\(941\) 14.6890 0.478849 0.239424 0.970915i \(-0.423041\pi\)
0.239424 + 0.970915i \(0.423041\pi\)
\(942\) −12.1347 −0.395369
\(943\) 2.77453 0.0903511
\(944\) 1.86831 0.0608084
\(945\) −0.185981 −0.00604995
\(946\) 16.2107 0.527056
\(947\) 19.2010 0.623950 0.311975 0.950090i \(-0.399009\pi\)
0.311975 + 0.950090i \(0.399009\pi\)
\(948\) −17.2446 −0.560078
\(949\) −5.01879 −0.162917
\(950\) −13.8683 −0.449948
\(951\) −27.3967 −0.888399
\(952\) −0.367649 −0.0119156
\(953\) −10.3709 −0.335946 −0.167973 0.985792i \(-0.553722\pi\)
−0.167973 + 0.985792i \(0.553722\pi\)
\(954\) 8.94869 0.289725
\(955\) −32.0525 −1.03719
\(956\) −2.81940 −0.0911858
\(957\) 41.2543 1.33356
\(958\) −13.9366 −0.450271
\(959\) 0.630169 0.0203492
\(960\) −3.80194 −0.122707
\(961\) −20.4571 −0.659907
\(962\) 2.91292 0.0939163
\(963\) 12.7724 0.411585
\(964\) −28.5555 −0.919712
\(965\) −83.2320 −2.67933
\(966\) −0.0465244 −0.00149690
\(967\) −1.36227 −0.0438077 −0.0219039 0.999760i \(-0.506973\pi\)
−0.0219039 + 0.999760i \(0.506973\pi\)
\(968\) 12.3201 0.395982
\(969\) 11.0242 0.354147
\(970\) −34.6926 −1.11391
\(971\) −4.70304 −0.150928 −0.0754638 0.997149i \(-0.524044\pi\)
−0.0754638 + 0.997149i \(0.524044\pi\)
\(972\) 1.00000 0.0320750
\(973\) 0.596106 0.0191103
\(974\) −11.1304 −0.356640
\(975\) 21.7071 0.695183
\(976\) −2.62133 −0.0839069
\(977\) 42.6746 1.36528 0.682640 0.730755i \(-0.260832\pi\)
0.682640 + 0.730755i \(0.260832\pi\)
\(978\) −9.86725 −0.315520
\(979\) 41.8434 1.33732
\(980\) 26.6045 0.849849
\(981\) 6.80731 0.217341
\(982\) 1.41550 0.0451705
\(983\) −39.2379 −1.25149 −0.625747 0.780026i \(-0.715206\pi\)
−0.625747 + 0.780026i \(0.715206\pi\)
\(984\) −2.91723 −0.0929979
\(985\) 4.09113 0.130354
\(986\) 64.2059 2.04473
\(987\) 0.473517 0.0150722
\(988\) −3.36765 −0.107139
\(989\) 3.19269 0.101521
\(990\) 18.3599 0.583515
\(991\) 41.8544 1.32955 0.664775 0.747044i \(-0.268527\pi\)
0.664775 + 0.747044i \(0.268527\pi\)
\(992\) −3.24698 −0.103092
\(993\) 27.7071 0.879258
\(994\) −0.534253 −0.0169455
\(995\) 72.8407 2.30921
\(996\) −4.85086 −0.153705
\(997\) 10.7283 0.339768 0.169884 0.985464i \(-0.445661\pi\)
0.169884 + 0.985464i \(0.445661\pi\)
\(998\) 37.2771 1.17999
\(999\) 1.26875 0.0401415
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1338.2.a.f.1.1 3
3.2 odd 2 4014.2.a.n.1.3 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1338.2.a.f.1.1 3 1.1 even 1 trivial
4014.2.a.n.1.3 3 3.2 odd 2