Properties

Label 1338.2.a.g.1.2
Level 13381338
Weight 22
Character 1338.1
Self dual yes
Analytic conductor 10.68410.684
Analytic rank 11
Dimension 44
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1338,2,Mod(1,1338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1338, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1338.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1338=23223 1338 = 2 \cdot 3 \cdot 223
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1338.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 10.683983790410.6839837904
Analytic rank: 11
Dimension: 44
Coefficient field: 4.4.10273.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x42x35x2+x+2 x^{4} - 2x^{3} - 5x^{2} + x + 2 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.2
Root 0.6735330.673533 of defining polynomial
Character χ\chi == 1338.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.00000q21.00000q3+1.00000q4+0.326467q5+1.00000q61.59754q71.00000q8+1.00000q90.326467q102.21989q111.00000q12+2.49096q13+1.59754q140.326467q15+1.00000q16+6.46037q171.00000q187.66776q19+0.326467q20+1.59754q21+2.21989q22+2.91402q23+1.00000q244.89342q252.49096q261.00000q271.59754q284.18930q29+0.326467q30+5.66776q311.00000q32+2.21989q336.46037q340.521543q35+1.00000q362.05540q37+7.66776q382.49096q390.326467q40+12.2901q411.59754q428.89342q432.21989q44+0.326467q452.91402q468.26530q471.00000q484.44787q49+4.89342q506.46037q51+2.49096q526.20990q53+1.00000q540.724719q55+1.59754q56+7.66776q57+4.18930q580.283381q590.326467q602.94460q615.66776q621.59754q63+1.00000q64+0.813215q652.21989q665.67353q67+6.46037q682.91402q69+0.521543q70+4.12141q711.00000q72+7.69257q73+2.05540q74+4.89342q757.66776q76+3.54635q77+2.49096q780.116565q79+0.326467q80+1.00000q8112.2901q827.08850q83+1.59754q84+2.10910q85+8.89342q86+4.18930q87+2.21989q88+0.513252q890.326467q903.97940q91+2.91402q925.66776q93+8.26530q942.50327q95+1.00000q966.38186q97+4.44787q982.21989q99+O(q100)q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +0.326467 q^{5} +1.00000 q^{6} -1.59754 q^{7} -1.00000 q^{8} +1.00000 q^{9} -0.326467 q^{10} -2.21989 q^{11} -1.00000 q^{12} +2.49096 q^{13} +1.59754 q^{14} -0.326467 q^{15} +1.00000 q^{16} +6.46037 q^{17} -1.00000 q^{18} -7.66776 q^{19} +0.326467 q^{20} +1.59754 q^{21} +2.21989 q^{22} +2.91402 q^{23} +1.00000 q^{24} -4.89342 q^{25} -2.49096 q^{26} -1.00000 q^{27} -1.59754 q^{28} -4.18930 q^{29} +0.326467 q^{30} +5.66776 q^{31} -1.00000 q^{32} +2.21989 q^{33} -6.46037 q^{34} -0.521543 q^{35} +1.00000 q^{36} -2.05540 q^{37} +7.66776 q^{38} -2.49096 q^{39} -0.326467 q^{40} +12.2901 q^{41} -1.59754 q^{42} -8.89342 q^{43} -2.21989 q^{44} +0.326467 q^{45} -2.91402 q^{46} -8.26530 q^{47} -1.00000 q^{48} -4.44787 q^{49} +4.89342 q^{50} -6.46037 q^{51} +2.49096 q^{52} -6.20990 q^{53} +1.00000 q^{54} -0.724719 q^{55} +1.59754 q^{56} +7.66776 q^{57} +4.18930 q^{58} -0.283381 q^{59} -0.326467 q^{60} -2.94460 q^{61} -5.66776 q^{62} -1.59754 q^{63} +1.00000 q^{64} +0.813215 q^{65} -2.21989 q^{66} -5.67353 q^{67} +6.46037 q^{68} -2.91402 q^{69} +0.521543 q^{70} +4.12141 q^{71} -1.00000 q^{72} +7.69257 q^{73} +2.05540 q^{74} +4.89342 q^{75} -7.66776 q^{76} +3.54635 q^{77} +2.49096 q^{78} -0.116565 q^{79} +0.326467 q^{80} +1.00000 q^{81} -12.2901 q^{82} -7.08850 q^{83} +1.59754 q^{84} +2.10910 q^{85} +8.89342 q^{86} +4.18930 q^{87} +2.21989 q^{88} +0.513252 q^{89} -0.326467 q^{90} -3.97940 q^{91} +2.91402 q^{92} -5.66776 q^{93} +8.26530 q^{94} -2.50327 q^{95} +1.00000 q^{96} -6.38186 q^{97} +4.44787 q^{98} -2.21989 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q24q3+4q4+2q5+4q65q74q8+4q92q10+4q114q125q13+5q142q15+4q162q174q187q19+2q20++4q99+O(q100) 4 q - 4 q^{2} - 4 q^{3} + 4 q^{4} + 2 q^{5} + 4 q^{6} - 5 q^{7} - 4 q^{8} + 4 q^{9} - 2 q^{10} + 4 q^{11} - 4 q^{12} - 5 q^{13} + 5 q^{14} - 2 q^{15} + 4 q^{16} - 2 q^{17} - 4 q^{18} - 7 q^{19} + 2 q^{20}+ \cdots + 4 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −1.00000 −0.707107
33 −1.00000 −0.577350
44 1.00000 0.500000
55 0.326467 0.146000 0.0730002 0.997332i 0.476743π-0.476743\pi
0.0730002 + 0.997332i 0.476743π0.476743\pi
66 1.00000 0.408248
77 −1.59754 −0.603813 −0.301906 0.953338i 0.597623π-0.597623\pi
−0.301906 + 0.953338i 0.597623π0.597623\pi
88 −1.00000 −0.353553
99 1.00000 0.333333
1010 −0.326467 −0.103238
1111 −2.21989 −0.669321 −0.334660 0.942339i 0.608622π-0.608622\pi
−0.334660 + 0.942339i 0.608622π0.608622\pi
1212 −1.00000 −0.288675
1313 2.49096 0.690867 0.345434 0.938443i 0.387732π-0.387732\pi
0.345434 + 0.938443i 0.387732π0.387732\pi
1414 1.59754 0.426960
1515 −0.326467 −0.0842933
1616 1.00000 0.250000
1717 6.46037 1.56687 0.783435 0.621473i 0.213466π-0.213466\pi
0.783435 + 0.621473i 0.213466π0.213466\pi
1818 −1.00000 −0.235702
1919 −7.66776 −1.75910 −0.879552 0.475802i 0.842158π-0.842158\pi
−0.879552 + 0.475802i 0.842158π0.842158\pi
2020 0.326467 0.0730002
2121 1.59754 0.348611
2222 2.21989 0.473281
2323 2.91402 0.607615 0.303808 0.952733i 0.401742π-0.401742\pi
0.303808 + 0.952733i 0.401742π0.401742\pi
2424 1.00000 0.204124
2525 −4.89342 −0.978684
2626 −2.49096 −0.488517
2727 −1.00000 −0.192450
2828 −1.59754 −0.301906
2929 −4.18930 −0.777934 −0.388967 0.921252i 0.627168π-0.627168\pi
−0.388967 + 0.921252i 0.627168π0.627168\pi
3030 0.326467 0.0596044
3131 5.66776 1.01796 0.508980 0.860779i 0.330023π-0.330023\pi
0.508980 + 0.860779i 0.330023π0.330023\pi
3232 −1.00000 −0.176777
3333 2.21989 0.386433
3434 −6.46037 −1.10794
3535 −0.521543 −0.0881568
3636 1.00000 0.166667
3737 −2.05540 −0.337905 −0.168952 0.985624i 0.554038π-0.554038\pi
−0.168952 + 0.985624i 0.554038π0.554038\pi
3838 7.66776 1.24387
3939 −2.49096 −0.398872
4040 −0.326467 −0.0516189
4141 12.2901 1.91939 0.959696 0.281040i 0.0906794π-0.0906794\pi
0.959696 + 0.281040i 0.0906794π0.0906794\pi
4242 −1.59754 −0.246505
4343 −8.89342 −1.35623 −0.678117 0.734954i 0.737204π-0.737204\pi
−0.678117 + 0.734954i 0.737204π0.737204\pi
4444 −2.21989 −0.334660
4545 0.326467 0.0486668
4646 −2.91402 −0.429649
4747 −8.26530 −1.20562 −0.602809 0.797886i 0.705952π-0.705952\pi
−0.602809 + 0.797886i 0.705952π0.705952\pi
4848 −1.00000 −0.144338
4949 −4.44787 −0.635410
5050 4.89342 0.692034
5151 −6.46037 −0.904633
5252 2.49096 0.345434
5353 −6.20990 −0.852996 −0.426498 0.904489i 0.640253π-0.640253\pi
−0.426498 + 0.904489i 0.640253π0.640253\pi
5454 1.00000 0.136083
5555 −0.724719 −0.0977211
5656 1.59754 0.213480
5757 7.66776 1.01562
5858 4.18930 0.550082
5959 −0.283381 −0.0368930 −0.0184465 0.999830i 0.505872π-0.505872\pi
−0.0184465 + 0.999830i 0.505872π0.505872\pi
6060 −0.326467 −0.0421467
6161 −2.94460 −0.377018 −0.188509 0.982071i 0.560365π-0.560365\pi
−0.188509 + 0.982071i 0.560365π0.560365\pi
6262 −5.66776 −0.719806
6363 −1.59754 −0.201271
6464 1.00000 0.125000
6565 0.813215 0.100867
6666 −2.21989 −0.273249
6767 −5.67353 −0.693132 −0.346566 0.938026i 0.612652π-0.612652\pi
−0.346566 + 0.938026i 0.612652π0.612652\pi
6868 6.46037 0.783435
6969 −2.91402 −0.350807
7070 0.521543 0.0623363
7171 4.12141 0.489121 0.244560 0.969634i 0.421356π-0.421356\pi
0.244560 + 0.969634i 0.421356π0.421356\pi
7272 −1.00000 −0.117851
7373 7.69257 0.900347 0.450173 0.892941i 0.351362π-0.351362\pi
0.450173 + 0.892941i 0.351362π0.351362\pi
7474 2.05540 0.238935
7575 4.89342 0.565043
7676 −7.66776 −0.879552
7777 3.54635 0.404144
7878 2.49096 0.282045
7979 −0.116565 −0.0131146 −0.00655732 0.999979i 0.502087π-0.502087\pi
−0.00655732 + 0.999979i 0.502087π0.502087\pi
8080 0.326467 0.0365001
8181 1.00000 0.111111
8282 −12.2901 −1.35722
8383 −7.08850 −0.778063 −0.389032 0.921224i 0.627190π-0.627190\pi
−0.389032 + 0.921224i 0.627190π0.627190\pi
8484 1.59754 0.174306
8585 2.10910 0.228764
8686 8.89342 0.959002
8787 4.18930 0.449140
8888 2.21989 0.236641
8989 0.513252 0.0544046 0.0272023 0.999630i 0.491340π-0.491340\pi
0.0272023 + 0.999630i 0.491340π0.491340\pi
9090 −0.326467 −0.0344126
9191 −3.97940 −0.417154
9292 2.91402 0.303808
9393 −5.66776 −0.587719
9494 8.26530 0.852500
9595 −2.50327 −0.256830
9696 1.00000 0.102062
9797 −6.38186 −0.647980 −0.323990 0.946061i 0.605024π-0.605024\pi
−0.323990 + 0.946061i 0.605024π0.605024\pi
9898 4.44787 0.449303
9999 −2.21989 −0.223107
100100 −4.89342 −0.489342
101101 −12.2801 −1.22192 −0.610959 0.791662i 0.709216π-0.709216\pi
−0.610959 + 0.791662i 0.709216π0.709216\pi
102102 6.46037 0.639672
103103 −19.4504 −1.91650 −0.958252 0.285926i 0.907699π-0.907699\pi
−0.958252 + 0.285926i 0.907699π0.907699\pi
104104 −2.49096 −0.244258
105105 0.521543 0.0508974
106106 6.20990 0.603159
107107 −6.16028 −0.595537 −0.297768 0.954638i 0.596242π-0.596242\pi
−0.297768 + 0.954638i 0.596242π0.596242\pi
108108 −1.00000 −0.0962250
109109 −9.68026 −0.927201 −0.463600 0.886044i 0.653443π-0.653443\pi
−0.463600 + 0.886044i 0.653443π0.653443\pi
110110 0.724719 0.0690992
111111 2.05540 0.195089
112112 −1.59754 −0.150953
113113 3.79915 0.357394 0.178697 0.983904i 0.442812π-0.442812\pi
0.178697 + 0.983904i 0.442812π0.442812\pi
114114 −7.66776 −0.718151
115115 0.951330 0.0887120
116116 −4.18930 −0.388967
117117 2.49096 0.230289
118118 0.283381 0.0260873
119119 −10.3207 −0.946096
120120 0.326467 0.0298022
121121 −6.07211 −0.552010
122122 2.94460 0.266592
123123 −12.2901 −1.10816
124124 5.66776 0.508980
125125 −3.22987 −0.288888
126126 1.59754 0.142320
127127 −17.9861 −1.59601 −0.798005 0.602650i 0.794111π-0.794111\pi
−0.798005 + 0.602650i 0.794111π0.794111\pi
128128 −1.00000 −0.0883883
129129 8.89342 0.783022
130130 −0.813215 −0.0713236
131131 7.32898 0.640336 0.320168 0.947361i 0.396261π-0.396261\pi
0.320168 + 0.947361i 0.396261π0.396261\pi
132132 2.21989 0.193216
133133 12.2495 1.06217
134134 5.67353 0.490119
135135 −0.326467 −0.0280978
136136 −6.46037 −0.553972
137137 −8.66776 −0.740537 −0.370268 0.928925i 0.620734π-0.620734\pi
−0.370268 + 0.928925i 0.620734π0.620734\pi
138138 2.91402 0.248058
139139 5.85706 0.496789 0.248395 0.968659i 0.420097π-0.420097\pi
0.248395 + 0.968659i 0.420097π0.420097\pi
140140 −0.521543 −0.0440784
141141 8.26530 0.696064
142142 −4.12141 −0.345861
143143 −5.52964 −0.462412
144144 1.00000 0.0833333
145145 −1.36767 −0.113579
146146 −7.69257 −0.636641
147147 4.44787 0.366854
148148 −2.05540 −0.168952
149149 −15.7586 −1.29099 −0.645497 0.763763i 0.723350π-0.723350\pi
−0.645497 + 0.763763i 0.723350π0.723350\pi
150150 −4.89342 −0.399546
151151 −7.78263 −0.633341 −0.316671 0.948536i 0.602565π-0.602565\pi
−0.316671 + 0.948536i 0.602565π0.602565\pi
152152 7.66776 0.621937
153153 6.46037 0.522290
154154 −3.54635 −0.285773
155155 1.85033 0.148622
156156 −2.49096 −0.199436
157157 3.52575 0.281386 0.140693 0.990053i 0.455067π-0.455067\pi
0.140693 + 0.990053i 0.455067π0.455067\pi
158158 0.116565 0.00927345
159159 6.20990 0.492477
160160 −0.326467 −0.0258095
161161 −4.65526 −0.366886
162162 −1.00000 −0.0785674
163163 0.0621204 0.00486564 0.00243282 0.999997i 0.499226π-0.499226\pi
0.00243282 + 0.999997i 0.499226π0.499226\pi
164164 12.2901 0.959696
165165 0.724719 0.0564193
166166 7.08850 0.550174
167167 2.08850 0.161613 0.0808063 0.996730i 0.474250π-0.474250\pi
0.0808063 + 0.996730i 0.474250π0.474250\pi
168168 −1.59754 −0.123253
169169 −6.79513 −0.522702
170170 −2.10910 −0.161760
171171 −7.66776 −0.586368
172172 −8.89342 −0.678117
173173 −14.2597 −1.08415 −0.542073 0.840331i 0.682360π-0.682360\pi
−0.542073 + 0.840331i 0.682360π0.682360\pi
174174 −4.18930 −0.317590
175175 7.81742 0.590942
176176 −2.21989 −0.167330
177177 0.283381 0.0213002
178178 −0.513252 −0.0384699
179179 24.5192 1.83265 0.916327 0.400431i 0.131140π-0.131140\pi
0.916327 + 0.400431i 0.131140π0.131140\pi
180180 0.326467 0.0243334
181181 −18.2125 −1.35373 −0.676864 0.736108i 0.736661π-0.736661\pi
−0.676864 + 0.736108i 0.736661π0.736661\pi
182182 3.97940 0.294973
183183 2.94460 0.217671
184184 −2.91402 −0.214824
185185 −0.671018 −0.0493342
186186 5.66776 0.415580
187187 −14.3413 −1.04874
188188 −8.26530 −0.602809
189189 1.59754 0.116204
190190 2.50327 0.181606
191191 21.0644 1.52417 0.762085 0.647477i 0.224176π-0.224176\pi
0.762085 + 0.647477i 0.224176π0.224176\pi
192192 −1.00000 −0.0721688
193193 −27.0985 −1.95059 −0.975296 0.220901i 0.929100π-0.929100\pi
−0.975296 + 0.220901i 0.929100π0.929100\pi
194194 6.38186 0.458191
195195 −0.813215 −0.0582355
196196 −4.44787 −0.317705
197197 17.7547 1.26497 0.632485 0.774573i 0.282035π-0.282035\pi
0.632485 + 0.774573i 0.282035π0.282035\pi
198198 2.21989 0.157760
199199 20.2190 1.43328 0.716642 0.697442i 0.245678π-0.245678\pi
0.716642 + 0.697442i 0.245678π0.245678\pi
200200 4.89342 0.346017
201201 5.67353 0.400180
202202 12.2801 0.864026
203203 6.69257 0.469726
204204 −6.46037 −0.452317
205205 4.01231 0.280232
206206 19.4504 1.35517
207207 2.91402 0.202538
208208 2.49096 0.172717
209209 17.0216 1.17741
210210 −0.521543 −0.0359899
211211 −11.3049 −0.778264 −0.389132 0.921182i 0.627225π-0.627225\pi
−0.389132 + 0.921182i 0.627225π0.627225\pi
212212 −6.20990 −0.426498
213213 −4.12141 −0.282394
214214 6.16028 0.421108
215215 −2.90340 −0.198011
216216 1.00000 0.0680414
217217 −9.05446 −0.614657
218218 9.68026 0.655630
219219 −7.69257 −0.519816
220220 −0.724719 −0.0488605
221221 16.0925 1.08250
222222 −2.05540 −0.137949
223223 −1.00000 −0.0669650
224224 1.59754 0.106740
225225 −4.89342 −0.326228
226226 −3.79915 −0.252716
227227 18.8653 1.25214 0.626069 0.779768i 0.284663π-0.284663\pi
0.626069 + 0.779768i 0.284663π0.284663\pi
228228 7.66776 0.507810
229229 25.1506 1.66200 0.831000 0.556273i 0.187769π-0.187769\pi
0.831000 + 0.556273i 0.187769π0.187769\pi
230230 −0.951330 −0.0627289
231231 −3.54635 −0.233333
232232 4.18930 0.275041
233233 −2.13736 −0.140023 −0.0700115 0.997546i 0.522304π-0.522304\pi
−0.0700115 + 0.997546i 0.522304π0.522304\pi
234234 −2.49096 −0.162839
235235 −2.69834 −0.176021
236236 −0.283381 −0.0184465
237237 0.116565 0.00757174
238238 10.3207 0.668991
239239 0.112547 0.00728005 0.00364003 0.999993i 0.498841π-0.498841\pi
0.00364003 + 0.999993i 0.498841π0.498841\pi
240240 −0.326467 −0.0210733
241241 13.8957 0.895104 0.447552 0.894258i 0.352296π-0.352296\pi
0.447552 + 0.894258i 0.352296π0.352296\pi
242242 6.07211 0.390330
243243 −1.00000 −0.0641500
244244 −2.94460 −0.188509
245245 −1.45208 −0.0927701
246246 12.2901 0.783589
247247 −19.1001 −1.21531
248248 −5.66776 −0.359903
249249 7.08850 0.449215
250250 3.22987 0.204275
251251 1.18698 0.0749213 0.0374607 0.999298i 0.488073π-0.488073\pi
0.0374607 + 0.999298i 0.488073π0.488073\pi
252252 −1.59754 −0.100635
253253 −6.46879 −0.406689
254254 17.9861 1.12855
255255 −2.10910 −0.132077
256256 1.00000 0.0625000
257257 −9.49749 −0.592437 −0.296219 0.955120i 0.595726π-0.595726\pi
−0.296219 + 0.955120i 0.595726π0.595726\pi
258258 −8.89342 −0.553680
259259 3.28357 0.204031
260260 0.813215 0.0504334
261261 −4.18930 −0.259311
262262 −7.32898 −0.452786
263263 −20.2440 −1.24830 −0.624148 0.781306i 0.714554π-0.714554\pi
−0.624148 + 0.781306i 0.714554π0.714554\pi
264264 −2.21989 −0.136625
265265 −2.02733 −0.124538
266266 −12.2495 −0.751067
267267 −0.513252 −0.0314105
268268 −5.67353 −0.346566
269269 −9.55885 −0.582814 −0.291407 0.956599i 0.594123π-0.594123\pi
−0.291407 + 0.956599i 0.594123π0.594123\pi
270270 0.326467 0.0198681
271271 24.0547 1.46122 0.730608 0.682797i 0.239237π-0.239237\pi
0.730608 + 0.682797i 0.239237π0.239237\pi
272272 6.46037 0.391718
273273 3.97940 0.240844
274274 8.66776 0.523638
275275 10.8628 0.655054
276276 −2.91402 −0.175403
277277 30.8702 1.85481 0.927405 0.374059i 0.122034π-0.122034\pi
0.927405 + 0.374059i 0.122034π0.122034\pi
278278 −5.85706 −0.351283
279279 5.66776 0.339320
280280 0.521543 0.0311681
281281 6.78665 0.404857 0.202429 0.979297i 0.435117π-0.435117\pi
0.202429 + 0.979297i 0.435117π0.435117\pi
282282 −8.26530 −0.492191
283283 12.2466 0.727984 0.363992 0.931402i 0.381414π-0.381414\pi
0.363992 + 0.931402i 0.381414π0.381414\pi
284284 4.12141 0.244560
285285 2.50327 0.148281
286286 5.52964 0.326975
287287 −19.6339 −1.15895
288288 −1.00000 −0.0589256
289289 24.7364 1.45508
290290 1.36767 0.0803122
291291 6.38186 0.374111
292292 7.69257 0.450173
293293 −10.7176 −0.626127 −0.313064 0.949732i 0.601355π-0.601355\pi
−0.313064 + 0.949732i 0.601355π0.601355\pi
294294 −4.44787 −0.259405
295295 −0.0925144 −0.00538640
296296 2.05540 0.119467
297297 2.21989 0.128811
298298 15.7586 0.912870
299299 7.25870 0.419781
300300 4.89342 0.282522
301301 14.2076 0.818911
302302 7.78263 0.447840
303303 12.2801 0.705475
304304 −7.66776 −0.439776
305305 −0.961315 −0.0550447
306306 −6.46037 −0.369315
307307 6.39669 0.365078 0.182539 0.983199i 0.441568π-0.441568\pi
0.182539 + 0.983199i 0.441568π0.441568\pi
308308 3.54635 0.202072
309309 19.4504 1.10649
310310 −1.85033 −0.105092
311311 −6.95535 −0.394402 −0.197201 0.980363i 0.563185π-0.563185\pi
−0.197201 + 0.980363i 0.563185π0.563185\pi
312312 2.49096 0.141023
313313 6.45365 0.364782 0.182391 0.983226i 0.441616π-0.441616\pi
0.182391 + 0.983226i 0.441616π0.441616\pi
314314 −3.52575 −0.198970
315315 −0.521543 −0.0293856
316316 −0.116565 −0.00655732
317317 5.56695 0.312671 0.156336 0.987704i 0.450032π-0.450032\pi
0.156336 + 0.987704i 0.450032π0.450032\pi
318318 −6.20990 −0.348234
319319 9.29977 0.520687
320320 0.326467 0.0182500
321321 6.16028 0.343833
322322 4.65526 0.259427
323323 −49.5366 −2.75629
324324 1.00000 0.0555556
325325 −12.1893 −0.676141
326326 −0.0621204 −0.00344053
327327 9.68026 0.535320
328328 −12.2901 −0.678608
329329 13.2041 0.727967
330330 −0.724719 −0.0398945
331331 −24.9131 −1.36935 −0.684673 0.728850i 0.740055π-0.740055\pi
−0.684673 + 0.728850i 0.740055π0.740055\pi
332332 −7.08850 −0.389032
333333 −2.05540 −0.112635
334334 −2.08850 −0.114277
335335 −1.85222 −0.101198
336336 1.59754 0.0871528
337337 12.2978 0.669902 0.334951 0.942236i 0.391280π-0.391280\pi
0.334951 + 0.942236i 0.391280π0.391280\pi
338338 6.79513 0.369606
339339 −3.79915 −0.206341
340340 2.10910 0.114382
341341 −12.5818 −0.681341
342342 7.66776 0.414625
343343 18.2884 0.987481
344344 8.89342 0.479501
345345 −0.951330 −0.0512179
346346 14.2597 0.766607
347347 −2.80103 −0.150367 −0.0751837 0.997170i 0.523954π-0.523954\pi
−0.0751837 + 0.997170i 0.523954π0.523954\pi
348348 4.18930 0.224570
349349 13.6847 0.732523 0.366262 0.930512i 0.380638π-0.380638\pi
0.366262 + 0.930512i 0.380638π0.380638\pi
350350 −7.81742 −0.417859
351351 −2.49096 −0.132957
352352 2.21989 0.118320
353353 19.7430 1.05081 0.525407 0.850851i 0.323913π-0.323913\pi
0.525407 + 0.850851i 0.323913π0.323913\pi
354354 −0.283381 −0.0150615
355355 1.34550 0.0714118
356356 0.513252 0.0272023
357357 10.3207 0.546229
358358 −24.5192 −1.29588
359359 9.56526 0.504835 0.252418 0.967618i 0.418774π-0.418774\pi
0.252418 + 0.967618i 0.418774π0.418774\pi
360360 −0.326467 −0.0172063
361361 39.7945 2.09445
362362 18.2125 0.957230
363363 6.07211 0.318703
364364 −3.97940 −0.208577
365365 2.51137 0.131451
366366 −2.94460 −0.153917
367367 −24.7755 −1.29327 −0.646635 0.762800i 0.723824π-0.723824\pi
−0.646635 + 0.762800i 0.723824π0.723824\pi
368368 2.91402 0.151904
369369 12.2901 0.639797
370370 0.671018 0.0348846
371371 9.92055 0.515049
372372 −5.66776 −0.293860
373373 35.7002 1.84849 0.924244 0.381802i 0.124696π-0.124696\pi
0.924244 + 0.381802i 0.124696π0.124696\pi
374374 14.3413 0.741571
375375 3.22987 0.166790
376376 8.26530 0.426250
377377 −10.4354 −0.537449
378378 −1.59754 −0.0821685
379379 −14.3802 −0.738660 −0.369330 0.929298i 0.620413π-0.620413\pi
−0.369330 + 0.929298i 0.620413π0.620413\pi
380380 −2.50327 −0.128415
381381 17.9861 0.921457
382382 −21.0644 −1.07775
383383 −30.9671 −1.58235 −0.791173 0.611593i 0.790529π-0.790529\pi
−0.791173 + 0.611593i 0.790529π0.790529\pi
384384 1.00000 0.0510310
385385 1.15777 0.0590052
386386 27.0985 1.37928
387387 −8.89342 −0.452078
388388 −6.38186 −0.323990
389389 8.50767 0.431356 0.215678 0.976465i 0.430804π-0.430804\pi
0.215678 + 0.976465i 0.430804π0.430804\pi
390390 0.813215 0.0411787
391391 18.8257 0.952054
392392 4.44787 0.224651
393393 −7.32898 −0.369698
394394 −17.7547 −0.894468
395395 −0.0380547 −0.00191474
396396 −2.21989 −0.111553
397397 −14.2651 −0.715945 −0.357973 0.933732i 0.616532π-0.616532\pi
−0.357973 + 0.933732i 0.616532π0.616532\pi
398398 −20.2190 −1.01348
399399 −12.2495 −0.613244
400400 −4.89342 −0.244671
401401 31.5109 1.57358 0.786791 0.617220i 0.211741π-0.211741\pi
0.786791 + 0.617220i 0.211741π0.211741\pi
402402 −5.67353 −0.282970
403403 14.1181 0.703275
404404 −12.2801 −0.610959
405405 0.326467 0.0162223
406406 −6.69257 −0.332147
407407 4.56274 0.226167
408408 6.46037 0.319836
409409 −9.16293 −0.453078 −0.226539 0.974002i 0.572741π-0.572741\pi
−0.226539 + 0.974002i 0.572741π0.572741\pi
410410 −4.01231 −0.198154
411411 8.66776 0.427549
412412 −19.4504 −0.958252
413413 0.452712 0.0222765
414414 −2.91402 −0.143216
415415 −2.31416 −0.113598
416416 −2.49096 −0.122129
417417 −5.85706 −0.286821
418418 −17.0216 −0.832551
419419 −29.4201 −1.43727 −0.718634 0.695389i 0.755232π-0.755232\pi
−0.718634 + 0.695389i 0.755232π0.755232\pi
420420 0.521543 0.0254487
421421 28.8396 1.40556 0.702778 0.711409i 0.251943π-0.251943\pi
0.702778 + 0.711409i 0.251943π0.251943\pi
422422 11.3049 0.550315
423423 −8.26530 −0.401872
424424 6.20990 0.301579
425425 −31.6133 −1.53347
426426 4.12141 0.199683
427427 4.70412 0.227648
428428 −6.16028 −0.297768
429429 5.52964 0.266974
430430 2.90340 0.140015
431431 29.9517 1.44272 0.721360 0.692560i 0.243517π-0.243517\pi
0.721360 + 0.692560i 0.243517π0.243517\pi
432432 −1.00000 −0.0481125
433433 −11.1833 −0.537437 −0.268718 0.963219i 0.586600π-0.586600\pi
−0.268718 + 0.963219i 0.586600π0.586600\pi
434434 9.05446 0.434628
435435 1.36767 0.0655746
436436 −9.68026 −0.463600
437437 −22.3440 −1.06886
438438 7.69257 0.367565
439439 −30.8644 −1.47308 −0.736539 0.676395i 0.763541π-0.763541\pi
−0.736539 + 0.676395i 0.763541π0.763541\pi
440440 0.724719 0.0345496
441441 −4.44787 −0.211803
442442 −16.0925 −0.765443
443443 −35.8542 −1.70349 −0.851743 0.523960i 0.824454π-0.824454\pi
−0.851743 + 0.523960i 0.824454π0.824454\pi
444444 2.05540 0.0975447
445445 0.167560 0.00794309
446446 1.00000 0.0473514
447447 15.7586 0.745355
448448 −1.59754 −0.0754766
449449 −15.7066 −0.741242 −0.370621 0.928784i 0.620855π-0.620855\pi
−0.370621 + 0.928784i 0.620855π0.620855\pi
450450 4.89342 0.230678
451451 −27.2826 −1.28469
452452 3.79915 0.178697
453453 7.78263 0.365660
454454 −18.8653 −0.885395
455455 −1.29914 −0.0609047
456456 −7.66776 −0.359076
457457 −29.0459 −1.35871 −0.679355 0.733809i 0.737741π-0.737741\pi
−0.679355 + 0.733809i 0.737741π0.737741\pi
458458 −25.1506 −1.17521
459459 −6.46037 −0.301544
460460 0.951330 0.0443560
461461 21.5743 1.00482 0.502408 0.864631i 0.332448π-0.332448\pi
0.502408 + 0.864631i 0.332448π0.332448\pi
462462 3.54635 0.164991
463463 24.3686 1.13251 0.566253 0.824232i 0.308393π-0.308393\pi
0.566253 + 0.824232i 0.308393π0.308393\pi
464464 −4.18930 −0.194483
465465 −1.85033 −0.0858072
466466 2.13736 0.0990111
467467 −32.4960 −1.50374 −0.751868 0.659314i 0.770847π-0.770847\pi
−0.751868 + 0.659314i 0.770847π0.770847\pi
468468 2.49096 0.115145
469469 9.06369 0.418522
470470 2.69834 0.124465
471471 −3.52575 −0.162458
472472 0.283381 0.0130437
473473 19.7424 0.907756
474474 −0.116565 −0.00535403
475475 37.5216 1.72161
476476 −10.3207 −0.473048
477477 −6.20990 −0.284332
478478 −0.112547 −0.00514778
479479 34.9175 1.59542 0.797710 0.603041i 0.206044π-0.206044\pi
0.797710 + 0.603041i 0.206044π0.206044\pi
480480 0.326467 0.0149011
481481 −5.11990 −0.233447
482482 −13.8957 −0.632934
483483 4.65526 0.211822
484484 −6.07211 −0.276005
485485 −2.08346 −0.0946053
486486 1.00000 0.0453609
487487 −6.46037 −0.292747 −0.146374 0.989229i 0.546760π-0.546760\pi
−0.146374 + 0.989229i 0.546760π0.546760\pi
488488 2.94460 0.133296
489489 −0.0621204 −0.00280918
490490 1.45208 0.0655984
491491 −0.708520 −0.0319750 −0.0159875 0.999872i 0.505089π-0.505089\pi
−0.0159875 + 0.999872i 0.505089π0.505089\pi
492492 −12.2901 −0.554081
493493 −27.0644 −1.21892
494494 19.1001 0.859352
495495 −0.724719 −0.0325737
496496 5.66776 0.254490
497497 −6.58410 −0.295337
498498 −7.08850 −0.317643
499499 20.2230 0.905304 0.452652 0.891687i 0.350478π-0.350478\pi
0.452652 + 0.891687i 0.350478π0.350478\pi
500500 −3.22987 −0.144444
501501 −2.08850 −0.0933071
502502 −1.18698 −0.0529774
503503 −36.3380 −1.62023 −0.810116 0.586269i 0.800596π-0.800596\pi
−0.810116 + 0.586269i 0.800596π0.800596\pi
504504 1.59754 0.0711600
505505 −4.00905 −0.178400
506506 6.46879 0.287573
507507 6.79513 0.301782
508508 −17.9861 −0.798005
509509 4.16857 0.184769 0.0923844 0.995723i 0.470551π-0.470551\pi
0.0923844 + 0.995723i 0.470551π0.470551\pi
510510 2.10910 0.0933923
511511 −12.2892 −0.543641
512512 −1.00000 −0.0441942
513513 7.66776 0.338540
514514 9.49749 0.418916
515515 −6.34990 −0.279810
516516 8.89342 0.391511
517517 18.3480 0.806945
518518 −3.28357 −0.144272
519519 14.2597 0.625932
520520 −0.813215 −0.0356618
521521 −16.3684 −0.717114 −0.358557 0.933508i 0.616731π-0.616731\pi
−0.358557 + 0.933508i 0.616731π0.616731\pi
522522 4.18930 0.183361
523523 31.9673 1.39783 0.698916 0.715204i 0.253666π-0.253666\pi
0.698916 + 0.715204i 0.253666π0.253666\pi
524524 7.32898 0.320168
525525 −7.81742 −0.341180
526526 20.2440 0.882678
527527 36.6158 1.59501
528528 2.21989 0.0966081
529529 −14.5085 −0.630804
530530 2.02733 0.0880614
531531 −0.283381 −0.0122977
532532 12.2495 0.531085
533533 30.6141 1.32605
534534 0.513252 0.0222106
535535 −2.01113 −0.0869486
536536 5.67353 0.245059
537537 −24.5192 −1.05808
538538 9.55885 0.412111
539539 9.87377 0.425293
540540 −0.326467 −0.0140489
541541 31.0977 1.33700 0.668498 0.743714i 0.266937π-0.266937\pi
0.668498 + 0.743714i 0.266937π0.266937\pi
542542 −24.0547 −1.03324
543543 18.2125 0.781575
544544 −6.46037 −0.276986
545545 −3.16028 −0.135372
546546 −3.97940 −0.170303
547547 −21.5025 −0.919381 −0.459691 0.888079i 0.652040π-0.652040\pi
−0.459691 + 0.888079i 0.652040π0.652040\pi
548548 −8.66776 −0.370268
549549 −2.94460 −0.125673
550550 −10.8628 −0.463193
551551 32.1225 1.36847
552552 2.91402 0.124029
553553 0.186218 0.00791879
554554 −30.8702 −1.31155
555555 0.671018 0.0284831
556556 5.85706 0.248395
557557 0.144826 0.00613649 0.00306824 0.999995i 0.499023π-0.499023\pi
0.00306824 + 0.999995i 0.499023π0.499023\pi
558558 −5.66776 −0.239935
559559 −22.1531 −0.936978
560560 −0.521543 −0.0220392
561561 14.3413 0.605490
562562 −6.78665 −0.286277
563563 26.8290 1.13071 0.565354 0.824849i 0.308740π-0.308740\pi
0.565354 + 0.824849i 0.308740π0.308740\pi
564564 8.26530 0.348032
565565 1.24030 0.0521796
566566 −12.2466 −0.514762
567567 −1.59754 −0.0670903
568568 −4.12141 −0.172930
569569 −25.5083 −1.06936 −0.534682 0.845054i 0.679569π-0.679569\pi
−0.534682 + 0.845054i 0.679569π0.679569\pi
570570 −2.50327 −0.104850
571571 1.66059 0.0694937 0.0347468 0.999396i 0.488938π-0.488938\pi
0.0347468 + 0.999396i 0.488938π0.488938\pi
572572 −5.52964 −0.231206
573573 −21.0644 −0.879980
574574 19.6339 0.819504
575575 −14.2595 −0.594663
576576 1.00000 0.0416667
577577 −9.53888 −0.397109 −0.198554 0.980090i 0.563625π-0.563625\pi
−0.198554 + 0.980090i 0.563625π0.563625\pi
578578 −24.7364 −1.02890
579579 27.0985 1.12618
580580 −1.36767 −0.0567893
581581 11.3241 0.469805
582582 −6.38186 −0.264537
583583 13.7853 0.570928
584584 −7.69257 −0.318321
585585 0.813215 0.0336223
586586 10.7176 0.442739
587587 13.8126 0.570107 0.285053 0.958512i 0.407989π-0.407989\pi
0.285053 + 0.958512i 0.407989π0.407989\pi
588588 4.44787 0.183427
589589 −43.4590 −1.79070
590590 0.0925144 0.00380876
591591 −17.7547 −0.730330
592592 −2.05540 −0.0844762
593593 −9.72780 −0.399473 −0.199736 0.979850i 0.564009π-0.564009\pi
−0.199736 + 0.979850i 0.564009π0.564009\pi
594594 −2.21989 −0.0910830
595595 −3.36936 −0.138130
596596 −15.7586 −0.645497
597597 −20.2190 −0.827507
598598 −7.25870 −0.296830
599599 36.0854 1.47441 0.737204 0.675670i 0.236146π-0.236146\pi
0.737204 + 0.675670i 0.236146π0.236146\pi
600600 −4.89342 −0.199773
601601 11.5725 0.472054 0.236027 0.971747i 0.424155π-0.424155\pi
0.236027 + 0.971747i 0.424155π0.424155\pi
602602 −14.2076 −0.579058
603603 −5.67353 −0.231044
604604 −7.78263 −0.316671
605605 −1.98234 −0.0805936
606606 −12.2801 −0.498846
607607 13.4321 0.545193 0.272596 0.962129i 0.412118π-0.412118\pi
0.272596 + 0.962129i 0.412118π0.412118\pi
608608 7.66776 0.310969
609609 −6.69257 −0.271197
610610 0.961315 0.0389225
611611 −20.5885 −0.832922
612612 6.46037 0.261145
613613 −11.7622 −0.475072 −0.237536 0.971379i 0.576340π-0.576340\pi
−0.237536 + 0.971379i 0.576340π0.576340\pi
614614 −6.39669 −0.258149
615615 −4.01231 −0.161792
616616 −3.54635 −0.142887
617617 −42.4730 −1.70990 −0.854950 0.518711i 0.826412π-0.826412\pi
−0.854950 + 0.518711i 0.826412π0.826412\pi
618618 −19.4504 −0.782409
619619 −43.7701 −1.75927 −0.879635 0.475649i 0.842213π-0.842213\pi
−0.879635 + 0.475649i 0.842213π0.842213\pi
620620 1.85033 0.0743112
621621 −2.91402 −0.116936
622622 6.95535 0.278884
623623 −0.819940 −0.0328502
624624 −2.49096 −0.0997181
625625 23.4127 0.936506
626626 −6.45365 −0.257940
627627 −17.0216 −0.679775
628628 3.52575 0.140693
629629 −13.2786 −0.529453
630630 0.521543 0.0207788
631631 −38.5593 −1.53502 −0.767511 0.641036i 0.778505π-0.778505\pi
−0.767511 + 0.641036i 0.778505π0.778505\pi
632632 0.116565 0.00463673
633633 11.3049 0.449331
634634 −5.56695 −0.221092
635635 −5.87187 −0.233018
636636 6.20990 0.246239
637637 −11.0795 −0.438984
638638 −9.29977 −0.368181
639639 4.12141 0.163040
640640 −0.326467 −0.0129047
641641 47.9344 1.89330 0.946648 0.322268i 0.104445π-0.104445\pi
0.946648 + 0.322268i 0.104445π0.104445\pi
642642 −6.16028 −0.243127
643643 −33.1025 −1.30544 −0.652718 0.757601i 0.726371π-0.726371\pi
−0.652718 + 0.757601i 0.726371π0.726371\pi
644644 −4.65526 −0.183443
645645 2.90340 0.114321
646646 49.5366 1.94899
647647 21.7062 0.853359 0.426680 0.904403i 0.359683π-0.359683\pi
0.426680 + 0.904403i 0.359683π0.359683\pi
648648 −1.00000 −0.0392837
649649 0.629073 0.0246933
650650 12.1893 0.478104
651651 9.05446 0.354872
652652 0.0621204 0.00243282
653653 −32.0324 −1.25352 −0.626761 0.779211i 0.715620π-0.715620\pi
−0.626761 + 0.779211i 0.715620π0.715620\pi
654654 −9.68026 −0.378528
655655 2.39267 0.0934893
656656 12.2901 0.479848
657657 7.69257 0.300116
658658 −13.2041 −0.514750
659659 −21.7155 −0.845915 −0.422958 0.906149i 0.639008π-0.639008\pi
−0.422958 + 0.906149i 0.639008π0.639008\pi
660660 0.724719 0.0282096
661661 17.2593 0.671310 0.335655 0.941985i 0.391042π-0.391042\pi
0.335655 + 0.941985i 0.391042π0.391042\pi
662662 24.9131 0.968275
663663 −16.0925 −0.624981
664664 7.08850 0.275087
665665 3.99906 0.155077
666666 2.05540 0.0796449
667667 −12.2077 −0.472684
668668 2.08850 0.0808063
669669 1.00000 0.0386622
670670 1.85222 0.0715575
671671 6.53669 0.252346
672672 −1.59754 −0.0616264
673673 22.1687 0.854541 0.427270 0.904124i 0.359475π-0.359475\pi
0.427270 + 0.904124i 0.359475π0.359475\pi
674674 −12.2978 −0.473692
675675 4.89342 0.188348
676676 −6.79513 −0.261351
677677 4.75877 0.182894 0.0914472 0.995810i 0.470851π-0.470851\pi
0.0914472 + 0.995810i 0.470851π0.470851\pi
678678 3.79915 0.145905
679679 10.1953 0.391258
680680 −2.10910 −0.0808801
681681 −18.8653 −0.722922
682682 12.5818 0.481781
683683 18.3973 0.703954 0.351977 0.936009i 0.385510π-0.385510\pi
0.351977 + 0.936009i 0.385510π0.385510\pi
684684 −7.66776 −0.293184
685685 −2.82973 −0.108119
686686 −18.2884 −0.698255
687687 −25.1506 −0.959556
688688 −8.89342 −0.339058
689689 −15.4686 −0.589307
690690 0.951330 0.0362165
691691 28.6842 1.09120 0.545598 0.838047i 0.316302π-0.316302\pi
0.545598 + 0.838047i 0.316302π0.316302\pi
692692 −14.2597 −0.542073
693693 3.54635 0.134715
694694 2.80103 0.106326
695695 1.91213 0.0725314
696696 −4.18930 −0.158795
697697 79.3987 3.00744
698698 −13.6847 −0.517972
699699 2.13736 0.0808423
700700 7.81742 0.295471
701701 −49.5192 −1.87032 −0.935158 0.354231i 0.884743π-0.884743\pi
−0.935158 + 0.354231i 0.884743π0.884743\pi
702702 2.49096 0.0940151
703703 15.7603 0.594410
704704 −2.21989 −0.0836651
705705 2.69834 0.101625
706706 −19.7430 −0.743038
707707 19.6180 0.737809
708708 0.283381 0.0106501
709709 −11.5396 −0.433380 −0.216690 0.976240i 0.569526π-0.569526\pi
−0.216690 + 0.976240i 0.569526π0.569526\pi
710710 −1.34550 −0.0504958
711711 −0.116565 −0.00437155
712712 −0.513252 −0.0192349
713713 16.5160 0.618528
714714 −10.3207 −0.386242
715715 −1.80524 −0.0675123
716716 24.5192 0.916327
717717 −0.112547 −0.00420314
718718 −9.56526 −0.356972
719719 −4.75550 −0.177350 −0.0886750 0.996061i 0.528263π-0.528263\pi
−0.0886750 + 0.996061i 0.528263π0.528263\pi
720720 0.326467 0.0121667
721721 31.0727 1.15721
722722 −39.7945 −1.48100
723723 −13.8957 −0.516788
724724 −18.2125 −0.676864
725725 20.5000 0.761351
726726 −6.07211 −0.225357
727727 11.4025 0.422894 0.211447 0.977389i 0.432182π-0.432182\pi
0.211447 + 0.977389i 0.432182π0.432182\pi
728728 3.97940 0.147486
729729 1.00000 0.0370370
730730 −2.51137 −0.0929499
731731 −57.4548 −2.12504
732732 2.94460 0.108836
733733 4.38123 0.161824 0.0809122 0.996721i 0.474217π-0.474217\pi
0.0809122 + 0.996721i 0.474217π0.474217\pi
734734 24.7755 0.914480
735735 1.45208 0.0535608
736736 −2.91402 −0.107412
737737 12.5946 0.463928
738738 −12.2901 −0.452405
739739 19.2143 0.706810 0.353405 0.935471i 0.385024π-0.385024\pi
0.353405 + 0.935471i 0.385024π0.385024\pi
740740 −0.671018 −0.0246671
741741 19.1001 0.701658
742742 −9.92055 −0.364195
743743 11.5536 0.423862 0.211931 0.977285i 0.432025π-0.432025\pi
0.211931 + 0.977285i 0.432025π0.432025\pi
744744 5.66776 0.207790
745745 −5.14465 −0.188485
746746 −35.7002 −1.30708
747747 −7.08850 −0.259354
748748 −14.3413 −0.524370
749749 9.84128 0.359593
750750 −3.22987 −0.117938
751751 −28.3814 −1.03565 −0.517827 0.855486i 0.673259π-0.673259\pi
−0.517827 + 0.855486i 0.673259π0.673259\pi
752752 −8.26530 −0.301404
753753 −1.18698 −0.0432558
754754 10.4354 0.380034
755755 −2.54077 −0.0924680
756756 1.59754 0.0581019
757757 −2.52311 −0.0917039 −0.0458520 0.998948i 0.514600π-0.514600\pi
−0.0458520 + 0.998948i 0.514600π0.514600\pi
758758 14.3802 0.522311
759759 6.46879 0.234802
760760 2.50327 0.0908030
761761 −38.2137 −1.38525 −0.692623 0.721300i 0.743545π-0.743545\pi
−0.692623 + 0.721300i 0.743545π0.743545\pi
762762 −17.9861 −0.651569
763763 15.4646 0.559855
764764 21.0644 0.762085
765765 2.10910 0.0762545
766766 30.9671 1.11889
767767 −0.705890 −0.0254882
768768 −1.00000 −0.0360844
769769 −18.2995 −0.659898 −0.329949 0.943999i 0.607032π-0.607032\pi
−0.329949 + 0.943999i 0.607032π0.607032\pi
770770 −1.15777 −0.0417230
771771 9.49749 0.342044
772772 −27.0985 −0.975296
773773 −14.7714 −0.531290 −0.265645 0.964071i 0.585585π-0.585585\pi
−0.265645 + 0.964071i 0.585585π0.585585\pi
774774 8.89342 0.319667
775775 −27.7347 −0.996260
776776 6.38186 0.229095
777777 −3.28357 −0.117797
778778 −8.50767 −0.305015
779779 −94.2376 −3.37641
780780 −0.813215 −0.0291178
781781 −9.14905 −0.327379
782782 −18.8257 −0.673204
783783 4.18930 0.149713
784784 −4.44787 −0.158853
785785 1.15104 0.0410824
786786 7.32898 0.261416
787787 −3.28144 −0.116971 −0.0584853 0.998288i 0.518627π-0.518627\pi
−0.0584853 + 0.998288i 0.518627π0.518627\pi
788788 17.7547 0.632485
789789 20.2440 0.720704
790790 0.0380547 0.00135393
791791 −6.06928 −0.215799
792792 2.21989 0.0788802
793793 −7.33489 −0.260469
794794 14.2651 0.506250
795795 2.02733 0.0719018
796796 20.2190 0.716642
797797 15.6573 0.554612 0.277306 0.960782i 0.410558π-0.410558\pi
0.277306 + 0.960782i 0.410558π0.410558\pi
798798 12.2495 0.433629
799799 −53.3969 −1.88905
800800 4.89342 0.173009
801801 0.513252 0.0181349
802802 −31.5109 −1.11269
803803 −17.0766 −0.602621
804804 5.67353 0.200090
805805 −1.51979 −0.0535654
806806 −14.1181 −0.497290
807807 9.55885 0.336488
808808 12.2801 0.432013
809809 −31.0320 −1.09103 −0.545513 0.838102i 0.683665π-0.683665\pi
−0.545513 + 0.838102i 0.683665π0.683665\pi
810810 −0.326467 −0.0114709
811811 22.1470 0.777688 0.388844 0.921304i 0.372875π-0.372875\pi
0.388844 + 0.921304i 0.372875π0.372875\pi
812812 6.69257 0.234863
813813 −24.0547 −0.843633
814814 −4.56274 −0.159924
815815 0.0202802 0.000710385 0
816816 −6.46037 −0.226158
817817 68.1926 2.38576
818818 9.16293 0.320374
819819 −3.97940 −0.139051
820820 4.01231 0.140116
821821 −7.24105 −0.252715 −0.126357 0.991985i 0.540329π-0.540329\pi
−0.126357 + 0.991985i 0.540329π0.540329\pi
822822 −8.66776 −0.302323
823823 12.0581 0.420319 0.210160 0.977667i 0.432602π-0.432602\pi
0.210160 + 0.977667i 0.432602π0.432602\pi
824824 19.4504 0.677586
825825 −10.8628 −0.378195
826826 −0.452712 −0.0157519
827827 28.5104 0.991403 0.495701 0.868493i 0.334911π-0.334911\pi
0.495701 + 0.868493i 0.334911π0.334911\pi
828828 2.91402 0.101269
829829 9.20256 0.319618 0.159809 0.987148i 0.448912π-0.448912\pi
0.159809 + 0.987148i 0.448912π0.448912\pi
830830 2.31416 0.0803256
831831 −30.8702 −1.07088
832832 2.49096 0.0863584
833833 −28.7349 −0.995606
834834 5.85706 0.202813
835835 0.681824 0.0235955
836836 17.0216 0.588703
837837 −5.66776 −0.195906
838838 29.4201 1.01630
839839 −16.9775 −0.586129 −0.293064 0.956093i 0.594675π-0.594675\pi
−0.293064 + 0.956093i 0.594675π0.594675\pi
840840 −0.521543 −0.0179949
841841 −11.4498 −0.394819
842842 −28.8396 −0.993878
843843 −6.78665 −0.233745
844844 −11.3049 −0.389132
845845 −2.21838 −0.0763147
846846 8.26530 0.284167
847847 9.70042 0.333310
848848 −6.20990 −0.213249
849849 −12.2466 −0.420302
850850 31.6133 1.08433
851851 −5.98946 −0.205316
852852 −4.12141 −0.141197
853853 26.0908 0.893333 0.446666 0.894701i 0.352611π-0.352611\pi
0.446666 + 0.894701i 0.352611π0.352611\pi
854854 −4.70412 −0.160972
855855 −2.50327 −0.0856099
856856 6.16028 0.210554
857857 −14.7870 −0.505115 −0.252558 0.967582i 0.581272π-0.581272\pi
−0.252558 + 0.967582i 0.581272π0.581272\pi
858858 −5.52964 −0.188779
859859 25.5670 0.872334 0.436167 0.899866i 0.356336π-0.356336\pi
0.436167 + 0.899866i 0.356336π0.356336\pi
860860 −2.90340 −0.0990053
861861 19.6339 0.669122
862862 −29.9517 −1.02016
863863 44.4272 1.51232 0.756159 0.654388i 0.227074π-0.227074\pi
0.756159 + 0.654388i 0.227074π0.227074\pi
864864 1.00000 0.0340207
865865 −4.65532 −0.158286
866866 11.1833 0.380025
867867 −24.7364 −0.840093
868868 −9.05446 −0.307328
869869 0.258762 0.00877790
870870 −1.36767 −0.0463683
871871 −14.1325 −0.478863
872872 9.68026 0.327815
873873 −6.38186 −0.215993
874874 22.3440 0.755797
875875 5.15984 0.174435
876876 −7.69257 −0.259908
877877 −11.9340 −0.402983 −0.201491 0.979490i 0.564579π-0.564579\pi
−0.201491 + 0.979490i 0.564579π0.564579\pi
878878 30.8644 1.04162
879879 10.7176 0.361495
880880 −0.724719 −0.0244303
881881 34.8986 1.17576 0.587882 0.808947i 0.299962π-0.299962\pi
0.587882 + 0.808947i 0.299962π0.299962\pi
882882 4.44787 0.149768
883883 −37.8330 −1.27318 −0.636591 0.771202i 0.719656π-0.719656\pi
−0.636591 + 0.771202i 0.719656π0.719656\pi
884884 16.0925 0.541250
885885 0.0925144 0.00310984
886886 35.8542 1.20455
887887 −41.1789 −1.38265 −0.691326 0.722543i 0.742973π-0.742973\pi
−0.691326 + 0.722543i 0.742973π0.742973\pi
888888 −2.05540 −0.0689745
889889 28.7335 0.963691
890890 −0.167560 −0.00561661
891891 −2.21989 −0.0743690
892892 −1.00000 −0.0334825
893893 63.3763 2.12081
894894 −15.7586 −0.527046
895895 8.00471 0.267568
896896 1.59754 0.0533700
897897 −7.25870 −0.242361
898898 15.7066 0.524137
899899 −23.7439 −0.791905
900900 −4.89342 −0.163114
901901 −40.1183 −1.33653
902902 27.2826 0.908412
903903 −14.2076 −0.472799
904904 −3.79915 −0.126358
905905 −5.94579 −0.197645
906906 −7.78263 −0.258561
907907 −53.0797 −1.76248 −0.881241 0.472668i 0.843291π-0.843291\pi
−0.881241 + 0.472668i 0.843291π0.843291\pi
908908 18.8653 0.626069
909909 −12.2801 −0.407306
910910 1.29914 0.0430661
911911 40.1408 1.32992 0.664961 0.746878i 0.268448π-0.268448\pi
0.664961 + 0.746878i 0.268448π0.268448\pi
912912 7.66776 0.253905
913913 15.7357 0.520774
914914 29.0459 0.960754
915915 0.961315 0.0317801
916916 25.1506 0.831000
917917 −11.7083 −0.386643
918918 6.46037 0.213224
919919 −23.1072 −0.762237 −0.381118 0.924526i 0.624461π-0.624461\pi
−0.381118 + 0.924526i 0.624461π0.624461\pi
920920 −0.951330 −0.0313644
921921 −6.39669 −0.210778
922922 −21.5743 −0.710512
923923 10.2662 0.337918
924924 −3.54635 −0.116666
925925 10.0579 0.330702
926926 −24.3686 −0.800802
927927 −19.4504 −0.638835
928928 4.18930 0.137521
929929 −1.79556 −0.0589105 −0.0294553 0.999566i 0.509377π-0.509377\pi
−0.0294553 + 0.999566i 0.509377π0.509377\pi
930930 1.85033 0.0606748
931931 34.1052 1.11775
932932 −2.13736 −0.0700115
933933 6.95535 0.227708
934934 32.4960 1.06330
935935 −4.68195 −0.153116
936936 −2.49096 −0.0814195
937937 −9.00535 −0.294192 −0.147096 0.989122i 0.546993π-0.546993\pi
−0.147096 + 0.989122i 0.546993π0.546993\pi
938938 −9.06369 −0.295940
939939 −6.45365 −0.210607
940940 −2.69834 −0.0880103
941941 −13.2698 −0.432584 −0.216292 0.976329i 0.569396π-0.569396\pi
−0.216292 + 0.976329i 0.569396π0.569396\pi
942942 3.52575 0.114875
943943 35.8136 1.16625
944944 −0.283381 −0.00922326
945945 0.521543 0.0169658
946946 −19.7424 −0.641880
947947 38.7970 1.26073 0.630366 0.776298i 0.282905π-0.282905\pi
0.630366 + 0.776298i 0.282905π0.282905\pi
948948 0.116565 0.00378587
949949 19.1619 0.622020
950950 −37.5216 −1.21736
951951 −5.56695 −0.180521
952952 10.3207 0.334496
953953 57.9423 1.87694 0.938468 0.345367i 0.112246π-0.112246\pi
0.938468 + 0.345367i 0.112246π0.112246\pi
954954 6.20990 0.201053
955955 6.87684 0.222529
956956 0.112547 0.00364003
957957 −9.29977 −0.300619
958958 −34.9175 −1.12813
959959 13.8471 0.447145
960960 −0.326467 −0.0105367
961961 1.12348 0.0362414
962962 5.11990 0.165072
963963 −6.16028 −0.198512
964964 13.8957 0.447552
965965 −8.84675 −0.284787
966966 −4.65526 −0.149780
967967 35.0066 1.12574 0.562868 0.826547i 0.309698π-0.309698\pi
0.562868 + 0.826547i 0.309698π0.309698\pi
968968 6.07211 0.195165
969969 49.5366 1.59134
970970 2.08346 0.0668960
971971 31.1405 0.999345 0.499672 0.866214i 0.333454π-0.333454\pi
0.499672 + 0.866214i 0.333454π0.333454\pi
972972 −1.00000 −0.0320750
973973 −9.35688 −0.299968
974974 6.46037 0.207004
975975 12.1893 0.390370
976976 −2.94460 −0.0942545
977977 −9.44587 −0.302200 −0.151100 0.988518i 0.548282π-0.548282\pi
−0.151100 + 0.988518i 0.548282π0.548282\pi
978978 0.0621204 0.00198639
979979 −1.13936 −0.0364141
980980 −1.45208 −0.0463850
981981 −9.68026 −0.309067
982982 0.708520 0.0226098
983983 −20.5690 −0.656051 −0.328025 0.944669i 0.606383π-0.606383\pi
−0.328025 + 0.944669i 0.606383π0.606383\pi
984984 12.2901 0.391794
985985 5.79631 0.184686
986986 27.0644 0.861908
987987 −13.2041 −0.420292
988988 −19.1001 −0.607654
989989 −25.9156 −0.824068
990990 0.724719 0.0230331
991991 −7.89877 −0.250913 −0.125456 0.992099i 0.540040π-0.540040\pi
−0.125456 + 0.992099i 0.540040π0.540040\pi
992992 −5.66776 −0.179951
993993 24.9131 0.790593
994994 6.58410 0.208835
995995 6.60081 0.209260
996996 7.08850 0.224608
997997 6.14766 0.194698 0.0973492 0.995250i 0.468964π-0.468964\pi
0.0973492 + 0.995250i 0.468964π0.468964\pi
998998 −20.2230 −0.640147
999999 2.05540 0.0650298
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1338.2.a.g.1.2 4
3.2 odd 2 4014.2.a.q.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1338.2.a.g.1.2 4 1.1 even 1 trivial
4014.2.a.q.1.3 4 3.2 odd 2