Properties

Label 1338.2.a.i.1.2
Level $1338$
Weight $2$
Character 1338.1
Self dual yes
Analytic conductor $10.684$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1338,2,Mod(1,1338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1338, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1338.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1338 = 2 \cdot 3 \cdot 223 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1338.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.6839837904\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.232773917.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 12x^{4} - x^{3} + 33x^{2} + 5x - 22 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.72012\) of defining polynomial
Character \(\chi\) \(=\) 1338.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -0.720124 q^{5} +1.00000 q^{6} -2.15975 q^{7} +1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -0.720124 q^{5} +1.00000 q^{6} -2.15975 q^{7} +1.00000 q^{8} +1.00000 q^{9} -0.720124 q^{10} +0.190874 q^{11} +1.00000 q^{12} +5.68900 q^{13} -2.15975 q^{14} -0.720124 q^{15} +1.00000 q^{16} +1.47294 q^{17} +1.00000 q^{18} +3.39180 q^{19} -0.720124 q^{20} -2.15975 q^{21} +0.190874 q^{22} +4.79157 q^{23} +1.00000 q^{24} -4.48142 q^{25} +5.68900 q^{26} +1.00000 q^{27} -2.15975 q^{28} +6.73017 q^{29} -0.720124 q^{30} -5.71504 q^{31} +1.00000 q^{32} +0.190874 q^{33} +1.47294 q^{34} +1.55529 q^{35} +1.00000 q^{36} +1.29431 q^{37} +3.39180 q^{38} +5.68900 q^{39} -0.720124 q^{40} +6.26451 q^{41} -2.15975 q^{42} +6.06566 q^{43} +0.190874 q^{44} -0.720124 q^{45} +4.79157 q^{46} -6.16980 q^{47} +1.00000 q^{48} -2.33549 q^{49} -4.48142 q^{50} +1.47294 q^{51} +5.68900 q^{52} +4.33768 q^{53} +1.00000 q^{54} -0.137453 q^{55} -2.15975 q^{56} +3.39180 q^{57} +6.73017 q^{58} +2.58995 q^{59} -0.720124 q^{60} +6.98912 q^{61} -5.71504 q^{62} -2.15975 q^{63} +1.00000 q^{64} -4.09678 q^{65} +0.190874 q^{66} -7.00935 q^{67} +1.47294 q^{68} +4.79157 q^{69} +1.55529 q^{70} -13.2708 q^{71} +1.00000 q^{72} -6.23354 q^{73} +1.29431 q^{74} -4.48142 q^{75} +3.39180 q^{76} -0.412240 q^{77} +5.68900 q^{78} +5.25291 q^{79} -0.720124 q^{80} +1.00000 q^{81} +6.26451 q^{82} +2.12352 q^{83} -2.15975 q^{84} -1.06070 q^{85} +6.06566 q^{86} +6.73017 q^{87} +0.190874 q^{88} -12.9174 q^{89} -0.720124 q^{90} -12.2868 q^{91} +4.79157 q^{92} -5.71504 q^{93} -6.16980 q^{94} -2.44251 q^{95} +1.00000 q^{96} -2.68681 q^{97} -2.33549 q^{98} +0.190874 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 6 q^{2} + 6 q^{3} + 6 q^{4} + 6 q^{5} + 6 q^{6} + 5 q^{7} + 6 q^{8} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + 6 q^{2} + 6 q^{3} + 6 q^{4} + 6 q^{5} + 6 q^{6} + 5 q^{7} + 6 q^{8} + 6 q^{9} + 6 q^{10} + q^{11} + 6 q^{12} + 6 q^{13} + 5 q^{14} + 6 q^{15} + 6 q^{16} + 10 q^{17} + 6 q^{18} - 4 q^{19} + 6 q^{20} + 5 q^{21} + q^{22} + 2 q^{23} + 6 q^{24} + 6 q^{26} + 6 q^{27} + 5 q^{28} + 6 q^{29} + 6 q^{30} - 5 q^{31} + 6 q^{32} + q^{33} + 10 q^{34} - 2 q^{35} + 6 q^{36} + q^{37} - 4 q^{38} + 6 q^{39} + 6 q^{40} + 12 q^{41} + 5 q^{42} - 11 q^{43} + q^{44} + 6 q^{45} + 2 q^{46} + 5 q^{47} + 6 q^{48} - q^{49} + 10 q^{51} + 6 q^{52} + 4 q^{53} + 6 q^{54} - 15 q^{55} + 5 q^{56} - 4 q^{57} + 6 q^{58} + q^{59} + 6 q^{60} - 8 q^{61} - 5 q^{62} + 5 q^{63} + 6 q^{64} + 5 q^{65} + q^{66} - 6 q^{67} + 10 q^{68} + 2 q^{69} - 2 q^{70} + q^{71} + 6 q^{72} - 10 q^{73} + q^{74} - 4 q^{76} - 8 q^{77} + 6 q^{78} - 10 q^{79} + 6 q^{80} + 6 q^{81} + 12 q^{82} - 6 q^{83} + 5 q^{84} - 2 q^{85} - 11 q^{86} + 6 q^{87} + q^{88} - 3 q^{89} + 6 q^{90} - 16 q^{91} + 2 q^{92} - 5 q^{93} + 5 q^{94} - 10 q^{95} + 6 q^{96} + 3 q^{97} - q^{98} + q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) −0.720124 −0.322049 −0.161025 0.986950i \(-0.551480\pi\)
−0.161025 + 0.986950i \(0.551480\pi\)
\(6\) 1.00000 0.408248
\(7\) −2.15975 −0.816308 −0.408154 0.912913i \(-0.633827\pi\)
−0.408154 + 0.912913i \(0.633827\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) −0.720124 −0.227723
\(11\) 0.190874 0.0575508 0.0287754 0.999586i \(-0.490839\pi\)
0.0287754 + 0.999586i \(0.490839\pi\)
\(12\) 1.00000 0.288675
\(13\) 5.68900 1.57784 0.788922 0.614493i \(-0.210639\pi\)
0.788922 + 0.614493i \(0.210639\pi\)
\(14\) −2.15975 −0.577217
\(15\) −0.720124 −0.185935
\(16\) 1.00000 0.250000
\(17\) 1.47294 0.357240 0.178620 0.983918i \(-0.442837\pi\)
0.178620 + 0.983918i \(0.442837\pi\)
\(18\) 1.00000 0.235702
\(19\) 3.39180 0.778131 0.389066 0.921210i \(-0.372798\pi\)
0.389066 + 0.921210i \(0.372798\pi\)
\(20\) −0.720124 −0.161025
\(21\) −2.15975 −0.471296
\(22\) 0.190874 0.0406945
\(23\) 4.79157 0.999112 0.499556 0.866282i \(-0.333497\pi\)
0.499556 + 0.866282i \(0.333497\pi\)
\(24\) 1.00000 0.204124
\(25\) −4.48142 −0.896284
\(26\) 5.68900 1.11570
\(27\) 1.00000 0.192450
\(28\) −2.15975 −0.408154
\(29\) 6.73017 1.24976 0.624881 0.780720i \(-0.285148\pi\)
0.624881 + 0.780720i \(0.285148\pi\)
\(30\) −0.720124 −0.131476
\(31\) −5.71504 −1.02645 −0.513225 0.858254i \(-0.671549\pi\)
−0.513225 + 0.858254i \(0.671549\pi\)
\(32\) 1.00000 0.176777
\(33\) 0.190874 0.0332269
\(34\) 1.47294 0.252607
\(35\) 1.55529 0.262891
\(36\) 1.00000 0.166667
\(37\) 1.29431 0.212784 0.106392 0.994324i \(-0.466070\pi\)
0.106392 + 0.994324i \(0.466070\pi\)
\(38\) 3.39180 0.550222
\(39\) 5.68900 0.910969
\(40\) −0.720124 −0.113862
\(41\) 6.26451 0.978352 0.489176 0.872185i \(-0.337298\pi\)
0.489176 + 0.872185i \(0.337298\pi\)
\(42\) −2.15975 −0.333256
\(43\) 6.06566 0.925004 0.462502 0.886618i \(-0.346952\pi\)
0.462502 + 0.886618i \(0.346952\pi\)
\(44\) 0.190874 0.0287754
\(45\) −0.720124 −0.107350
\(46\) 4.79157 0.706479
\(47\) −6.16980 −0.899957 −0.449979 0.893039i \(-0.648568\pi\)
−0.449979 + 0.893039i \(0.648568\pi\)
\(48\) 1.00000 0.144338
\(49\) −2.33549 −0.333641
\(50\) −4.48142 −0.633769
\(51\) 1.47294 0.206253
\(52\) 5.68900 0.788922
\(53\) 4.33768 0.595825 0.297913 0.954593i \(-0.403710\pi\)
0.297913 + 0.954593i \(0.403710\pi\)
\(54\) 1.00000 0.136083
\(55\) −0.137453 −0.0185342
\(56\) −2.15975 −0.288609
\(57\) 3.39180 0.449254
\(58\) 6.73017 0.883715
\(59\) 2.58995 0.337183 0.168591 0.985686i \(-0.446078\pi\)
0.168591 + 0.985686i \(0.446078\pi\)
\(60\) −0.720124 −0.0929676
\(61\) 6.98912 0.894865 0.447433 0.894318i \(-0.352338\pi\)
0.447433 + 0.894318i \(0.352338\pi\)
\(62\) −5.71504 −0.725810
\(63\) −2.15975 −0.272103
\(64\) 1.00000 0.125000
\(65\) −4.09678 −0.508143
\(66\) 0.190874 0.0234950
\(67\) −7.00935 −0.856328 −0.428164 0.903701i \(-0.640839\pi\)
−0.428164 + 0.903701i \(0.640839\pi\)
\(68\) 1.47294 0.178620
\(69\) 4.79157 0.576837
\(70\) 1.55529 0.185892
\(71\) −13.2708 −1.57496 −0.787478 0.616343i \(-0.788614\pi\)
−0.787478 + 0.616343i \(0.788614\pi\)
\(72\) 1.00000 0.117851
\(73\) −6.23354 −0.729580 −0.364790 0.931090i \(-0.618859\pi\)
−0.364790 + 0.931090i \(0.618859\pi\)
\(74\) 1.29431 0.150461
\(75\) −4.48142 −0.517470
\(76\) 3.39180 0.389066
\(77\) −0.412240 −0.0469792
\(78\) 5.68900 0.644152
\(79\) 5.25291 0.590999 0.295499 0.955343i \(-0.404514\pi\)
0.295499 + 0.955343i \(0.404514\pi\)
\(80\) −0.720124 −0.0805123
\(81\) 1.00000 0.111111
\(82\) 6.26451 0.691799
\(83\) 2.12352 0.233087 0.116543 0.993186i \(-0.462819\pi\)
0.116543 + 0.993186i \(0.462819\pi\)
\(84\) −2.15975 −0.235648
\(85\) −1.06070 −0.115049
\(86\) 6.06566 0.654077
\(87\) 6.73017 0.721550
\(88\) 0.190874 0.0203473
\(89\) −12.9174 −1.36925 −0.684623 0.728897i \(-0.740033\pi\)
−0.684623 + 0.728897i \(0.740033\pi\)
\(90\) −0.720124 −0.0759077
\(91\) −12.2868 −1.28801
\(92\) 4.79157 0.499556
\(93\) −5.71504 −0.592622
\(94\) −6.16980 −0.636366
\(95\) −2.44251 −0.250597
\(96\) 1.00000 0.102062
\(97\) −2.68681 −0.272804 −0.136402 0.990654i \(-0.543554\pi\)
−0.136402 + 0.990654i \(0.543554\pi\)
\(98\) −2.33549 −0.235920
\(99\) 0.190874 0.0191836
\(100\) −4.48142 −0.448142
\(101\) 9.61806 0.957032 0.478516 0.878079i \(-0.341175\pi\)
0.478516 + 0.878079i \(0.341175\pi\)
\(102\) 1.47294 0.145843
\(103\) −5.35062 −0.527213 −0.263606 0.964630i \(-0.584912\pi\)
−0.263606 + 0.964630i \(0.584912\pi\)
\(104\) 5.68900 0.557852
\(105\) 1.55529 0.151780
\(106\) 4.33768 0.421312
\(107\) −13.0692 −1.26345 −0.631723 0.775194i \(-0.717652\pi\)
−0.631723 + 0.775194i \(0.717652\pi\)
\(108\) 1.00000 0.0962250
\(109\) −12.7771 −1.22382 −0.611911 0.790927i \(-0.709599\pi\)
−0.611911 + 0.790927i \(0.709599\pi\)
\(110\) −0.137453 −0.0131056
\(111\) 1.29431 0.122851
\(112\) −2.15975 −0.204077
\(113\) 9.85661 0.927231 0.463616 0.886036i \(-0.346552\pi\)
0.463616 + 0.886036i \(0.346552\pi\)
\(114\) 3.39180 0.317671
\(115\) −3.45052 −0.321763
\(116\) 6.73017 0.624881
\(117\) 5.68900 0.525948
\(118\) 2.58995 0.238424
\(119\) −3.18118 −0.291618
\(120\) −0.720124 −0.0657380
\(121\) −10.9636 −0.996688
\(122\) 6.98912 0.632765
\(123\) 6.26451 0.564852
\(124\) −5.71504 −0.513225
\(125\) 6.82780 0.610697
\(126\) −2.15975 −0.192406
\(127\) −10.2948 −0.913514 −0.456757 0.889591i \(-0.650989\pi\)
−0.456757 + 0.889591i \(0.650989\pi\)
\(128\) 1.00000 0.0883883
\(129\) 6.06566 0.534051
\(130\) −4.09678 −0.359312
\(131\) −3.03891 −0.265511 −0.132755 0.991149i \(-0.542382\pi\)
−0.132755 + 0.991149i \(0.542382\pi\)
\(132\) 0.190874 0.0166135
\(133\) −7.32543 −0.635195
\(134\) −7.00935 −0.605515
\(135\) −0.720124 −0.0619784
\(136\) 1.47294 0.126304
\(137\) −9.30257 −0.794772 −0.397386 0.917652i \(-0.630083\pi\)
−0.397386 + 0.917652i \(0.630083\pi\)
\(138\) 4.79157 0.407886
\(139\) −1.28426 −0.108930 −0.0544649 0.998516i \(-0.517345\pi\)
−0.0544649 + 0.998516i \(0.517345\pi\)
\(140\) 1.55529 0.131446
\(141\) −6.16980 −0.519591
\(142\) −13.2708 −1.11366
\(143\) 1.08588 0.0908061
\(144\) 1.00000 0.0833333
\(145\) −4.84656 −0.402485
\(146\) −6.23354 −0.515891
\(147\) −2.33549 −0.192628
\(148\) 1.29431 0.106392
\(149\) 22.9484 1.88001 0.940004 0.341162i \(-0.110821\pi\)
0.940004 + 0.341162i \(0.110821\pi\)
\(150\) −4.48142 −0.365907
\(151\) 1.16396 0.0947218 0.0473609 0.998878i \(-0.484919\pi\)
0.0473609 + 0.998878i \(0.484919\pi\)
\(152\) 3.39180 0.275111
\(153\) 1.47294 0.119080
\(154\) −0.412240 −0.0332193
\(155\) 4.11553 0.330568
\(156\) 5.68900 0.455484
\(157\) −23.0958 −1.84325 −0.921625 0.388083i \(-0.873137\pi\)
−0.921625 + 0.388083i \(0.873137\pi\)
\(158\) 5.25291 0.417899
\(159\) 4.33768 0.344000
\(160\) −0.720124 −0.0569308
\(161\) −10.3486 −0.815583
\(162\) 1.00000 0.0785674
\(163\) 2.34483 0.183662 0.0918308 0.995775i \(-0.470728\pi\)
0.0918308 + 0.995775i \(0.470728\pi\)
\(164\) 6.26451 0.489176
\(165\) −0.137453 −0.0107007
\(166\) 2.12352 0.164817
\(167\) 9.19583 0.711595 0.355797 0.934563i \(-0.384209\pi\)
0.355797 + 0.934563i \(0.384209\pi\)
\(168\) −2.15975 −0.166628
\(169\) 19.3647 1.48959
\(170\) −1.06070 −0.0813519
\(171\) 3.39180 0.259377
\(172\) 6.06566 0.462502
\(173\) 1.99140 0.151403 0.0757016 0.997131i \(-0.475880\pi\)
0.0757016 + 0.997131i \(0.475880\pi\)
\(174\) 6.73017 0.510213
\(175\) 9.67874 0.731644
\(176\) 0.190874 0.0143877
\(177\) 2.58995 0.194672
\(178\) −12.9174 −0.968204
\(179\) 8.04049 0.600974 0.300487 0.953786i \(-0.402851\pi\)
0.300487 + 0.953786i \(0.402851\pi\)
\(180\) −0.720124 −0.0536749
\(181\) 6.19065 0.460147 0.230074 0.973173i \(-0.426103\pi\)
0.230074 + 0.973173i \(0.426103\pi\)
\(182\) −12.2868 −0.910759
\(183\) 6.98912 0.516651
\(184\) 4.79157 0.353239
\(185\) −0.932065 −0.0685268
\(186\) −5.71504 −0.419047
\(187\) 0.281146 0.0205594
\(188\) −6.16980 −0.449979
\(189\) −2.15975 −0.157099
\(190\) −2.44251 −0.177199
\(191\) −18.0212 −1.30397 −0.651985 0.758232i \(-0.726063\pi\)
−0.651985 + 0.758232i \(0.726063\pi\)
\(192\) 1.00000 0.0721688
\(193\) −21.7993 −1.56915 −0.784575 0.620033i \(-0.787119\pi\)
−0.784575 + 0.620033i \(0.787119\pi\)
\(194\) −2.68681 −0.192902
\(195\) −4.09678 −0.293377
\(196\) −2.33549 −0.166820
\(197\) 3.18861 0.227179 0.113589 0.993528i \(-0.463765\pi\)
0.113589 + 0.993528i \(0.463765\pi\)
\(198\) 0.190874 0.0135648
\(199\) 11.1529 0.790606 0.395303 0.918551i \(-0.370640\pi\)
0.395303 + 0.918551i \(0.370640\pi\)
\(200\) −4.48142 −0.316884
\(201\) −7.00935 −0.494401
\(202\) 9.61806 0.676724
\(203\) −14.5355 −1.02019
\(204\) 1.47294 0.103126
\(205\) −4.51122 −0.315078
\(206\) −5.35062 −0.372796
\(207\) 4.79157 0.333037
\(208\) 5.68900 0.394461
\(209\) 0.647407 0.0447821
\(210\) 1.55529 0.107325
\(211\) 1.05765 0.0728114 0.0364057 0.999337i \(-0.488409\pi\)
0.0364057 + 0.999337i \(0.488409\pi\)
\(212\) 4.33768 0.297913
\(213\) −13.2708 −0.909301
\(214\) −13.0692 −0.893392
\(215\) −4.36803 −0.297897
\(216\) 1.00000 0.0680414
\(217\) 12.3430 0.837900
\(218\) −12.7771 −0.865372
\(219\) −6.23354 −0.421223
\(220\) −0.137453 −0.00926709
\(221\) 8.37955 0.563669
\(222\) 1.29431 0.0868686
\(223\) 1.00000 0.0669650
\(224\) −2.15975 −0.144304
\(225\) −4.48142 −0.298761
\(226\) 9.85661 0.655652
\(227\) 8.01392 0.531903 0.265951 0.963986i \(-0.414314\pi\)
0.265951 + 0.963986i \(0.414314\pi\)
\(228\) 3.39180 0.224627
\(229\) −22.6459 −1.49648 −0.748242 0.663426i \(-0.769102\pi\)
−0.748242 + 0.663426i \(0.769102\pi\)
\(230\) −3.45052 −0.227521
\(231\) −0.412240 −0.0271234
\(232\) 6.73017 0.441857
\(233\) 5.44041 0.356413 0.178207 0.983993i \(-0.442970\pi\)
0.178207 + 0.983993i \(0.442970\pi\)
\(234\) 5.68900 0.371901
\(235\) 4.44302 0.289831
\(236\) 2.58995 0.168591
\(237\) 5.25291 0.341213
\(238\) −3.18118 −0.206205
\(239\) 8.64211 0.559012 0.279506 0.960144i \(-0.409829\pi\)
0.279506 + 0.960144i \(0.409829\pi\)
\(240\) −0.720124 −0.0464838
\(241\) −2.02151 −0.130217 −0.0651084 0.997878i \(-0.520739\pi\)
−0.0651084 + 0.997878i \(0.520739\pi\)
\(242\) −10.9636 −0.704765
\(243\) 1.00000 0.0641500
\(244\) 6.98912 0.447433
\(245\) 1.68184 0.107449
\(246\) 6.26451 0.399411
\(247\) 19.2959 1.22777
\(248\) −5.71504 −0.362905
\(249\) 2.12352 0.134573
\(250\) 6.82780 0.431828
\(251\) −1.93932 −0.122409 −0.0612045 0.998125i \(-0.519494\pi\)
−0.0612045 + 0.998125i \(0.519494\pi\)
\(252\) −2.15975 −0.136051
\(253\) 0.914588 0.0574996
\(254\) −10.2948 −0.645952
\(255\) −1.06070 −0.0664235
\(256\) 1.00000 0.0625000
\(257\) −1.39603 −0.0870821 −0.0435411 0.999052i \(-0.513864\pi\)
−0.0435411 + 0.999052i \(0.513864\pi\)
\(258\) 6.06566 0.377631
\(259\) −2.79539 −0.173697
\(260\) −4.09678 −0.254072
\(261\) 6.73017 0.416587
\(262\) −3.03891 −0.187744
\(263\) −6.53132 −0.402738 −0.201369 0.979515i \(-0.564539\pi\)
−0.201369 + 0.979515i \(0.564539\pi\)
\(264\) 0.190874 0.0117475
\(265\) −3.12366 −0.191885
\(266\) −7.32543 −0.449151
\(267\) −12.9174 −0.790535
\(268\) −7.00935 −0.428164
\(269\) 4.46472 0.272219 0.136109 0.990694i \(-0.456540\pi\)
0.136109 + 0.990694i \(0.456540\pi\)
\(270\) −0.720124 −0.0438253
\(271\) −19.3438 −1.17505 −0.587527 0.809204i \(-0.699899\pi\)
−0.587527 + 0.809204i \(0.699899\pi\)
\(272\) 1.47294 0.0893101
\(273\) −12.2868 −0.743631
\(274\) −9.30257 −0.561989
\(275\) −0.855388 −0.0515818
\(276\) 4.79157 0.288419
\(277\) 18.4637 1.10938 0.554689 0.832058i \(-0.312837\pi\)
0.554689 + 0.832058i \(0.312837\pi\)
\(278\) −1.28426 −0.0770251
\(279\) −5.71504 −0.342150
\(280\) 1.55529 0.0929462
\(281\) 12.5527 0.748832 0.374416 0.927261i \(-0.377843\pi\)
0.374416 + 0.927261i \(0.377843\pi\)
\(282\) −6.16980 −0.367406
\(283\) 2.24527 0.133467 0.0667337 0.997771i \(-0.478742\pi\)
0.0667337 + 0.997771i \(0.478742\pi\)
\(284\) −13.2708 −0.787478
\(285\) −2.44251 −0.144682
\(286\) 1.08588 0.0642096
\(287\) −13.5298 −0.798637
\(288\) 1.00000 0.0589256
\(289\) −14.8304 −0.872379
\(290\) −4.84656 −0.284600
\(291\) −2.68681 −0.157504
\(292\) −6.23354 −0.364790
\(293\) 27.3537 1.59802 0.799011 0.601317i \(-0.205357\pi\)
0.799011 + 0.601317i \(0.205357\pi\)
\(294\) −2.33549 −0.136208
\(295\) −1.86508 −0.108589
\(296\) 1.29431 0.0752304
\(297\) 0.190874 0.0110756
\(298\) 22.9484 1.32937
\(299\) 27.2592 1.57644
\(300\) −4.48142 −0.258735
\(301\) −13.1003 −0.755089
\(302\) 1.16396 0.0669784
\(303\) 9.61806 0.552543
\(304\) 3.39180 0.194533
\(305\) −5.03303 −0.288191
\(306\) 1.47294 0.0842023
\(307\) −24.7294 −1.41138 −0.705689 0.708521i \(-0.749363\pi\)
−0.705689 + 0.708521i \(0.749363\pi\)
\(308\) −0.412240 −0.0234896
\(309\) −5.35062 −0.304386
\(310\) 4.11553 0.233747
\(311\) −9.40354 −0.533226 −0.266613 0.963804i \(-0.585905\pi\)
−0.266613 + 0.963804i \(0.585905\pi\)
\(312\) 5.68900 0.322076
\(313\) 16.2859 0.920531 0.460265 0.887781i \(-0.347754\pi\)
0.460265 + 0.887781i \(0.347754\pi\)
\(314\) −23.0958 −1.30337
\(315\) 1.55529 0.0876305
\(316\) 5.25291 0.295499
\(317\) −15.7134 −0.882550 −0.441275 0.897372i \(-0.645474\pi\)
−0.441275 + 0.897372i \(0.645474\pi\)
\(318\) 4.33768 0.243245
\(319\) 1.28462 0.0719247
\(320\) −0.720124 −0.0402562
\(321\) −13.0692 −0.729451
\(322\) −10.3486 −0.576704
\(323\) 4.99591 0.277980
\(324\) 1.00000 0.0555556
\(325\) −25.4948 −1.41420
\(326\) 2.34483 0.129868
\(327\) −12.7771 −0.706574
\(328\) 6.26451 0.345900
\(329\) 13.3252 0.734643
\(330\) −0.137453 −0.00756655
\(331\) −21.8701 −1.20209 −0.601044 0.799216i \(-0.705248\pi\)
−0.601044 + 0.799216i \(0.705248\pi\)
\(332\) 2.12352 0.116543
\(333\) 1.29431 0.0709279
\(334\) 9.19583 0.503174
\(335\) 5.04760 0.275780
\(336\) −2.15975 −0.117824
\(337\) −7.15748 −0.389893 −0.194946 0.980814i \(-0.562453\pi\)
−0.194946 + 0.980814i \(0.562453\pi\)
\(338\) 19.3647 1.05330
\(339\) 9.85661 0.535337
\(340\) −1.06070 −0.0575245
\(341\) −1.09085 −0.0590730
\(342\) 3.39180 0.183407
\(343\) 20.1623 1.08866
\(344\) 6.06566 0.327038
\(345\) −3.45052 −0.185770
\(346\) 1.99140 0.107058
\(347\) −4.33587 −0.232762 −0.116381 0.993205i \(-0.537129\pi\)
−0.116381 + 0.993205i \(0.537129\pi\)
\(348\) 6.73017 0.360775
\(349\) −20.3467 −1.08913 −0.544566 0.838718i \(-0.683306\pi\)
−0.544566 + 0.838718i \(0.683306\pi\)
\(350\) 9.67874 0.517351
\(351\) 5.68900 0.303656
\(352\) 0.190874 0.0101736
\(353\) −15.9454 −0.848686 −0.424343 0.905501i \(-0.639495\pi\)
−0.424343 + 0.905501i \(0.639495\pi\)
\(354\) 2.58995 0.137654
\(355\) 9.55663 0.507213
\(356\) −12.9174 −0.684623
\(357\) −3.18118 −0.168366
\(358\) 8.04049 0.424953
\(359\) 23.9132 1.26209 0.631044 0.775747i \(-0.282627\pi\)
0.631044 + 0.775747i \(0.282627\pi\)
\(360\) −0.720124 −0.0379539
\(361\) −7.49572 −0.394511
\(362\) 6.19065 0.325373
\(363\) −10.9636 −0.575438
\(364\) −12.2868 −0.644004
\(365\) 4.48892 0.234961
\(366\) 6.98912 0.365327
\(367\) 10.6021 0.553427 0.276714 0.960952i \(-0.410755\pi\)
0.276714 + 0.960952i \(0.410755\pi\)
\(368\) 4.79157 0.249778
\(369\) 6.26451 0.326117
\(370\) −0.932065 −0.0484558
\(371\) −9.36829 −0.486377
\(372\) −5.71504 −0.296311
\(373\) 18.1083 0.937614 0.468807 0.883301i \(-0.344684\pi\)
0.468807 + 0.883301i \(0.344684\pi\)
\(374\) 0.281146 0.0145377
\(375\) 6.82780 0.352586
\(376\) −6.16980 −0.318183
\(377\) 38.2879 1.97193
\(378\) −2.15975 −0.111085
\(379\) −35.4047 −1.81862 −0.909309 0.416122i \(-0.863389\pi\)
−0.909309 + 0.416122i \(0.863389\pi\)
\(380\) −2.44251 −0.125298
\(381\) −10.2948 −0.527418
\(382\) −18.0212 −0.922046
\(383\) −32.1048 −1.64048 −0.820240 0.572019i \(-0.806160\pi\)
−0.820240 + 0.572019i \(0.806160\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0.296864 0.0151296
\(386\) −21.7993 −1.10956
\(387\) 6.06566 0.308335
\(388\) −2.68681 −0.136402
\(389\) 32.7182 1.65888 0.829439 0.558597i \(-0.188660\pi\)
0.829439 + 0.558597i \(0.188660\pi\)
\(390\) −4.09678 −0.207449
\(391\) 7.05769 0.356923
\(392\) −2.33549 −0.117960
\(393\) −3.03891 −0.153293
\(394\) 3.18861 0.160640
\(395\) −3.78275 −0.190331
\(396\) 0.190874 0.00959179
\(397\) 32.0177 1.60692 0.803462 0.595356i \(-0.202989\pi\)
0.803462 + 0.595356i \(0.202989\pi\)
\(398\) 11.1529 0.559043
\(399\) −7.32543 −0.366730
\(400\) −4.48142 −0.224071
\(401\) −7.57701 −0.378378 −0.189189 0.981941i \(-0.560586\pi\)
−0.189189 + 0.981941i \(0.560586\pi\)
\(402\) −7.00935 −0.349594
\(403\) −32.5128 −1.61958
\(404\) 9.61806 0.478516
\(405\) −0.720124 −0.0357832
\(406\) −14.5355 −0.721384
\(407\) 0.247051 0.0122459
\(408\) 1.47294 0.0729214
\(409\) −16.7032 −0.825920 −0.412960 0.910749i \(-0.635505\pi\)
−0.412960 + 0.910749i \(0.635505\pi\)
\(410\) −4.51122 −0.222793
\(411\) −9.30257 −0.458862
\(412\) −5.35062 −0.263606
\(413\) −5.59364 −0.275245
\(414\) 4.79157 0.235493
\(415\) −1.52920 −0.0750654
\(416\) 5.68900 0.278926
\(417\) −1.28426 −0.0628907
\(418\) 0.647407 0.0316657
\(419\) 24.3492 1.18954 0.594768 0.803898i \(-0.297244\pi\)
0.594768 + 0.803898i \(0.297244\pi\)
\(420\) 1.55529 0.0758902
\(421\) 35.2333 1.71717 0.858583 0.512674i \(-0.171345\pi\)
0.858583 + 0.512674i \(0.171345\pi\)
\(422\) 1.05765 0.0514854
\(423\) −6.16980 −0.299986
\(424\) 4.33768 0.210656
\(425\) −6.60086 −0.320189
\(426\) −13.2708 −0.642973
\(427\) −15.0947 −0.730486
\(428\) −13.0692 −0.631723
\(429\) 1.08588 0.0524269
\(430\) −4.36803 −0.210645
\(431\) 5.36851 0.258592 0.129296 0.991606i \(-0.458728\pi\)
0.129296 + 0.991606i \(0.458728\pi\)
\(432\) 1.00000 0.0481125
\(433\) −11.0259 −0.529872 −0.264936 0.964266i \(-0.585351\pi\)
−0.264936 + 0.964266i \(0.585351\pi\)
\(434\) 12.3430 0.592485
\(435\) −4.84656 −0.232375
\(436\) −12.7771 −0.611911
\(437\) 16.2520 0.777440
\(438\) −6.23354 −0.297850
\(439\) −14.9875 −0.715316 −0.357658 0.933853i \(-0.616425\pi\)
−0.357658 + 0.933853i \(0.616425\pi\)
\(440\) −0.137453 −0.00655282
\(441\) −2.33549 −0.111214
\(442\) 8.37955 0.398575
\(443\) 12.7430 0.605439 0.302719 0.953080i \(-0.402105\pi\)
0.302719 + 0.953080i \(0.402105\pi\)
\(444\) 1.29431 0.0614254
\(445\) 9.30216 0.440965
\(446\) 1.00000 0.0473514
\(447\) 22.9484 1.08542
\(448\) −2.15975 −0.102039
\(449\) −28.2186 −1.33172 −0.665860 0.746077i \(-0.731935\pi\)
−0.665860 + 0.746077i \(0.731935\pi\)
\(450\) −4.48142 −0.211256
\(451\) 1.19573 0.0563049
\(452\) 9.85661 0.463616
\(453\) 1.16396 0.0546877
\(454\) 8.01392 0.376112
\(455\) 8.84802 0.414802
\(456\) 3.39180 0.158835
\(457\) 25.2255 1.18000 0.590000 0.807403i \(-0.299128\pi\)
0.590000 + 0.807403i \(0.299128\pi\)
\(458\) −22.6459 −1.05817
\(459\) 1.47294 0.0687509
\(460\) −3.45052 −0.160882
\(461\) 19.4256 0.904741 0.452371 0.891830i \(-0.350578\pi\)
0.452371 + 0.891830i \(0.350578\pi\)
\(462\) −0.412240 −0.0191792
\(463\) −17.2731 −0.802748 −0.401374 0.915914i \(-0.631467\pi\)
−0.401374 + 0.915914i \(0.631467\pi\)
\(464\) 6.73017 0.312440
\(465\) 4.11553 0.190853
\(466\) 5.44041 0.252022
\(467\) −20.9309 −0.968566 −0.484283 0.874911i \(-0.660919\pi\)
−0.484283 + 0.874911i \(0.660919\pi\)
\(468\) 5.68900 0.262974
\(469\) 15.1384 0.699028
\(470\) 4.44302 0.204941
\(471\) −23.0958 −1.06420
\(472\) 2.58995 0.119212
\(473\) 1.15778 0.0532347
\(474\) 5.25291 0.241274
\(475\) −15.2001 −0.697427
\(476\) −3.18118 −0.145809
\(477\) 4.33768 0.198608
\(478\) 8.64211 0.395281
\(479\) −30.4422 −1.39094 −0.695470 0.718555i \(-0.744804\pi\)
−0.695470 + 0.718555i \(0.744804\pi\)
\(480\) −0.720124 −0.0328690
\(481\) 7.36334 0.335739
\(482\) −2.02151 −0.0920771
\(483\) −10.3486 −0.470877
\(484\) −10.9636 −0.498344
\(485\) 1.93484 0.0878564
\(486\) 1.00000 0.0453609
\(487\) −11.4597 −0.519287 −0.259643 0.965705i \(-0.583605\pi\)
−0.259643 + 0.965705i \(0.583605\pi\)
\(488\) 6.98912 0.316383
\(489\) 2.34483 0.106037
\(490\) 1.68184 0.0759778
\(491\) −33.5690 −1.51495 −0.757474 0.652865i \(-0.773567\pi\)
−0.757474 + 0.652865i \(0.773567\pi\)
\(492\) 6.26451 0.282426
\(493\) 9.91313 0.446465
\(494\) 19.2959 0.868165
\(495\) −0.137453 −0.00617806
\(496\) −5.71504 −0.256613
\(497\) 28.6616 1.28565
\(498\) 2.12352 0.0951573
\(499\) −24.3218 −1.08880 −0.544398 0.838827i \(-0.683242\pi\)
−0.544398 + 0.838827i \(0.683242\pi\)
\(500\) 6.82780 0.305348
\(501\) 9.19583 0.410840
\(502\) −1.93932 −0.0865563
\(503\) 15.3511 0.684471 0.342235 0.939614i \(-0.388816\pi\)
0.342235 + 0.939614i \(0.388816\pi\)
\(504\) −2.15975 −0.0962028
\(505\) −6.92619 −0.308211
\(506\) 0.914588 0.0406584
\(507\) 19.3647 0.860017
\(508\) −10.2948 −0.456757
\(509\) 17.1445 0.759916 0.379958 0.925004i \(-0.375938\pi\)
0.379958 + 0.925004i \(0.375938\pi\)
\(510\) −1.06070 −0.0469685
\(511\) 13.4629 0.595562
\(512\) 1.00000 0.0441942
\(513\) 3.39180 0.149751
\(514\) −1.39603 −0.0615764
\(515\) 3.85311 0.169788
\(516\) 6.06566 0.267026
\(517\) −1.17766 −0.0517932
\(518\) −2.79539 −0.122822
\(519\) 1.99140 0.0874127
\(520\) −4.09678 −0.179656
\(521\) 38.7232 1.69650 0.848248 0.529599i \(-0.177658\pi\)
0.848248 + 0.529599i \(0.177658\pi\)
\(522\) 6.73017 0.294572
\(523\) 3.94320 0.172424 0.0862120 0.996277i \(-0.472524\pi\)
0.0862120 + 0.996277i \(0.472524\pi\)
\(524\) −3.03891 −0.132755
\(525\) 9.67874 0.422415
\(526\) −6.53132 −0.284779
\(527\) −8.41790 −0.366689
\(528\) 0.190874 0.00830674
\(529\) −0.0408477 −0.00177599
\(530\) −3.12366 −0.135683
\(531\) 2.58995 0.112394
\(532\) −7.32543 −0.317598
\(533\) 35.6388 1.54369
\(534\) −12.9174 −0.558993
\(535\) 9.41144 0.406892
\(536\) −7.00935 −0.302758
\(537\) 8.04049 0.346973
\(538\) 4.46472 0.192488
\(539\) −0.445784 −0.0192013
\(540\) −0.720124 −0.0309892
\(541\) 3.41636 0.146881 0.0734405 0.997300i \(-0.476602\pi\)
0.0734405 + 0.997300i \(0.476602\pi\)
\(542\) −19.3438 −0.830889
\(543\) 6.19065 0.265666
\(544\) 1.47294 0.0631518
\(545\) 9.20107 0.394131
\(546\) −12.2868 −0.525827
\(547\) 13.3521 0.570894 0.285447 0.958395i \(-0.407858\pi\)
0.285447 + 0.958395i \(0.407858\pi\)
\(548\) −9.30257 −0.397386
\(549\) 6.98912 0.298288
\(550\) −0.855388 −0.0364739
\(551\) 22.8274 0.972479
\(552\) 4.79157 0.203943
\(553\) −11.3450 −0.482437
\(554\) 18.4637 0.784449
\(555\) −0.932065 −0.0395640
\(556\) −1.28426 −0.0544649
\(557\) −6.31642 −0.267635 −0.133818 0.991006i \(-0.542724\pi\)
−0.133818 + 0.991006i \(0.542724\pi\)
\(558\) −5.71504 −0.241937
\(559\) 34.5075 1.45951
\(560\) 1.55529 0.0657229
\(561\) 0.281146 0.0118700
\(562\) 12.5527 0.529504
\(563\) −25.0618 −1.05623 −0.528114 0.849173i \(-0.677101\pi\)
−0.528114 + 0.849173i \(0.677101\pi\)
\(564\) −6.16980 −0.259795
\(565\) −7.09798 −0.298614
\(566\) 2.24527 0.0943757
\(567\) −2.15975 −0.0907009
\(568\) −13.2708 −0.556831
\(569\) 4.38477 0.183819 0.0919095 0.995767i \(-0.470703\pi\)
0.0919095 + 0.995767i \(0.470703\pi\)
\(570\) −2.44251 −0.102306
\(571\) −8.85296 −0.370485 −0.185242 0.982693i \(-0.559307\pi\)
−0.185242 + 0.982693i \(0.559307\pi\)
\(572\) 1.08588 0.0454031
\(573\) −18.0212 −0.752847
\(574\) −13.5298 −0.564722
\(575\) −21.4730 −0.895488
\(576\) 1.00000 0.0416667
\(577\) 40.2022 1.67364 0.836821 0.547477i \(-0.184412\pi\)
0.836821 + 0.547477i \(0.184412\pi\)
\(578\) −14.8304 −0.616865
\(579\) −21.7993 −0.905950
\(580\) −4.84656 −0.201242
\(581\) −4.58627 −0.190271
\(582\) −2.68681 −0.111372
\(583\) 0.827951 0.0342902
\(584\) −6.23354 −0.257946
\(585\) −4.09678 −0.169381
\(586\) 27.3537 1.12997
\(587\) 28.4825 1.17560 0.587800 0.809006i \(-0.299994\pi\)
0.587800 + 0.809006i \(0.299994\pi\)
\(588\) −2.33549 −0.0963138
\(589\) −19.3842 −0.798714
\(590\) −1.86508 −0.0767843
\(591\) 3.18861 0.131162
\(592\) 1.29431 0.0531959
\(593\) 18.9609 0.778632 0.389316 0.921104i \(-0.372711\pi\)
0.389316 + 0.921104i \(0.372711\pi\)
\(594\) 0.190874 0.00783167
\(595\) 2.29084 0.0939154
\(596\) 22.9484 0.940004
\(597\) 11.1529 0.456456
\(598\) 27.2592 1.11471
\(599\) −2.15238 −0.0879440 −0.0439720 0.999033i \(-0.514001\pi\)
−0.0439720 + 0.999033i \(0.514001\pi\)
\(600\) −4.48142 −0.182953
\(601\) −16.9616 −0.691876 −0.345938 0.938257i \(-0.612439\pi\)
−0.345938 + 0.938257i \(0.612439\pi\)
\(602\) −13.1003 −0.533928
\(603\) −7.00935 −0.285443
\(604\) 1.16396 0.0473609
\(605\) 7.89513 0.320983
\(606\) 9.61806 0.390707
\(607\) 31.6495 1.28461 0.642306 0.766448i \(-0.277978\pi\)
0.642306 + 0.766448i \(0.277978\pi\)
\(608\) 3.39180 0.137556
\(609\) −14.5355 −0.589007
\(610\) −5.03303 −0.203782
\(611\) −35.1000 −1.41999
\(612\) 1.47294 0.0595400
\(613\) 36.0887 1.45761 0.728804 0.684723i \(-0.240077\pi\)
0.728804 + 0.684723i \(0.240077\pi\)
\(614\) −24.7294 −0.997996
\(615\) −4.51122 −0.181910
\(616\) −0.412240 −0.0166096
\(617\) −15.2008 −0.611960 −0.305980 0.952038i \(-0.598984\pi\)
−0.305980 + 0.952038i \(0.598984\pi\)
\(618\) −5.35062 −0.215234
\(619\) −31.4228 −1.26299 −0.631494 0.775381i \(-0.717558\pi\)
−0.631494 + 0.775381i \(0.717558\pi\)
\(620\) 4.11553 0.165284
\(621\) 4.79157 0.192279
\(622\) −9.40354 −0.377048
\(623\) 27.8984 1.11773
\(624\) 5.68900 0.227742
\(625\) 17.4902 0.699610
\(626\) 16.2859 0.650914
\(627\) 0.647407 0.0258549
\(628\) −23.0958 −0.921625
\(629\) 1.90644 0.0760149
\(630\) 1.55529 0.0619641
\(631\) 15.8955 0.632790 0.316395 0.948628i \(-0.397528\pi\)
0.316395 + 0.948628i \(0.397528\pi\)
\(632\) 5.25291 0.208950
\(633\) 1.05765 0.0420377
\(634\) −15.7134 −0.624057
\(635\) 7.41352 0.294197
\(636\) 4.33768 0.172000
\(637\) −13.2866 −0.526433
\(638\) 1.28462 0.0508585
\(639\) −13.2708 −0.524985
\(640\) −0.720124 −0.0284654
\(641\) −18.3511 −0.724826 −0.362413 0.932018i \(-0.618047\pi\)
−0.362413 + 0.932018i \(0.618047\pi\)
\(642\) −13.0692 −0.515800
\(643\) −17.9599 −0.708270 −0.354135 0.935194i \(-0.615225\pi\)
−0.354135 + 0.935194i \(0.615225\pi\)
\(644\) −10.3486 −0.407792
\(645\) −4.36803 −0.171991
\(646\) 4.99591 0.196561
\(647\) 47.3100 1.85995 0.929974 0.367626i \(-0.119829\pi\)
0.929974 + 0.367626i \(0.119829\pi\)
\(648\) 1.00000 0.0392837
\(649\) 0.494355 0.0194051
\(650\) −25.4948 −0.999988
\(651\) 12.3430 0.483762
\(652\) 2.34483 0.0918308
\(653\) −16.9899 −0.664868 −0.332434 0.943127i \(-0.607870\pi\)
−0.332434 + 0.943127i \(0.607870\pi\)
\(654\) −12.7771 −0.499623
\(655\) 2.18839 0.0855075
\(656\) 6.26451 0.244588
\(657\) −6.23354 −0.243193
\(658\) 13.3252 0.519471
\(659\) −7.23982 −0.282023 −0.141012 0.990008i \(-0.545036\pi\)
−0.141012 + 0.990008i \(0.545036\pi\)
\(660\) −0.137453 −0.00535036
\(661\) −37.5625 −1.46101 −0.730506 0.682906i \(-0.760716\pi\)
−0.730506 + 0.682906i \(0.760716\pi\)
\(662\) −21.8701 −0.850004
\(663\) 8.37955 0.325435
\(664\) 2.12352 0.0824086
\(665\) 5.27522 0.204564
\(666\) 1.29431 0.0501536
\(667\) 32.2481 1.24865
\(668\) 9.19583 0.355797
\(669\) 1.00000 0.0386622
\(670\) 5.04760 0.195006
\(671\) 1.33404 0.0515002
\(672\) −2.15975 −0.0833141
\(673\) 1.19339 0.0460019 0.0230010 0.999735i \(-0.492678\pi\)
0.0230010 + 0.999735i \(0.492678\pi\)
\(674\) −7.15748 −0.275696
\(675\) −4.48142 −0.172490
\(676\) 19.3647 0.744796
\(677\) 16.7960 0.645522 0.322761 0.946480i \(-0.395389\pi\)
0.322761 + 0.946480i \(0.395389\pi\)
\(678\) 9.85661 0.378541
\(679\) 5.80283 0.222692
\(680\) −1.06070 −0.0406759
\(681\) 8.01392 0.307094
\(682\) −1.09085 −0.0417709
\(683\) −17.5686 −0.672244 −0.336122 0.941818i \(-0.609116\pi\)
−0.336122 + 0.941818i \(0.609116\pi\)
\(684\) 3.39180 0.129689
\(685\) 6.69900 0.255956
\(686\) 20.1623 0.769800
\(687\) −22.6459 −0.863995
\(688\) 6.06566 0.231251
\(689\) 24.6770 0.940120
\(690\) −3.45052 −0.131359
\(691\) 34.7714 1.32277 0.661383 0.750048i \(-0.269970\pi\)
0.661383 + 0.750048i \(0.269970\pi\)
\(692\) 1.99140 0.0757016
\(693\) −0.412240 −0.0156597
\(694\) −4.33587 −0.164587
\(695\) 0.924830 0.0350808
\(696\) 6.73017 0.255107
\(697\) 9.22724 0.349507
\(698\) −20.3467 −0.770133
\(699\) 5.44041 0.205775
\(700\) 9.67874 0.365822
\(701\) −42.3398 −1.59915 −0.799575 0.600566i \(-0.794942\pi\)
−0.799575 + 0.600566i \(0.794942\pi\)
\(702\) 5.68900 0.214717
\(703\) 4.39004 0.165574
\(704\) 0.190874 0.00719385
\(705\) 4.44302 0.167334
\(706\) −15.9454 −0.600112
\(707\) −20.7726 −0.781233
\(708\) 2.58995 0.0973362
\(709\) 26.3375 0.989125 0.494562 0.869142i \(-0.335328\pi\)
0.494562 + 0.869142i \(0.335328\pi\)
\(710\) 9.55663 0.358654
\(711\) 5.25291 0.197000
\(712\) −12.9174 −0.484102
\(713\) −27.3840 −1.02554
\(714\) −3.18118 −0.119053
\(715\) −0.781971 −0.0292440
\(716\) 8.04049 0.300487
\(717\) 8.64211 0.322746
\(718\) 23.9132 0.892431
\(719\) −16.3033 −0.608012 −0.304006 0.952670i \(-0.598324\pi\)
−0.304006 + 0.952670i \(0.598324\pi\)
\(720\) −0.720124 −0.0268374
\(721\) 11.5560 0.430368
\(722\) −7.49572 −0.278962
\(723\) −2.02151 −0.0751807
\(724\) 6.19065 0.230074
\(725\) −30.1607 −1.12014
\(726\) −10.9636 −0.406896
\(727\) 4.99784 0.185360 0.0926799 0.995696i \(-0.470457\pi\)
0.0926799 + 0.995696i \(0.470457\pi\)
\(728\) −12.2868 −0.455379
\(729\) 1.00000 0.0370370
\(730\) 4.48892 0.166142
\(731\) 8.93435 0.330449
\(732\) 6.98912 0.258325
\(733\) 44.9853 1.66157 0.830784 0.556594i \(-0.187892\pi\)
0.830784 + 0.556594i \(0.187892\pi\)
\(734\) 10.6021 0.391332
\(735\) 1.68184 0.0620356
\(736\) 4.79157 0.176620
\(737\) −1.33790 −0.0492823
\(738\) 6.26451 0.230600
\(739\) 5.31268 0.195430 0.0977150 0.995214i \(-0.468847\pi\)
0.0977150 + 0.995214i \(0.468847\pi\)
\(740\) −0.932065 −0.0342634
\(741\) 19.2959 0.708853
\(742\) −9.36829 −0.343921
\(743\) −32.8810 −1.20629 −0.603144 0.797632i \(-0.706086\pi\)
−0.603144 + 0.797632i \(0.706086\pi\)
\(744\) −5.71504 −0.209523
\(745\) −16.5257 −0.605455
\(746\) 18.1083 0.662993
\(747\) 2.12352 0.0776956
\(748\) 0.281146 0.0102797
\(749\) 28.2262 1.03136
\(750\) 6.82780 0.249316
\(751\) 12.4460 0.454162 0.227081 0.973876i \(-0.427082\pi\)
0.227081 + 0.973876i \(0.427082\pi\)
\(752\) −6.16980 −0.224989
\(753\) −1.93932 −0.0706729
\(754\) 38.2879 1.39436
\(755\) −0.838196 −0.0305051
\(756\) −2.15975 −0.0785493
\(757\) 5.10450 0.185526 0.0927630 0.995688i \(-0.470430\pi\)
0.0927630 + 0.995688i \(0.470430\pi\)
\(758\) −35.4047 −1.28596
\(759\) 0.914588 0.0331974
\(760\) −2.44251 −0.0885993
\(761\) 28.6499 1.03856 0.519280 0.854604i \(-0.326200\pi\)
0.519280 + 0.854604i \(0.326200\pi\)
\(762\) −10.2948 −0.372941
\(763\) 27.5953 0.999015
\(764\) −18.0212 −0.651985
\(765\) −1.06070 −0.0383496
\(766\) −32.1048 −1.16000
\(767\) 14.7342 0.532022
\(768\) 1.00000 0.0360844
\(769\) 28.6270 1.03232 0.516158 0.856494i \(-0.327362\pi\)
0.516158 + 0.856494i \(0.327362\pi\)
\(770\) 0.296864 0.0106982
\(771\) −1.39603 −0.0502769
\(772\) −21.7993 −0.784575
\(773\) −31.3331 −1.12697 −0.563487 0.826125i \(-0.690541\pi\)
−0.563487 + 0.826125i \(0.690541\pi\)
\(774\) 6.06566 0.218026
\(775\) 25.6115 0.919992
\(776\) −2.68681 −0.0964508
\(777\) −2.79539 −0.100284
\(778\) 32.7182 1.17300
\(779\) 21.2479 0.761287
\(780\) −4.09678 −0.146688
\(781\) −2.53306 −0.0906399
\(782\) 7.05769 0.252383
\(783\) 6.73017 0.240517
\(784\) −2.33549 −0.0834102
\(785\) 16.6319 0.593617
\(786\) −3.03891 −0.108394
\(787\) 42.5300 1.51603 0.758015 0.652237i \(-0.226169\pi\)
0.758015 + 0.652237i \(0.226169\pi\)
\(788\) 3.18861 0.113589
\(789\) −6.53132 −0.232521
\(790\) −3.78275 −0.134584
\(791\) −21.2878 −0.756907
\(792\) 0.190874 0.00678242
\(793\) 39.7611 1.41196
\(794\) 32.0177 1.13627
\(795\) −3.12366 −0.110785
\(796\) 11.1529 0.395303
\(797\) 24.0007 0.850149 0.425074 0.905158i \(-0.360248\pi\)
0.425074 + 0.905158i \(0.360248\pi\)
\(798\) −7.32543 −0.259317
\(799\) −9.08774 −0.321501
\(800\) −4.48142 −0.158442
\(801\) −12.9174 −0.456416
\(802\) −7.57701 −0.267554
\(803\) −1.18982 −0.0419879
\(804\) −7.00935 −0.247201
\(805\) 7.45227 0.262658
\(806\) −32.5128 −1.14522
\(807\) 4.46472 0.157166
\(808\) 9.61806 0.338362
\(809\) −41.5631 −1.46128 −0.730640 0.682763i \(-0.760778\pi\)
−0.730640 + 0.682763i \(0.760778\pi\)
\(810\) −0.720124 −0.0253026
\(811\) 23.6000 0.828707 0.414354 0.910116i \(-0.364008\pi\)
0.414354 + 0.910116i \(0.364008\pi\)
\(812\) −14.5355 −0.510095
\(813\) −19.3438 −0.678418
\(814\) 0.247051 0.00865913
\(815\) −1.68857 −0.0591481
\(816\) 1.47294 0.0515632
\(817\) 20.5735 0.719775
\(818\) −16.7032 −0.584014
\(819\) −12.2868 −0.429336
\(820\) −4.51122 −0.157539
\(821\) 52.8820 1.84559 0.922797 0.385286i \(-0.125897\pi\)
0.922797 + 0.385286i \(0.125897\pi\)
\(822\) −9.30257 −0.324464
\(823\) −13.2767 −0.462797 −0.231398 0.972859i \(-0.574330\pi\)
−0.231398 + 0.972859i \(0.574330\pi\)
\(824\) −5.35062 −0.186398
\(825\) −0.855388 −0.0297808
\(826\) −5.59364 −0.194628
\(827\) 17.6180 0.612637 0.306318 0.951929i \(-0.400903\pi\)
0.306318 + 0.951929i \(0.400903\pi\)
\(828\) 4.79157 0.166519
\(829\) −6.06705 −0.210717 −0.105359 0.994434i \(-0.533599\pi\)
−0.105359 + 0.994434i \(0.533599\pi\)
\(830\) −1.52920 −0.0530792
\(831\) 18.4637 0.640500
\(832\) 5.68900 0.197231
\(833\) −3.44003 −0.119190
\(834\) −1.28426 −0.0444704
\(835\) −6.62214 −0.229169
\(836\) 0.647407 0.0223910
\(837\) −5.71504 −0.197541
\(838\) 24.3492 0.841129
\(839\) 38.1492 1.31706 0.658529 0.752555i \(-0.271179\pi\)
0.658529 + 0.752555i \(0.271179\pi\)
\(840\) 1.55529 0.0536625
\(841\) 16.2952 0.561904
\(842\) 35.2333 1.21422
\(843\) 12.5527 0.432339
\(844\) 1.05765 0.0364057
\(845\) −13.9450 −0.479722
\(846\) −6.16980 −0.212122
\(847\) 23.6785 0.813605
\(848\) 4.33768 0.148956
\(849\) 2.24527 0.0770574
\(850\) −6.60086 −0.226408
\(851\) 6.20179 0.212595
\(852\) −13.2708 −0.454651
\(853\) 10.6807 0.365700 0.182850 0.983141i \(-0.441468\pi\)
0.182850 + 0.983141i \(0.441468\pi\)
\(854\) −15.0947 −0.516532
\(855\) −2.44251 −0.0835322
\(856\) −13.0692 −0.446696
\(857\) −24.5920 −0.840046 −0.420023 0.907513i \(-0.637978\pi\)
−0.420023 + 0.907513i \(0.637978\pi\)
\(858\) 1.08588 0.0370715
\(859\) −22.2297 −0.758468 −0.379234 0.925301i \(-0.623812\pi\)
−0.379234 + 0.925301i \(0.623812\pi\)
\(860\) −4.36803 −0.148948
\(861\) −13.5298 −0.461093
\(862\) 5.36851 0.182852
\(863\) 6.52908 0.222253 0.111126 0.993806i \(-0.464554\pi\)
0.111126 + 0.993806i \(0.464554\pi\)
\(864\) 1.00000 0.0340207
\(865\) −1.43405 −0.0487593
\(866\) −11.0259 −0.374676
\(867\) −14.8304 −0.503668
\(868\) 12.3430 0.418950
\(869\) 1.00265 0.0340124
\(870\) −4.84656 −0.164314
\(871\) −39.8762 −1.35115
\(872\) −12.7771 −0.432686
\(873\) −2.68681 −0.0909347
\(874\) 16.2520 0.549733
\(875\) −14.7463 −0.498517
\(876\) −6.23354 −0.210612
\(877\) −27.8046 −0.938895 −0.469447 0.882960i \(-0.655547\pi\)
−0.469447 + 0.882960i \(0.655547\pi\)
\(878\) −14.9875 −0.505805
\(879\) 27.3537 0.922618
\(880\) −0.137453 −0.00463354
\(881\) 26.5940 0.895976 0.447988 0.894040i \(-0.352141\pi\)
0.447988 + 0.894040i \(0.352141\pi\)
\(882\) −2.33549 −0.0786399
\(883\) −43.9447 −1.47886 −0.739429 0.673235i \(-0.764904\pi\)
−0.739429 + 0.673235i \(0.764904\pi\)
\(884\) 8.37955 0.281835
\(885\) −1.86508 −0.0626941
\(886\) 12.7430 0.428110
\(887\) 11.9452 0.401080 0.200540 0.979686i \(-0.435730\pi\)
0.200540 + 0.979686i \(0.435730\pi\)
\(888\) 1.29431 0.0434343
\(889\) 22.2341 0.745709
\(890\) 9.30216 0.311809
\(891\) 0.190874 0.00639453
\(892\) 1.00000 0.0334825
\(893\) −20.9267 −0.700285
\(894\) 22.9484 0.767510
\(895\) −5.79015 −0.193543
\(896\) −2.15975 −0.0721521
\(897\) 27.2592 0.910159
\(898\) −28.2186 −0.941668
\(899\) −38.4632 −1.28282
\(900\) −4.48142 −0.149381
\(901\) 6.38913 0.212853
\(902\) 1.19573 0.0398136
\(903\) −13.1003 −0.435951
\(904\) 9.85661 0.327826
\(905\) −4.45803 −0.148190
\(906\) 1.16396 0.0386700
\(907\) 37.4317 1.24290 0.621449 0.783455i \(-0.286544\pi\)
0.621449 + 0.783455i \(0.286544\pi\)
\(908\) 8.01392 0.265951
\(909\) 9.61806 0.319011
\(910\) 8.84802 0.293309
\(911\) −14.9654 −0.495825 −0.247912 0.968782i \(-0.579744\pi\)
−0.247912 + 0.968782i \(0.579744\pi\)
\(912\) 3.39180 0.112314
\(913\) 0.405326 0.0134143
\(914\) 25.2255 0.834386
\(915\) −5.03303 −0.166387
\(916\) −22.6459 −0.748242
\(917\) 6.56328 0.216738
\(918\) 1.47294 0.0486142
\(919\) −35.2310 −1.16216 −0.581081 0.813846i \(-0.697370\pi\)
−0.581081 + 0.813846i \(0.697370\pi\)
\(920\) −3.45052 −0.113760
\(921\) −24.7294 −0.814860
\(922\) 19.4256 0.639749
\(923\) −75.4977 −2.48504
\(924\) −0.412240 −0.0135617
\(925\) −5.80036 −0.190715
\(926\) −17.2731 −0.567629
\(927\) −5.35062 −0.175738
\(928\) 6.73017 0.220929
\(929\) 22.6674 0.743694 0.371847 0.928294i \(-0.378725\pi\)
0.371847 + 0.928294i \(0.378725\pi\)
\(930\) 4.11553 0.134954
\(931\) −7.92149 −0.259616
\(932\) 5.44041 0.178207
\(933\) −9.40354 −0.307858
\(934\) −20.9309 −0.684880
\(935\) −0.202460 −0.00662115
\(936\) 5.68900 0.185951
\(937\) −54.1789 −1.76995 −0.884974 0.465640i \(-0.845824\pi\)
−0.884974 + 0.465640i \(0.845824\pi\)
\(938\) 15.1384 0.494287
\(939\) 16.2859 0.531469
\(940\) 4.44302 0.144915
\(941\) −46.8129 −1.52606 −0.763029 0.646365i \(-0.776288\pi\)
−0.763029 + 0.646365i \(0.776288\pi\)
\(942\) −23.0958 −0.752503
\(943\) 30.0168 0.977483
\(944\) 2.58995 0.0842956
\(945\) 1.55529 0.0505935
\(946\) 1.15778 0.0376426
\(947\) −15.1111 −0.491044 −0.245522 0.969391i \(-0.578959\pi\)
−0.245522 + 0.969391i \(0.578959\pi\)
\(948\) 5.25291 0.170607
\(949\) −35.4626 −1.15116
\(950\) −15.2001 −0.493155
\(951\) −15.7134 −0.509540
\(952\) −3.18118 −0.103103
\(953\) −15.7453 −0.510041 −0.255020 0.966936i \(-0.582082\pi\)
−0.255020 + 0.966936i \(0.582082\pi\)
\(954\) 4.33768 0.140437
\(955\) 12.9775 0.419942
\(956\) 8.64211 0.279506
\(957\) 1.28462 0.0415258
\(958\) −30.4422 −0.983543
\(959\) 20.0912 0.648779
\(960\) −0.720124 −0.0232419
\(961\) 1.66163 0.0536009
\(962\) 7.36334 0.237404
\(963\) −13.0692 −0.421149
\(964\) −2.02151 −0.0651084
\(965\) 15.6982 0.505344
\(966\) −10.3486 −0.332960
\(967\) −25.7901 −0.829353 −0.414676 0.909969i \(-0.636105\pi\)
−0.414676 + 0.909969i \(0.636105\pi\)
\(968\) −10.9636 −0.352382
\(969\) 4.99591 0.160492
\(970\) 1.93484 0.0621238
\(971\) 47.8921 1.53693 0.768466 0.639891i \(-0.221020\pi\)
0.768466 + 0.639891i \(0.221020\pi\)
\(972\) 1.00000 0.0320750
\(973\) 2.77369 0.0889204
\(974\) −11.4597 −0.367191
\(975\) −25.4948 −0.816487
\(976\) 6.98912 0.223716
\(977\) −19.6784 −0.629566 −0.314783 0.949164i \(-0.601932\pi\)
−0.314783 + 0.949164i \(0.601932\pi\)
\(978\) 2.34483 0.0749795
\(979\) −2.46561 −0.0788012
\(980\) 1.68184 0.0537244
\(981\) −12.7771 −0.407940
\(982\) −33.5690 −1.07123
\(983\) 12.4349 0.396610 0.198305 0.980140i \(-0.436456\pi\)
0.198305 + 0.980140i \(0.436456\pi\)
\(984\) 6.26451 0.199705
\(985\) −2.29619 −0.0731628
\(986\) 9.91313 0.315699
\(987\) 13.3252 0.424146
\(988\) 19.2959 0.613885
\(989\) 29.0640 0.924182
\(990\) −0.137453 −0.00436855
\(991\) −0.215106 −0.00683306 −0.00341653 0.999994i \(-0.501088\pi\)
−0.00341653 + 0.999994i \(0.501088\pi\)
\(992\) −5.71504 −0.181453
\(993\) −21.8701 −0.694026
\(994\) 28.6616 0.909092
\(995\) −8.03144 −0.254614
\(996\) 2.12352 0.0672863
\(997\) 60.4304 1.91385 0.956926 0.290333i \(-0.0937661\pi\)
0.956926 + 0.290333i \(0.0937661\pi\)
\(998\) −24.3218 −0.769894
\(999\) 1.29431 0.0409502
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1338.2.a.i.1.2 6
3.2 odd 2 4014.2.a.s.1.5 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1338.2.a.i.1.2 6 1.1 even 1 trivial
4014.2.a.s.1.5 6 3.2 odd 2