Properties

Label 1338.2.e.j.1075.3
Level $1338$
Weight $2$
Character 1338.1075
Analytic conductor $10.684$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1338,2,Mod(931,1338)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1338, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1338.931");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1338 = 2 \cdot 3 \cdot 223 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1338.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.6839837904\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{17} + 23 x^{16} + 4 x^{15} + 377 x^{14} + 11 x^{13} + 2342 x^{12} + 157 x^{11} + 10694 x^{10} + \cdots + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1075.3
Root \(-0.355961 - 0.616542i\) of defining polynomial
Character \(\chi\) \(=\) 1338.1075
Dual form 1338.2.e.j.931.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +(-0.500000 - 0.866025i) q^{3} +1.00000 q^{4} +(-0.355961 + 0.616542i) q^{5} +(-0.500000 - 0.866025i) q^{6} -0.0500871 q^{7} +1.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +(-0.500000 - 0.866025i) q^{3} +1.00000 q^{4} +(-0.355961 + 0.616542i) q^{5} +(-0.500000 - 0.866025i) q^{6} -0.0500871 q^{7} +1.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +(-0.355961 + 0.616542i) q^{10} +(-0.119016 + 0.206142i) q^{11} +(-0.500000 - 0.866025i) q^{12} +6.08940 q^{13} -0.0500871 q^{14} +0.711921 q^{15} +1.00000 q^{16} -2.89113 q^{17} +(-0.500000 + 0.866025i) q^{18} +(2.64073 + 4.57387i) q^{19} +(-0.355961 + 0.616542i) q^{20} +(0.0250435 + 0.0433767i) q^{21} +(-0.119016 + 0.206142i) q^{22} +(-1.63887 - 2.83860i) q^{23} +(-0.500000 - 0.866025i) q^{24} +(2.24658 + 3.89120i) q^{25} +6.08940 q^{26} +1.00000 q^{27} -0.0500871 q^{28} +(4.04185 - 7.00069i) q^{29} +0.711921 q^{30} +(1.00721 + 1.74455i) q^{31} +1.00000 q^{32} +0.238032 q^{33} -2.89113 q^{34} +(0.0178290 - 0.0308808i) q^{35} +(-0.500000 + 0.866025i) q^{36} +(2.18358 - 3.78207i) q^{37} +(2.64073 + 4.57387i) q^{38} +(-3.04470 - 5.27358i) q^{39} +(-0.355961 + 0.616542i) q^{40} +10.3734 q^{41} +(0.0250435 + 0.0433767i) q^{42} +(0.543104 + 0.940683i) q^{43} +(-0.119016 + 0.206142i) q^{44} +(-0.355961 - 0.616542i) q^{45} +(-1.63887 - 2.83860i) q^{46} +(-1.00392 + 1.73883i) q^{47} +(-0.500000 - 0.866025i) q^{48} -6.99749 q^{49} +(2.24658 + 3.89120i) q^{50} +(1.44557 + 2.50380i) q^{51} +6.08940 q^{52} +(2.23284 - 3.86739i) q^{53} +1.00000 q^{54} +(-0.0847301 - 0.146757i) q^{55} -0.0500871 q^{56} +(2.64073 - 4.57387i) q^{57} +(4.04185 - 7.00069i) q^{58} +9.30639 q^{59} +0.711921 q^{60} +(0.798509 + 1.38306i) q^{61} +(1.00721 + 1.74455i) q^{62} +(0.0250435 - 0.0433767i) q^{63} +1.00000 q^{64} +(-2.16759 + 3.75437i) q^{65} +0.238032 q^{66} +(2.18092 + 3.77746i) q^{67} -2.89113 q^{68} +(-1.63887 + 2.83860i) q^{69} +(0.0178290 - 0.0308808i) q^{70} +(1.74602 + 3.02420i) q^{71} +(-0.500000 + 0.866025i) q^{72} +(-0.369119 + 0.639334i) q^{73} +(2.18358 - 3.78207i) q^{74} +(2.24658 - 3.89120i) q^{75} +(2.64073 + 4.57387i) q^{76} +(0.00596117 - 0.0103250i) q^{77} +(-3.04470 - 5.27358i) q^{78} +(4.02459 - 6.97079i) q^{79} +(-0.355961 + 0.616542i) q^{80} +(-0.500000 - 0.866025i) q^{81} +10.3734 q^{82} +(-4.53232 + 7.85020i) q^{83} +(0.0250435 + 0.0433767i) q^{84} +(1.02913 - 1.78250i) q^{85} +(0.543104 + 0.940683i) q^{86} -8.08370 q^{87} +(-0.119016 + 0.206142i) q^{88} +(-4.61528 - 7.99390i) q^{89} +(-0.355961 - 0.616542i) q^{90} -0.305000 q^{91} +(-1.63887 - 2.83860i) q^{92} +(1.00721 - 1.74455i) q^{93} +(-1.00392 + 1.73883i) q^{94} -3.75998 q^{95} +(-0.500000 - 0.866025i) q^{96} +(1.07175 - 1.85633i) q^{97} -6.99749 q^{98} +(-0.119016 - 0.206142i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 18 q^{2} - 9 q^{3} + 18 q^{4} + q^{5} - 9 q^{6} + 4 q^{7} + 18 q^{8} - 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 18 q + 18 q^{2} - 9 q^{3} + 18 q^{4} + q^{5} - 9 q^{6} + 4 q^{7} + 18 q^{8} - 9 q^{9} + q^{10} + 6 q^{11} - 9 q^{12} + 4 q^{13} + 4 q^{14} - 2 q^{15} + 18 q^{16} + 12 q^{17} - 9 q^{18} - q^{19} + q^{20} - 2 q^{21} + 6 q^{22} + 10 q^{23} - 9 q^{24} + 4 q^{26} + 18 q^{27} + 4 q^{28} - 2 q^{29} - 2 q^{30} + 13 q^{31} + 18 q^{32} - 12 q^{33} + 12 q^{34} + 3 q^{35} - 9 q^{36} + 9 q^{37} - q^{38} - 2 q^{39} + q^{40} - 4 q^{41} - 2 q^{42} + 5 q^{43} + 6 q^{44} + q^{45} + 10 q^{46} + 5 q^{47} - 9 q^{48} + 14 q^{49} - 6 q^{51} + 4 q^{52} - 5 q^{53} + 18 q^{54} + 11 q^{55} + 4 q^{56} - q^{57} - 2 q^{58} - 24 q^{59} - 2 q^{60} - 22 q^{61} + 13 q^{62} - 2 q^{63} + 18 q^{64} + 15 q^{65} - 12 q^{66} - 10 q^{67} + 12 q^{68} + 10 q^{69} + 3 q^{70} - 6 q^{71} - 9 q^{72} + 17 q^{73} + 9 q^{74} - q^{76} + 37 q^{77} - 2 q^{78} - 32 q^{79} + q^{80} - 9 q^{81} - 4 q^{82} + 13 q^{83} - 2 q^{84} + 14 q^{85} + 5 q^{86} + 4 q^{87} + 6 q^{88} - 3 q^{89} + q^{90} - 26 q^{91} + 10 q^{92} + 13 q^{93} + 5 q^{94} - 22 q^{95} - 9 q^{96} - 6 q^{97} + 14 q^{98} + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1338\mathbb{Z}\right)^\times\).

\(n\) \(893\) \(895\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) −0.500000 0.866025i −0.288675 0.500000i
\(4\) 1.00000 0.500000
\(5\) −0.355961 + 0.616542i −0.159190 + 0.275726i −0.934577 0.355761i \(-0.884222\pi\)
0.775387 + 0.631487i \(0.217555\pi\)
\(6\) −0.500000 0.866025i −0.204124 0.353553i
\(7\) −0.0500871 −0.0189311 −0.00946556 0.999955i \(-0.503013\pi\)
−0.00946556 + 0.999955i \(0.503013\pi\)
\(8\) 1.00000 0.353553
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) −0.355961 + 0.616542i −0.112565 + 0.194968i
\(11\) −0.119016 + 0.206142i −0.0358847 + 0.0621541i −0.883410 0.468601i \(-0.844758\pi\)
0.847525 + 0.530755i \(0.178092\pi\)
\(12\) −0.500000 0.866025i −0.144338 0.250000i
\(13\) 6.08940 1.68890 0.844449 0.535637i \(-0.179928\pi\)
0.844449 + 0.535637i \(0.179928\pi\)
\(14\) −0.0500871 −0.0133863
\(15\) 0.711921 0.183817
\(16\) 1.00000 0.250000
\(17\) −2.89113 −0.701203 −0.350602 0.936525i \(-0.614023\pi\)
−0.350602 + 0.936525i \(0.614023\pi\)
\(18\) −0.500000 + 0.866025i −0.117851 + 0.204124i
\(19\) 2.64073 + 4.57387i 0.605824 + 1.04932i 0.991921 + 0.126860i \(0.0404899\pi\)
−0.386096 + 0.922458i \(0.626177\pi\)
\(20\) −0.355961 + 0.616542i −0.0795952 + 0.137863i
\(21\) 0.0250435 + 0.0433767i 0.00546495 + 0.00946556i
\(22\) −0.119016 + 0.206142i −0.0253743 + 0.0439496i
\(23\) −1.63887 2.83860i −0.341728 0.591890i 0.643026 0.765844i \(-0.277679\pi\)
−0.984754 + 0.173955i \(0.944345\pi\)
\(24\) −0.500000 0.866025i −0.102062 0.176777i
\(25\) 2.24658 + 3.89120i 0.449317 + 0.778240i
\(26\) 6.08940 1.19423
\(27\) 1.00000 0.192450
\(28\) −0.0500871 −0.00946556
\(29\) 4.04185 7.00069i 0.750553 1.30000i −0.197003 0.980403i \(-0.563121\pi\)
0.947555 0.319592i \(-0.103546\pi\)
\(30\) 0.711921 0.129978
\(31\) 1.00721 + 1.74455i 0.180901 + 0.313330i 0.942188 0.335086i \(-0.108765\pi\)
−0.761287 + 0.648416i \(0.775432\pi\)
\(32\) 1.00000 0.176777
\(33\) 0.238032 0.0414361
\(34\) −2.89113 −0.495825
\(35\) 0.0178290 0.0308808i 0.00301365 0.00521980i
\(36\) −0.500000 + 0.866025i −0.0833333 + 0.144338i
\(37\) 2.18358 3.78207i 0.358978 0.621769i −0.628812 0.777557i \(-0.716459\pi\)
0.987790 + 0.155789i \(0.0497919\pi\)
\(38\) 2.64073 + 4.57387i 0.428382 + 0.741980i
\(39\) −3.04470 5.27358i −0.487543 0.844449i
\(40\) −0.355961 + 0.616542i −0.0562823 + 0.0974838i
\(41\) 10.3734 1.62005 0.810026 0.586393i \(-0.199453\pi\)
0.810026 + 0.586393i \(0.199453\pi\)
\(42\) 0.0250435 + 0.0433767i 0.00386430 + 0.00669317i
\(43\) 0.543104 + 0.940683i 0.0828225 + 0.143453i 0.904461 0.426556i \(-0.140273\pi\)
−0.821639 + 0.570009i \(0.806940\pi\)
\(44\) −0.119016 + 0.206142i −0.0179424 + 0.0310771i
\(45\) −0.355961 0.616542i −0.0530635 0.0919086i
\(46\) −1.63887 2.83860i −0.241638 0.418529i
\(47\) −1.00392 + 1.73883i −0.146436 + 0.253635i −0.929908 0.367793i \(-0.880114\pi\)
0.783472 + 0.621428i \(0.213447\pi\)
\(48\) −0.500000 0.866025i −0.0721688 0.125000i
\(49\) −6.99749 −0.999642
\(50\) 2.24658 + 3.89120i 0.317715 + 0.550299i
\(51\) 1.44557 + 2.50380i 0.202420 + 0.350602i
\(52\) 6.08940 0.844449
\(53\) 2.23284 3.86739i 0.306704 0.531228i −0.670935 0.741516i \(-0.734107\pi\)
0.977639 + 0.210289i \(0.0674404\pi\)
\(54\) 1.00000 0.136083
\(55\) −0.0847301 0.146757i −0.0114250 0.0197887i
\(56\) −0.0500871 −0.00669317
\(57\) 2.64073 4.57387i 0.349773 0.605824i
\(58\) 4.04185 7.00069i 0.530721 0.919235i
\(59\) 9.30639 1.21159 0.605794 0.795621i \(-0.292855\pi\)
0.605794 + 0.795621i \(0.292855\pi\)
\(60\) 0.711921 0.0919086
\(61\) 0.798509 + 1.38306i 0.102239 + 0.177083i 0.912607 0.408839i \(-0.134066\pi\)
−0.810368 + 0.585921i \(0.800733\pi\)
\(62\) 1.00721 + 1.74455i 0.127916 + 0.221558i
\(63\) 0.0250435 0.0433767i 0.00315519 0.00546495i
\(64\) 1.00000 0.125000
\(65\) −2.16759 + 3.75437i −0.268856 + 0.465673i
\(66\) 0.238032 0.0292997
\(67\) 2.18092 + 3.77746i 0.266441 + 0.461490i 0.967940 0.251181i \(-0.0808188\pi\)
−0.701499 + 0.712671i \(0.747485\pi\)
\(68\) −2.89113 −0.350602
\(69\) −1.63887 + 2.83860i −0.197297 + 0.341728i
\(70\) 0.0178290 0.0308808i 0.00213097 0.00369096i
\(71\) 1.74602 + 3.02420i 0.207215 + 0.358907i 0.950836 0.309694i \(-0.100227\pi\)
−0.743621 + 0.668601i \(0.766893\pi\)
\(72\) −0.500000 + 0.866025i −0.0589256 + 0.102062i
\(73\) −0.369119 + 0.639334i −0.0432022 + 0.0748283i −0.886818 0.462119i \(-0.847089\pi\)
0.843616 + 0.536947i \(0.180423\pi\)
\(74\) 2.18358 3.78207i 0.253836 0.439657i
\(75\) 2.24658 3.89120i 0.259413 0.449317i
\(76\) 2.64073 + 4.57387i 0.302912 + 0.524659i
\(77\) 0.00596117 0.0103250i 0.000679338 0.00117665i
\(78\) −3.04470 5.27358i −0.344745 0.597115i
\(79\) 4.02459 6.97079i 0.452801 0.784275i −0.545757 0.837943i \(-0.683758\pi\)
0.998559 + 0.0536681i \(0.0170913\pi\)
\(80\) −0.355961 + 0.616542i −0.0397976 + 0.0689315i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 10.3734 1.14555
\(83\) −4.53232 + 7.85020i −0.497486 + 0.861672i −0.999996 0.00289998i \(-0.999077\pi\)
0.502509 + 0.864572i \(0.332410\pi\)
\(84\) 0.0250435 + 0.0433767i 0.00273247 + 0.00473278i
\(85\) 1.02913 1.78250i 0.111625 0.193340i
\(86\) 0.543104 + 0.940683i 0.0585644 + 0.101436i
\(87\) −8.08370 −0.866663
\(88\) −0.119016 + 0.206142i −0.0126872 + 0.0219748i
\(89\) −4.61528 7.99390i −0.489219 0.847351i 0.510704 0.859756i \(-0.329385\pi\)
−0.999923 + 0.0124049i \(0.996051\pi\)
\(90\) −0.355961 0.616542i −0.0375215 0.0649892i
\(91\) −0.305000 −0.0319727
\(92\) −1.63887 2.83860i −0.170864 0.295945i
\(93\) 1.00721 1.74455i 0.104443 0.180901i
\(94\) −1.00392 + 1.73883i −0.103546 + 0.179347i
\(95\) −3.75998 −0.385766
\(96\) −0.500000 0.866025i −0.0510310 0.0883883i
\(97\) 1.07175 1.85633i 0.108820 0.188482i −0.806472 0.591272i \(-0.798626\pi\)
0.915293 + 0.402790i \(0.131959\pi\)
\(98\) −6.99749 −0.706853
\(99\) −0.119016 0.206142i −0.0119616 0.0207180i
\(100\) 2.24658 + 3.89120i 0.224658 + 0.389120i
\(101\) −7.67946 13.3012i −0.764134 1.32352i −0.940703 0.339231i \(-0.889833\pi\)
0.176568 0.984288i \(-0.443500\pi\)
\(102\) 1.44557 + 2.50380i 0.143132 + 0.247913i
\(103\) −13.9141 −1.37100 −0.685499 0.728073i \(-0.740416\pi\)
−0.685499 + 0.728073i \(0.740416\pi\)
\(104\) 6.08940 0.597115
\(105\) −0.0356580 −0.00347987
\(106\) 2.23284 3.86739i 0.216873 0.375635i
\(107\) −3.45333 + 5.98134i −0.333846 + 0.578238i −0.983262 0.182195i \(-0.941680\pi\)
0.649417 + 0.760433i \(0.275013\pi\)
\(108\) 1.00000 0.0962250
\(109\) −1.91519 + 3.31720i −0.183442 + 0.317730i −0.943050 0.332650i \(-0.892057\pi\)
0.759609 + 0.650380i \(0.225391\pi\)
\(110\) −0.0847301 0.146757i −0.00807870 0.0139927i
\(111\) −4.36716 −0.414512
\(112\) −0.0500871 −0.00473278
\(113\) 2.03896 + 3.53159i 0.191810 + 0.332224i 0.945850 0.324604i \(-0.105231\pi\)
−0.754040 + 0.656828i \(0.771898\pi\)
\(114\) 2.64073 4.57387i 0.247327 0.428382i
\(115\) 2.33349 0.217599
\(116\) 4.04185 7.00069i 0.375276 0.649998i
\(117\) −3.04470 + 5.27358i −0.281483 + 0.487543i
\(118\) 9.30639 0.856723
\(119\) 0.144808 0.0132746
\(120\) 0.711921 0.0649892
\(121\) 5.47167 + 9.47721i 0.497425 + 0.861565i
\(122\) 0.798509 + 1.38306i 0.0722936 + 0.125216i
\(123\) −5.18670 8.98363i −0.467669 0.810026i
\(124\) 1.00721 + 1.74455i 0.0904505 + 0.156665i
\(125\) −6.75839 −0.604488
\(126\) 0.0250435 0.0433767i 0.00223106 0.00386430i
\(127\) 2.66370 + 4.61366i 0.236365 + 0.409396i 0.959669 0.281134i \(-0.0907106\pi\)
−0.723303 + 0.690530i \(0.757377\pi\)
\(128\) 1.00000 0.0883883
\(129\) 0.543104 0.940683i 0.0478176 0.0828225i
\(130\) −2.16759 + 3.75437i −0.190110 + 0.329280i
\(131\) −1.75869 3.04614i −0.153657 0.266142i 0.778912 0.627133i \(-0.215772\pi\)
−0.932569 + 0.360991i \(0.882438\pi\)
\(132\) 0.238032 0.0207180
\(133\) −0.132266 0.229092i −0.0114689 0.0198648i
\(134\) 2.18092 + 3.77746i 0.188402 + 0.326323i
\(135\) −0.355961 + 0.616542i −0.0306362 + 0.0530635i
\(136\) −2.89113 −0.247913
\(137\) −6.77141 11.7284i −0.578520 1.00203i −0.995649 0.0931793i \(-0.970297\pi\)
0.417129 0.908847i \(-0.363036\pi\)
\(138\) −1.63887 + 2.83860i −0.139510 + 0.241638i
\(139\) −1.31959 2.28560i −0.111926 0.193862i 0.804621 0.593789i \(-0.202369\pi\)
−0.916547 + 0.399927i \(0.869035\pi\)
\(140\) 0.0178290 0.0308808i 0.00150683 0.00260990i
\(141\) 2.00783 0.169090
\(142\) 1.74602 + 3.02420i 0.146523 + 0.253785i
\(143\) −0.724737 + 1.25528i −0.0606056 + 0.104972i
\(144\) −0.500000 + 0.866025i −0.0416667 + 0.0721688i
\(145\) 2.87748 + 4.98394i 0.238962 + 0.413893i
\(146\) −0.369119 + 0.639334i −0.0305485 + 0.0529116i
\(147\) 3.49875 + 6.06001i 0.288572 + 0.499821i
\(148\) 2.18358 3.78207i 0.179489 0.310884i
\(149\) 3.80880 6.59703i 0.312029 0.540450i −0.666773 0.745261i \(-0.732325\pi\)
0.978801 + 0.204811i \(0.0656581\pi\)
\(150\) 2.24658 3.89120i 0.183433 0.317715i
\(151\) −9.54177 + 16.5268i −0.776498 + 1.34493i 0.157451 + 0.987527i \(0.449672\pi\)
−0.933949 + 0.357407i \(0.883661\pi\)
\(152\) 2.64073 + 4.57387i 0.214191 + 0.370990i
\(153\) 1.44557 2.50380i 0.116867 0.202420i
\(154\) 0.00596117 0.0103250i 0.000480365 0.000832016i
\(155\) −1.43411 −0.115191
\(156\) −3.04470 5.27358i −0.243771 0.422224i
\(157\) 6.48492 0.517553 0.258776 0.965937i \(-0.416681\pi\)
0.258776 + 0.965937i \(0.416681\pi\)
\(158\) 4.02459 6.97079i 0.320179 0.554566i
\(159\) −4.46568 −0.354152
\(160\) −0.355961 + 0.616542i −0.0281411 + 0.0487419i
\(161\) 0.0820861 + 0.142177i 0.00646929 + 0.0112051i
\(162\) −0.500000 0.866025i −0.0392837 0.0680414i
\(163\) −5.53504 −0.433538 −0.216769 0.976223i \(-0.569552\pi\)
−0.216769 + 0.976223i \(0.569552\pi\)
\(164\) 10.3734 0.810026
\(165\) −0.0847301 + 0.146757i −0.00659623 + 0.0114250i
\(166\) −4.53232 + 7.85020i −0.351776 + 0.609294i
\(167\) 3.84736 0.297717 0.148859 0.988858i \(-0.452440\pi\)
0.148859 + 0.988858i \(0.452440\pi\)
\(168\) 0.0250435 + 0.0433767i 0.00193215 + 0.00334658i
\(169\) 24.0809 1.85237
\(170\) 1.02913 1.78250i 0.0789306 0.136712i
\(171\) −5.28145 −0.403883
\(172\) 0.543104 + 0.940683i 0.0414113 + 0.0717264i
\(173\) 0.646627 + 1.11999i 0.0491621 + 0.0851513i 0.889559 0.456820i \(-0.151012\pi\)
−0.840397 + 0.541971i \(0.817678\pi\)
\(174\) −8.08370 −0.612824
\(175\) −0.112525 0.194899i −0.00850608 0.0147330i
\(176\) −0.119016 + 0.206142i −0.00897118 + 0.0155385i
\(177\) −4.65320 8.05957i −0.349756 0.605794i
\(178\) −4.61528 7.99390i −0.345930 0.599168i
\(179\) −10.4033 + 18.0190i −0.777579 + 1.34681i 0.155754 + 0.987796i \(0.450219\pi\)
−0.933333 + 0.359011i \(0.883114\pi\)
\(180\) −0.355961 0.616542i −0.0265317 0.0459543i
\(181\) 10.6949 + 18.5241i 0.794944 + 1.37688i 0.922875 + 0.385100i \(0.125833\pi\)
−0.127932 + 0.991783i \(0.540834\pi\)
\(182\) −0.305000 −0.0226081
\(183\) 0.798509 1.38306i 0.0590275 0.102239i
\(184\) −1.63887 2.83860i −0.120819 0.209265i
\(185\) 1.55454 + 2.69254i 0.114292 + 0.197959i
\(186\) 1.00721 1.74455i 0.0738526 0.127916i
\(187\) 0.344092 0.595984i 0.0251625 0.0435827i
\(188\) −1.00392 + 1.73883i −0.0732181 + 0.126818i
\(189\) −0.0500871 −0.00364330
\(190\) −3.75998 −0.272777
\(191\) −21.0306 −1.52172 −0.760862 0.648914i \(-0.775224\pi\)
−0.760862 + 0.648914i \(0.775224\pi\)
\(192\) −0.500000 0.866025i −0.0360844 0.0625000i
\(193\) −22.9321 −1.65069 −0.825344 0.564630i \(-0.809019\pi\)
−0.825344 + 0.564630i \(0.809019\pi\)
\(194\) 1.07175 1.85633i 0.0769474 0.133277i
\(195\) 4.33518 0.310448
\(196\) −6.99749 −0.499821
\(197\) −7.87651 −0.561178 −0.280589 0.959828i \(-0.590530\pi\)
−0.280589 + 0.959828i \(0.590530\pi\)
\(198\) −0.119016 0.206142i −0.00845811 0.0146499i
\(199\) −11.8545 20.5326i −0.840342 1.45551i −0.889606 0.456728i \(-0.849021\pi\)
0.0492647 0.998786i \(-0.484312\pi\)
\(200\) 2.24658 + 3.89120i 0.158857 + 0.275149i
\(201\) 2.18092 3.77746i 0.153830 0.266441i
\(202\) −7.67946 13.3012i −0.540325 0.935870i
\(203\) −0.202444 + 0.350644i −0.0142088 + 0.0246104i
\(204\) 1.44557 + 2.50380i 0.101210 + 0.175301i
\(205\) −3.69252 + 6.39563i −0.257897 + 0.446690i
\(206\) −13.9141 −0.969442
\(207\) 3.27774 0.227819
\(208\) 6.08940 0.422224
\(209\) −1.25716 −0.0869593
\(210\) −0.0356580 −0.00246064
\(211\) −5.37153 9.30377i −0.369792 0.640498i 0.619741 0.784806i \(-0.287238\pi\)
−0.989533 + 0.144308i \(0.953904\pi\)
\(212\) 2.23284 3.86739i 0.153352 0.265614i
\(213\) 1.74602 3.02420i 0.119636 0.207215i
\(214\) −3.45333 + 5.98134i −0.236065 + 0.408876i
\(215\) −0.773294 −0.0527382
\(216\) 1.00000 0.0680414
\(217\) −0.0504484 0.0873792i −0.00342466 0.00593169i
\(218\) −1.91519 + 3.31720i −0.129713 + 0.224669i
\(219\) 0.738239 0.0498856
\(220\) −0.0847301 0.146757i −0.00571250 0.00989434i
\(221\) −17.6053 −1.18426
\(222\) −4.36716 −0.293104
\(223\) 3.73581 + 14.4583i 0.250168 + 0.968202i
\(224\) −0.0500871 −0.00334658
\(225\) −4.49317 −0.299545
\(226\) 2.03896 + 3.53159i 0.135630 + 0.234918i
\(227\) −9.78329 −0.649339 −0.324670 0.945827i \(-0.605253\pi\)
−0.324670 + 0.945827i \(0.605253\pi\)
\(228\) 2.64073 4.57387i 0.174886 0.302912i
\(229\) 2.54981 + 4.41641i 0.168496 + 0.291844i 0.937891 0.346929i \(-0.112775\pi\)
−0.769395 + 0.638773i \(0.779442\pi\)
\(230\) 2.33349 0.153866
\(231\) −0.0119223 −0.000784432
\(232\) 4.04185 7.00069i 0.265360 0.459618i
\(233\) −4.65509 + 8.06286i −0.304965 + 0.528215i −0.977254 0.212074i \(-0.931978\pi\)
0.672288 + 0.740289i \(0.265312\pi\)
\(234\) −3.04470 + 5.27358i −0.199038 + 0.344745i
\(235\) −0.714709 1.23791i −0.0466225 0.0807525i
\(236\) 9.30639 0.605794
\(237\) −8.04918 −0.522850
\(238\) 0.144808 0.00938654
\(239\) 13.6826 0.885056 0.442528 0.896755i \(-0.354082\pi\)
0.442528 + 0.896755i \(0.354082\pi\)
\(240\) 0.711921 0.0459543
\(241\) 8.23257 14.2592i 0.530306 0.918518i −0.469068 0.883162i \(-0.655410\pi\)
0.999375 0.0353559i \(-0.0112565\pi\)
\(242\) 5.47167 + 9.47721i 0.351732 + 0.609218i
\(243\) −0.500000 + 0.866025i −0.0320750 + 0.0555556i
\(244\) 0.798509 + 1.38306i 0.0511193 + 0.0885413i
\(245\) 2.49083 4.31425i 0.159133 0.275627i
\(246\) −5.18670 8.98363i −0.330692 0.572775i
\(247\) 16.0805 + 27.8522i 1.02317 + 1.77219i
\(248\) 1.00721 + 1.74455i 0.0639582 + 0.110779i
\(249\) 9.06463 0.574448
\(250\) −6.75839 −0.427438
\(251\) 11.6521 0.735474 0.367737 0.929930i \(-0.380133\pi\)
0.367737 + 0.929930i \(0.380133\pi\)
\(252\) 0.0250435 0.0433767i 0.00157759 0.00273247i
\(253\) 0.780207 0.0490512
\(254\) 2.66370 + 4.61366i 0.167135 + 0.289487i
\(255\) −2.05826 −0.128893
\(256\) 1.00000 0.0625000
\(257\) −11.2746 −0.703292 −0.351646 0.936133i \(-0.614378\pi\)
−0.351646 + 0.936133i \(0.614378\pi\)
\(258\) 0.543104 0.940683i 0.0338122 0.0585644i
\(259\) −0.109369 + 0.189433i −0.00679586 + 0.0117708i
\(260\) −2.16759 + 3.75437i −0.134428 + 0.232836i
\(261\) 4.04185 + 7.00069i 0.250184 + 0.433332i
\(262\) −1.75869 3.04614i −0.108652 0.188191i
\(263\) −6.15272 + 10.6568i −0.379393 + 0.657128i −0.990974 0.134054i \(-0.957201\pi\)
0.611581 + 0.791182i \(0.290534\pi\)
\(264\) 0.238032 0.0146499
\(265\) 1.58961 + 2.75328i 0.0976488 + 0.169133i
\(266\) −0.132266 0.229092i −0.00810976 0.0140465i
\(267\) −4.61528 + 7.99390i −0.282450 + 0.489219i
\(268\) 2.18092 + 3.77746i 0.133221 + 0.230745i
\(269\) −5.20507 9.01544i −0.317359 0.549681i 0.662577 0.748993i \(-0.269463\pi\)
−0.979936 + 0.199312i \(0.936129\pi\)
\(270\) −0.355961 + 0.616542i −0.0216631 + 0.0375215i
\(271\) −8.72371 15.1099i −0.529927 0.917861i −0.999390 0.0349092i \(-0.988886\pi\)
0.469463 0.882952i \(-0.344448\pi\)
\(272\) −2.89113 −0.175301
\(273\) 0.152500 + 0.264138i 0.00922973 + 0.0159864i
\(274\) −6.77141 11.7284i −0.409076 0.708540i
\(275\) −1.06952 −0.0644944
\(276\) −1.63887 + 2.83860i −0.0986483 + 0.170864i
\(277\) −21.5632 −1.29561 −0.647804 0.761807i \(-0.724312\pi\)
−0.647804 + 0.761807i \(0.724312\pi\)
\(278\) −1.31959 2.28560i −0.0791438 0.137081i
\(279\) −2.01443 −0.120601
\(280\) 0.0178290 0.0308808i 0.00106549 0.00184548i
\(281\) 2.83723 4.91422i 0.169255 0.293158i −0.768903 0.639365i \(-0.779197\pi\)
0.938158 + 0.346207i \(0.112531\pi\)
\(282\) 2.00783 0.119565
\(283\) 0.879276 0.0522676 0.0261338 0.999658i \(-0.491680\pi\)
0.0261338 + 0.999658i \(0.491680\pi\)
\(284\) 1.74602 + 3.02420i 0.103607 + 0.179453i
\(285\) 1.87999 + 3.25624i 0.111361 + 0.192883i
\(286\) −0.724737 + 1.25528i −0.0428546 + 0.0742264i
\(287\) −0.519573 −0.0306694
\(288\) −0.500000 + 0.866025i −0.0294628 + 0.0510310i
\(289\) −8.64134 −0.508314
\(290\) 2.87748 + 4.98394i 0.168971 + 0.292667i
\(291\) −2.14351 −0.125655
\(292\) −0.369119 + 0.639334i −0.0216011 + 0.0374142i
\(293\) −0.695703 + 1.20499i −0.0406434 + 0.0703964i −0.885632 0.464389i \(-0.846274\pi\)
0.844988 + 0.534785i \(0.179607\pi\)
\(294\) 3.49875 + 6.06001i 0.204051 + 0.353427i
\(295\) −3.31271 + 5.73778i −0.192873 + 0.334066i
\(296\) 2.18358 3.78207i 0.126918 0.219828i
\(297\) −0.119016 + 0.206142i −0.00690602 + 0.0119616i
\(298\) 3.80880 6.59703i 0.220638 0.382156i
\(299\) −9.97974 17.2854i −0.577143 0.999641i
\(300\) 2.24658 3.89120i 0.129707 0.224658i
\(301\) −0.0272025 0.0471161i −0.00156792 0.00271572i
\(302\) −9.54177 + 16.5268i −0.549067 + 0.951012i
\(303\) −7.67946 + 13.3012i −0.441173 + 0.764134i
\(304\) 2.64073 + 4.57387i 0.151456 + 0.262330i
\(305\) −1.13695 −0.0651016
\(306\) 1.44557 2.50380i 0.0826376 0.143132i
\(307\) 0.860812 + 1.49097i 0.0491292 + 0.0850942i 0.889544 0.456849i \(-0.151022\pi\)
−0.840415 + 0.541943i \(0.817689\pi\)
\(308\) 0.00596117 0.0103250i 0.000339669 0.000588324i
\(309\) 6.95706 + 12.0500i 0.395773 + 0.685499i
\(310\) −1.43411 −0.0814522
\(311\) −0.323617 + 0.560522i −0.0183507 + 0.0317843i −0.875055 0.484024i \(-0.839175\pi\)
0.856704 + 0.515808i \(0.172508\pi\)
\(312\) −3.04470 5.27358i −0.172372 0.298558i
\(313\) 14.0059 + 24.2589i 0.791661 + 1.37120i 0.924938 + 0.380118i \(0.124117\pi\)
−0.133277 + 0.991079i \(0.542550\pi\)
\(314\) 6.48492 0.365965
\(315\) 0.0178290 + 0.0308808i 0.00100455 + 0.00173993i
\(316\) 4.02459 6.97079i 0.226401 0.392138i
\(317\) 6.48625 11.2345i 0.364304 0.630993i −0.624360 0.781137i \(-0.714640\pi\)
0.988664 + 0.150144i \(0.0479736\pi\)
\(318\) −4.46568 −0.250423
\(319\) 0.962091 + 1.66639i 0.0538667 + 0.0932999i
\(320\) −0.355961 + 0.616542i −0.0198988 + 0.0344657i
\(321\) 6.90666 0.385492
\(322\) 0.0820861 + 0.142177i 0.00457448 + 0.00792323i
\(323\) −7.63470 13.2237i −0.424806 0.735785i
\(324\) −0.500000 0.866025i −0.0277778 0.0481125i
\(325\) 13.6804 + 23.6951i 0.758850 + 1.31437i
\(326\) −5.53504 −0.306557
\(327\) 3.83038 0.211820
\(328\) 10.3734 0.572775
\(329\) 0.0502832 0.0870931i 0.00277220 0.00480160i
\(330\) −0.0847301 + 0.146757i −0.00466424 + 0.00807870i
\(331\) −19.4415 −1.06860 −0.534301 0.845294i \(-0.679425\pi\)
−0.534301 + 0.845294i \(0.679425\pi\)
\(332\) −4.53232 + 7.85020i −0.248743 + 0.430836i
\(333\) 2.18358 + 3.78207i 0.119659 + 0.207256i
\(334\) 3.84736 0.210518
\(335\) −3.10528 −0.169660
\(336\) 0.0250435 + 0.0433767i 0.00136624 + 0.00236639i
\(337\) −7.49038 + 12.9737i −0.408027 + 0.706723i −0.994669 0.103123i \(-0.967116\pi\)
0.586642 + 0.809847i \(0.300450\pi\)
\(338\) 24.0809 1.30983
\(339\) 2.03896 3.53159i 0.110741 0.191810i
\(340\) 1.02913 1.78250i 0.0558124 0.0966699i
\(341\) −0.479499 −0.0259663
\(342\) −5.28145 −0.285588
\(343\) 0.701093 0.0378555
\(344\) 0.543104 + 0.940683i 0.0292822 + 0.0507182i
\(345\) −1.16675 2.02086i −0.0628154 0.108800i
\(346\) 0.646627 + 1.11999i 0.0347629 + 0.0602111i
\(347\) −16.2473 28.1412i −0.872201 1.51070i −0.859715 0.510775i \(-0.829359\pi\)
−0.0124867 0.999922i \(-0.503975\pi\)
\(348\) −8.08370 −0.433332
\(349\) 16.7922 29.0849i 0.898864 1.55688i 0.0699153 0.997553i \(-0.477727\pi\)
0.828949 0.559325i \(-0.188940\pi\)
\(350\) −0.112525 0.194899i −0.00601470 0.0104178i
\(351\) 6.08940 0.325028
\(352\) −0.119016 + 0.206142i −0.00634358 + 0.0109874i
\(353\) 7.62705 13.2104i 0.405947 0.703120i −0.588484 0.808509i \(-0.700275\pi\)
0.994431 + 0.105388i \(0.0336085\pi\)
\(354\) −4.65320 8.05957i −0.247315 0.428361i
\(355\) −2.48606 −0.131946
\(356\) −4.61528 7.99390i −0.244609 0.423676i
\(357\) −0.0724042 0.125408i −0.00383204 0.00663728i
\(358\) −10.4033 + 18.0190i −0.549831 + 0.952336i
\(359\) −27.3141 −1.44159 −0.720793 0.693151i \(-0.756222\pi\)
−0.720793 + 0.693151i \(0.756222\pi\)
\(360\) −0.355961 0.616542i −0.0187608 0.0324946i
\(361\) −4.44688 + 7.70222i −0.234046 + 0.405380i
\(362\) 10.6949 + 18.5241i 0.562110 + 0.973603i
\(363\) 5.47167 9.47721i 0.287188 0.497425i
\(364\) −0.305000 −0.0159864
\(365\) −0.262784 0.455155i −0.0137547 0.0238239i
\(366\) 0.798509 1.38306i 0.0417387 0.0722936i
\(367\) 3.19056 5.52621i 0.166546 0.288466i −0.770657 0.637250i \(-0.780072\pi\)
0.937203 + 0.348784i \(0.113405\pi\)
\(368\) −1.63887 2.83860i −0.0854319 0.147972i
\(369\) −5.18670 + 8.98363i −0.270009 + 0.467669i
\(370\) 1.55454 + 2.69254i 0.0808165 + 0.139978i
\(371\) −0.111836 + 0.193706i −0.00580626 + 0.0100567i
\(372\) 1.00721 1.74455i 0.0522216 0.0904505i
\(373\) 2.70078 4.67788i 0.139841 0.242211i −0.787595 0.616193i \(-0.788674\pi\)
0.927436 + 0.373981i \(0.122008\pi\)
\(374\) 0.344092 0.595984i 0.0177926 0.0308176i
\(375\) 3.37919 + 5.85293i 0.174501 + 0.302244i
\(376\) −1.00392 + 1.73883i −0.0517730 + 0.0896735i
\(377\) 24.6125 42.6300i 1.26761 2.19556i
\(378\) −0.0500871 −0.00257620
\(379\) −2.14889 3.72199i −0.110381 0.191186i 0.805543 0.592538i \(-0.201874\pi\)
−0.915924 + 0.401352i \(0.868541\pi\)
\(380\) −3.75998 −0.192883
\(381\) 2.66370 4.61366i 0.136465 0.236365i
\(382\) −21.0306 −1.07602
\(383\) 4.19654 7.26862i 0.214433 0.371409i −0.738664 0.674074i \(-0.764543\pi\)
0.953097 + 0.302665i \(0.0978763\pi\)
\(384\) −0.500000 0.866025i −0.0255155 0.0441942i
\(385\) 0.00424388 + 0.00735062i 0.000216288 + 0.000374622i
\(386\) −22.9321 −1.16721
\(387\) −1.08621 −0.0552150
\(388\) 1.07175 1.85633i 0.0544101 0.0942410i
\(389\) −17.4688 + 30.2568i −0.885703 + 1.53408i −0.0407968 + 0.999167i \(0.512990\pi\)
−0.844906 + 0.534915i \(0.820344\pi\)
\(390\) 4.33518 0.219520
\(391\) 4.73819 + 8.20679i 0.239621 + 0.415035i
\(392\) −6.99749 −0.353427
\(393\) −1.75869 + 3.04614i −0.0887140 + 0.153657i
\(394\) −7.87651 −0.396813
\(395\) 2.86519 + 4.96265i 0.144163 + 0.249698i
\(396\) −0.119016 0.206142i −0.00598079 0.0103590i
\(397\) −10.0967 −0.506740 −0.253370 0.967369i \(-0.581539\pi\)
−0.253370 + 0.967369i \(0.581539\pi\)
\(398\) −11.8545 20.5326i −0.594211 1.02920i
\(399\) −0.132266 + 0.229092i −0.00662159 + 0.0114689i
\(400\) 2.24658 + 3.89120i 0.112329 + 0.194560i
\(401\) 3.37268 + 5.84166i 0.168424 + 0.291719i 0.937866 0.346998i \(-0.112799\pi\)
−0.769442 + 0.638717i \(0.779466\pi\)
\(402\) 2.18092 3.77746i 0.108774 0.188402i
\(403\) 6.13334 + 10.6233i 0.305523 + 0.529182i
\(404\) −7.67946 13.3012i −0.382067 0.661760i
\(405\) 0.711921 0.0353756
\(406\) −0.202444 + 0.350644i −0.0100471 + 0.0174022i
\(407\) 0.519762 + 0.900255i 0.0257637 + 0.0446240i
\(408\) 1.44557 + 2.50380i 0.0715662 + 0.123956i
\(409\) 16.4609 28.5112i 0.813940 1.40979i −0.0961459 0.995367i \(-0.530652\pi\)
0.910086 0.414419i \(-0.136015\pi\)
\(410\) −3.69252 + 6.39563i −0.182361 + 0.315858i
\(411\) −6.77141 + 11.7284i −0.334009 + 0.578520i
\(412\) −13.9141 −0.685499
\(413\) −0.466130 −0.0229367
\(414\) 3.27774 0.161092
\(415\) −3.22665 5.58872i −0.158390 0.274340i
\(416\) 6.08940 0.298558
\(417\) −1.31959 + 2.28560i −0.0646207 + 0.111926i
\(418\) −1.25716 −0.0614895
\(419\) −21.4045 −1.04568 −0.522839 0.852431i \(-0.675127\pi\)
−0.522839 + 0.852431i \(0.675127\pi\)
\(420\) −0.0356580 −0.00173993
\(421\) 10.2834 + 17.8114i 0.501183 + 0.868074i 0.999999 + 0.00136603i \(0.000434822\pi\)
−0.498817 + 0.866708i \(0.666232\pi\)
\(422\) −5.37153 9.30377i −0.261482 0.452900i
\(423\) −1.00392 1.73883i −0.0488121 0.0845450i
\(424\) 2.23284 3.86739i 0.108436 0.187817i
\(425\) −6.49518 11.2500i −0.315062 0.545704i
\(426\) 1.74602 3.02420i 0.0845951 0.146523i
\(427\) −0.0399950 0.0692733i −0.00193549 0.00335237i
\(428\) −3.45333 + 5.98134i −0.166923 + 0.289119i
\(429\) 1.44947 0.0699813
\(430\) −0.773294 −0.0372915
\(431\) −3.62208 −0.174470 −0.0872348 0.996188i \(-0.527803\pi\)
−0.0872348 + 0.996188i \(0.527803\pi\)
\(432\) 1.00000 0.0481125
\(433\) 23.5556 1.13201 0.566005 0.824402i \(-0.308488\pi\)
0.566005 + 0.824402i \(0.308488\pi\)
\(434\) −0.0504484 0.0873792i −0.00242160 0.00419434i
\(435\) 2.87748 4.98394i 0.137964 0.238962i
\(436\) −1.91519 + 3.31720i −0.0917208 + 0.158865i
\(437\) 8.65561 14.9920i 0.414054 0.717163i
\(438\) 0.738239 0.0352744
\(439\) 16.0295 0.765047 0.382523 0.923946i \(-0.375055\pi\)
0.382523 + 0.923946i \(0.375055\pi\)
\(440\) −0.0847301 0.146757i −0.00403935 0.00699636i
\(441\) 3.49875 6.06001i 0.166607 0.288572i
\(442\) −17.6053 −0.837398
\(443\) 7.41778 + 12.8480i 0.352429 + 0.610426i 0.986675 0.162706i \(-0.0520223\pi\)
−0.634245 + 0.773132i \(0.718689\pi\)
\(444\) −4.36716 −0.207256
\(445\) 6.57143 0.311516
\(446\) 3.73581 + 14.4583i 0.176896 + 0.684622i
\(447\) −7.61759 −0.360300
\(448\) −0.0500871 −0.00236639
\(449\) −0.0524197 0.0907936i −0.00247384 0.00428482i 0.864786 0.502141i \(-0.167454\pi\)
−0.867260 + 0.497856i \(0.834121\pi\)
\(450\) −4.49317 −0.211810
\(451\) −1.23460 + 2.13839i −0.0581351 + 0.100693i
\(452\) 2.03896 + 3.53159i 0.0959048 + 0.166112i
\(453\) 19.0835 0.896623
\(454\) −9.78329 −0.459152
\(455\) 0.108568 0.188045i 0.00508975 0.00881571i
\(456\) 2.64073 4.57387i 0.123663 0.214191i
\(457\) 15.2865 26.4770i 0.715073 1.23854i −0.247858 0.968796i \(-0.579727\pi\)
0.962931 0.269747i \(-0.0869400\pi\)
\(458\) 2.54981 + 4.41641i 0.119145 + 0.206365i
\(459\) −2.89113 −0.134947
\(460\) 2.33349 0.108800
\(461\) 27.9212 1.30042 0.650209 0.759755i \(-0.274681\pi\)
0.650209 + 0.759755i \(0.274681\pi\)
\(462\) −0.0119223 −0.000554677
\(463\) −3.93371 −0.182815 −0.0914076 0.995814i \(-0.529137\pi\)
−0.0914076 + 0.995814i \(0.529137\pi\)
\(464\) 4.04185 7.00069i 0.187638 0.324999i
\(465\) 0.717057 + 1.24198i 0.0332527 + 0.0575954i
\(466\) −4.65509 + 8.06286i −0.215643 + 0.373505i
\(467\) −8.19816 14.1996i −0.379365 0.657080i 0.611605 0.791164i \(-0.290524\pi\)
−0.990970 + 0.134083i \(0.957191\pi\)
\(468\) −3.04470 + 5.27358i −0.140741 + 0.243771i
\(469\) −0.109236 0.189202i −0.00504404 0.00873653i
\(470\) −0.714709 1.23791i −0.0329671 0.0571006i
\(471\) −3.24246 5.61610i −0.149405 0.258776i
\(472\) 9.30639 0.428361
\(473\) −0.258552 −0.0118883
\(474\) −8.04918 −0.369711
\(475\) −11.8652 + 20.5512i −0.544414 + 0.942953i
\(476\) 0.144808 0.00663728
\(477\) 2.23284 + 3.86739i 0.102235 + 0.177076i
\(478\) 13.6826 0.625829
\(479\) 30.4075 1.38936 0.694678 0.719321i \(-0.255547\pi\)
0.694678 + 0.719321i \(0.255547\pi\)
\(480\) 0.711921 0.0324946
\(481\) 13.2967 23.0306i 0.606277 1.05010i
\(482\) 8.23257 14.2592i 0.374983 0.649490i
\(483\) 0.0820861 0.142177i 0.00373505 0.00646929i
\(484\) 5.47167 + 9.47721i 0.248712 + 0.430782i
\(485\) 0.763004 + 1.32156i 0.0346462 + 0.0600090i
\(486\) −0.500000 + 0.866025i −0.0226805 + 0.0392837i
\(487\) 39.0435 1.76923 0.884615 0.466321i \(-0.154421\pi\)
0.884615 + 0.466321i \(0.154421\pi\)
\(488\) 0.798509 + 1.38306i 0.0361468 + 0.0626081i
\(489\) 2.76752 + 4.79348i 0.125152 + 0.216769i
\(490\) 2.49083 4.31425i 0.112524 0.194898i
\(491\) −16.1006 27.8871i −0.726611 1.25853i −0.958307 0.285740i \(-0.907761\pi\)
0.231696 0.972788i \(-0.425573\pi\)
\(492\) −5.18670 8.98363i −0.233834 0.405013i
\(493\) −11.6855 + 20.2399i −0.526290 + 0.911561i
\(494\) 16.0805 + 27.8522i 0.723494 + 1.25313i
\(495\) 0.169460 0.00761667
\(496\) 1.00721 + 1.74455i 0.0452253 + 0.0783325i
\(497\) −0.0874532 0.151473i −0.00392281 0.00679451i
\(498\) 9.06463 0.406196
\(499\) −8.88900 + 15.3962i −0.397926 + 0.689229i −0.993470 0.114094i \(-0.963603\pi\)
0.595544 + 0.803323i \(0.296937\pi\)
\(500\) −6.75839 −0.302244
\(501\) −1.92368 3.33191i −0.0859436 0.148859i
\(502\) 11.6521 0.520059
\(503\) 10.2168 17.6960i 0.455544 0.789025i −0.543175 0.839619i \(-0.682778\pi\)
0.998719 + 0.0505941i \(0.0161115\pi\)
\(504\) 0.0250435 0.0433767i 0.00111553 0.00193215i
\(505\) 10.9343 0.486571
\(506\) 0.780207 0.0346844
\(507\) −12.0404 20.8546i −0.534734 0.926187i
\(508\) 2.66370 + 4.61366i 0.118183 + 0.204698i
\(509\) 2.19511 3.80203i 0.0972963 0.168522i −0.813268 0.581889i \(-0.802314\pi\)
0.910565 + 0.413367i \(0.135647\pi\)
\(510\) −2.05826 −0.0911413
\(511\) 0.0184881 0.0320223i 0.000817866 0.00141658i
\(512\) 1.00000 0.0441942
\(513\) 2.64073 + 4.57387i 0.116591 + 0.201941i
\(514\) −11.2746 −0.497303
\(515\) 4.95288 8.57863i 0.218250 0.378020i
\(516\) 0.543104 0.940683i 0.0239088 0.0414113i
\(517\) −0.238964 0.413899i −0.0105096 0.0182032i
\(518\) −0.109369 + 0.189433i −0.00480540 + 0.00832320i
\(519\) 0.646627 1.11999i 0.0283838 0.0491621i
\(520\) −2.16759 + 3.75437i −0.0950550 + 0.164640i
\(521\) −6.80779 + 11.7914i −0.298255 + 0.516592i −0.975737 0.218947i \(-0.929738\pi\)
0.677482 + 0.735539i \(0.263071\pi\)
\(522\) 4.04185 + 7.00069i 0.176907 + 0.306412i
\(523\) −4.91739 + 8.51717i −0.215022 + 0.372430i −0.953280 0.302090i \(-0.902316\pi\)
0.738257 + 0.674519i \(0.235649\pi\)
\(524\) −1.75869 3.04614i −0.0768286 0.133071i
\(525\) −0.112525 + 0.194899i −0.00491098 + 0.00850608i
\(526\) −6.15272 + 10.6568i −0.268271 + 0.464660i
\(527\) −2.91199 5.04372i −0.126848 0.219708i
\(528\) 0.238032 0.0103590
\(529\) 6.12822 10.6144i 0.266444 0.461495i
\(530\) 1.58961 + 2.75328i 0.0690481 + 0.119595i
\(531\) −4.65320 + 8.05957i −0.201931 + 0.349756i
\(532\) −0.132266 0.229092i −0.00573447 0.00993239i
\(533\) 63.1678 2.73610
\(534\) −4.61528 + 7.99390i −0.199723 + 0.345930i
\(535\) −2.45850 4.25824i −0.106290 0.184100i
\(536\) 2.18092 + 3.77746i 0.0942012 + 0.163161i
\(537\) 20.8066 0.897871
\(538\) −5.20507 9.01544i −0.224406 0.388683i
\(539\) 0.832814 1.44248i 0.0358719 0.0621319i
\(540\) −0.355961 + 0.616542i −0.0153181 + 0.0265317i
\(541\) 27.2969 1.17359 0.586794 0.809736i \(-0.300390\pi\)
0.586794 + 0.809736i \(0.300390\pi\)
\(542\) −8.72371 15.1099i −0.374715 0.649026i
\(543\) 10.6949 18.5241i 0.458961 0.794944i
\(544\) −2.89113 −0.123956
\(545\) −1.36346 2.36159i −0.0584043 0.101159i
\(546\) 0.152500 + 0.264138i 0.00652641 + 0.0113041i
\(547\) −20.8949 36.1911i −0.893403 1.54742i −0.835769 0.549081i \(-0.814978\pi\)
−0.0576332 0.998338i \(-0.518355\pi\)
\(548\) −6.77141 11.7284i −0.289260 0.501013i
\(549\) −1.59702 −0.0681591
\(550\) −1.06952 −0.0456044
\(551\) 42.6937 1.81881
\(552\) −1.63887 + 2.83860i −0.0697549 + 0.120819i
\(553\) −0.201580 + 0.349146i −0.00857204 + 0.0148472i
\(554\) −21.5632 −0.916133
\(555\) 1.55454 2.69254i 0.0659864 0.114292i
\(556\) −1.31959 2.28560i −0.0559631 0.0969310i
\(557\) −41.7961 −1.77096 −0.885478 0.464681i \(-0.846169\pi\)
−0.885478 + 0.464681i \(0.846169\pi\)
\(558\) −2.01443 −0.0852776
\(559\) 3.30718 + 5.72820i 0.139879 + 0.242277i
\(560\) 0.0178290 0.0308808i 0.000753413 0.00130495i
\(561\) −0.688183 −0.0290551
\(562\) 2.83723 4.91422i 0.119681 0.207294i
\(563\) −15.7610 + 27.2989i −0.664249 + 1.15051i 0.315240 + 0.949012i \(0.397915\pi\)
−0.979488 + 0.201501i \(0.935418\pi\)
\(564\) 2.00783 0.0845450
\(565\) −2.90316 −0.122137
\(566\) 0.879276 0.0369587
\(567\) 0.0250435 + 0.0433767i 0.00105173 + 0.00182165i
\(568\) 1.74602 + 3.02420i 0.0732615 + 0.126893i
\(569\) 9.51908 + 16.4875i 0.399061 + 0.691194i 0.993610 0.112865i \(-0.0360029\pi\)
−0.594550 + 0.804059i \(0.702670\pi\)
\(570\) 1.87999 + 3.25624i 0.0787441 + 0.136389i
\(571\) 2.31163 0.0967388 0.0483694 0.998830i \(-0.484598\pi\)
0.0483694 + 0.998830i \(0.484598\pi\)
\(572\) −0.724737 + 1.25528i −0.0303028 + 0.0524860i
\(573\) 10.5153 + 18.2131i 0.439284 + 0.760862i
\(574\) −0.519573 −0.0216866
\(575\) 7.36371 12.7543i 0.307088 0.531892i
\(576\) −0.500000 + 0.866025i −0.0208333 + 0.0360844i
\(577\) −1.54212 2.67103i −0.0641992 0.111196i 0.832139 0.554567i \(-0.187116\pi\)
−0.896338 + 0.443370i \(0.853783\pi\)
\(578\) −8.64134 −0.359432
\(579\) 11.4660 + 19.8598i 0.476513 + 0.825344i
\(580\) 2.87748 + 4.98394i 0.119481 + 0.206947i
\(581\) 0.227010 0.393194i 0.00941798 0.0163124i
\(582\) −2.14351 −0.0888512
\(583\) 0.531488 + 0.920565i 0.0220120 + 0.0381259i
\(584\) −0.369119 + 0.639334i −0.0152743 + 0.0264558i
\(585\) −2.16759 3.75437i −0.0896187 0.155224i
\(586\) −0.695703 + 1.20499i −0.0287392 + 0.0497778i
\(587\) −26.0777 −1.07634 −0.538170 0.842836i \(-0.680884\pi\)
−0.538170 + 0.842836i \(0.680884\pi\)
\(588\) 3.49875 + 6.06001i 0.144286 + 0.249910i
\(589\) −5.31956 + 9.21374i −0.219189 + 0.379646i
\(590\) −3.31271 + 5.73778i −0.136382 + 0.236221i
\(591\) 3.93825 + 6.82125i 0.161998 + 0.280589i
\(592\) 2.18358 3.78207i 0.0897446 0.155442i
\(593\) −8.68051 15.0351i −0.356466 0.617417i 0.630902 0.775863i \(-0.282685\pi\)
−0.987368 + 0.158446i \(0.949352\pi\)
\(594\) −0.119016 + 0.206142i −0.00488329 + 0.00845811i
\(595\) −0.0515461 + 0.0892804i −0.00211318 + 0.00366014i
\(596\) 3.80880 6.59703i 0.156014 0.270225i
\(597\) −11.8545 + 20.5326i −0.485171 + 0.840342i
\(598\) −9.97974 17.2854i −0.408102 0.706853i
\(599\) −2.13484 + 3.69765i −0.0872271 + 0.151082i −0.906338 0.422553i \(-0.861134\pi\)
0.819111 + 0.573635i \(0.194467\pi\)
\(600\) 2.24658 3.89120i 0.0917164 0.158857i
\(601\) 23.9511 0.976984 0.488492 0.872568i \(-0.337547\pi\)
0.488492 + 0.872568i \(0.337547\pi\)
\(602\) −0.0272025 0.0471161i −0.00110869 0.00192031i
\(603\) −4.36183 −0.177628
\(604\) −9.54177 + 16.5268i −0.388249 + 0.672467i
\(605\) −7.79079 −0.316741
\(606\) −7.67946 + 13.3012i −0.311957 + 0.540325i
\(607\) −16.4245 28.4481i −0.666651 1.15467i −0.978835 0.204652i \(-0.934394\pi\)
0.312184 0.950022i \(-0.398939\pi\)
\(608\) 2.64073 + 4.57387i 0.107096 + 0.185495i
\(609\) 0.404889 0.0164069
\(610\) −1.13695 −0.0460338
\(611\) −6.11325 + 10.5885i −0.247316 + 0.428363i
\(612\) 1.44557 2.50380i 0.0584336 0.101210i
\(613\) 14.7764 0.596811 0.298406 0.954439i \(-0.403545\pi\)
0.298406 + 0.954439i \(0.403545\pi\)
\(614\) 0.860812 + 1.49097i 0.0347396 + 0.0601707i
\(615\) 7.38504 0.297794
\(616\) 0.00596117 0.0103250i 0.000240182 0.000416008i
\(617\) −19.3305 −0.778217 −0.389108 0.921192i \(-0.627217\pi\)
−0.389108 + 0.921192i \(0.627217\pi\)
\(618\) 6.95706 + 12.0500i 0.279854 + 0.484721i
\(619\) 21.9517 + 38.0215i 0.882313 + 1.52821i 0.848762 + 0.528775i \(0.177348\pi\)
0.0335510 + 0.999437i \(0.489318\pi\)
\(620\) −1.43411 −0.0575954
\(621\) −1.63887 2.83860i −0.0657655 0.113909i
\(622\) −0.323617 + 0.560522i −0.0129759 + 0.0224749i
\(623\) 0.231166 + 0.400391i 0.00926146 + 0.0160413i
\(624\) −3.04470 5.27358i −0.121886 0.211112i
\(625\) −8.82720 + 15.2892i −0.353088 + 0.611567i
\(626\) 14.0059 + 24.2589i 0.559789 + 0.969582i
\(627\) 0.628578 + 1.08873i 0.0251030 + 0.0434797i
\(628\) 6.48492 0.258776
\(629\) −6.31302 + 10.9345i −0.251717 + 0.435986i
\(630\) 0.0178290 + 0.0308808i 0.000710325 + 0.00123032i
\(631\) −8.09263 14.0169i −0.322163 0.558002i 0.658771 0.752343i \(-0.271076\pi\)
−0.980934 + 0.194341i \(0.937743\pi\)
\(632\) 4.02459 6.97079i 0.160089 0.277283i
\(633\) −5.37153 + 9.30377i −0.213499 + 0.369792i
\(634\) 6.48625 11.2345i 0.257602 0.446179i
\(635\) −3.79269 −0.150508
\(636\) −4.46568 −0.177076
\(637\) −42.6106 −1.68829
\(638\) 0.962091 + 1.66639i 0.0380895 + 0.0659730i
\(639\) −3.49205 −0.138143
\(640\) −0.355961 + 0.616542i −0.0140706 + 0.0243710i
\(641\) 4.86958 0.192337 0.0961685 0.995365i \(-0.469341\pi\)
0.0961685 + 0.995365i \(0.469341\pi\)
\(642\) 6.90666 0.272584
\(643\) −30.1091 −1.18739 −0.593693 0.804691i \(-0.702331\pi\)
−0.593693 + 0.804691i \(0.702331\pi\)
\(644\) 0.0820861 + 0.142177i 0.00323465 + 0.00560257i
\(645\) 0.386647 + 0.669692i 0.0152242 + 0.0263691i
\(646\) −7.63470 13.2237i −0.300383 0.520279i
\(647\) −12.0345 + 20.8443i −0.473123 + 0.819473i −0.999527 0.0307615i \(-0.990207\pi\)
0.526404 + 0.850235i \(0.323540\pi\)
\(648\) −0.500000 0.866025i −0.0196419 0.0340207i
\(649\) −1.10761 + 1.91844i −0.0434775 + 0.0753053i
\(650\) 13.6804 + 23.6951i 0.536588 + 0.929397i
\(651\) −0.0504484 + 0.0873792i −0.00197723 + 0.00342466i
\(652\) −5.53504 −0.216769
\(653\) 19.1985 0.751294 0.375647 0.926763i \(-0.377421\pi\)
0.375647 + 0.926763i \(0.377421\pi\)
\(654\) 3.83038 0.149780
\(655\) 2.50409 0.0978430
\(656\) 10.3734 0.405013
\(657\) −0.369119 0.639334i −0.0144007 0.0249428i
\(658\) 0.0502832 0.0870931i 0.00196024 0.00339524i
\(659\) −19.0439 + 32.9849i −0.741843 + 1.28491i 0.209812 + 0.977742i \(0.432715\pi\)
−0.951655 + 0.307169i \(0.900618\pi\)
\(660\) −0.0847301 + 0.146757i −0.00329811 + 0.00571250i
\(661\) −24.0288 −0.934614 −0.467307 0.884095i \(-0.654776\pi\)
−0.467307 + 0.884095i \(0.654776\pi\)
\(662\) −19.4415 −0.755616
\(663\) 8.80264 + 15.2466i 0.341866 + 0.592130i
\(664\) −4.53232 + 7.85020i −0.175888 + 0.304647i
\(665\) 0.188326 0.00730298
\(666\) 2.18358 + 3.78207i 0.0846120 + 0.146552i
\(667\) −26.4962 −1.02594
\(668\) 3.84736 0.148859
\(669\) 10.6534 10.4645i 0.411884 0.404580i
\(670\) −3.10528 −0.119967
\(671\) −0.380142 −0.0146752
\(672\) 0.0250435 + 0.0433767i 0.000966075 + 0.00167329i
\(673\) 10.8852 0.419592 0.209796 0.977745i \(-0.432720\pi\)
0.209796 + 0.977745i \(0.432720\pi\)
\(674\) −7.49038 + 12.9737i −0.288519 + 0.499729i
\(675\) 2.24658 + 3.89120i 0.0864711 + 0.149772i
\(676\) 24.0809 0.926187
\(677\) 30.3616 1.16689 0.583445 0.812152i \(-0.301704\pi\)
0.583445 + 0.812152i \(0.301704\pi\)
\(678\) 2.03896 3.53159i 0.0783059 0.135630i
\(679\) −0.0536810 + 0.0929782i −0.00206009 + 0.00356818i
\(680\) 1.02913 1.78250i 0.0394653 0.0683559i
\(681\) 4.89164 + 8.47257i 0.187448 + 0.324670i
\(682\) −0.479499 −0.0183610
\(683\) 21.3729 0.817812 0.408906 0.912577i \(-0.365910\pi\)
0.408906 + 0.912577i \(0.365910\pi\)
\(684\) −5.28145 −0.201941
\(685\) 9.64141 0.368379
\(686\) 0.701093 0.0267679
\(687\) 2.54981 4.41641i 0.0972815 0.168496i
\(688\) 0.543104 + 0.940683i 0.0207056 + 0.0358632i
\(689\) 13.5967 23.5501i 0.517992 0.897189i
\(690\) −1.16675 2.02086i −0.0444172 0.0769329i
\(691\) 13.3532 23.1284i 0.507979 0.879846i −0.491978 0.870608i \(-0.663726\pi\)
0.999957 0.00923827i \(-0.00294067\pi\)
\(692\) 0.646627 + 1.11999i 0.0245811 + 0.0425756i
\(693\) 0.00596117 + 0.0103250i 0.000226446 + 0.000392216i
\(694\) −16.2473 28.1412i −0.616739 1.06822i
\(695\) 1.87889 0.0712704
\(696\) −8.08370 −0.306412
\(697\) −29.9909 −1.13599
\(698\) 16.7922 29.0849i 0.635593 1.10088i
\(699\) 9.31019 0.352144
\(700\) −0.112525 0.194899i −0.00425304 0.00736648i
\(701\) −40.3493 −1.52397 −0.761986 0.647594i \(-0.775775\pi\)
−0.761986 + 0.647594i \(0.775775\pi\)
\(702\) 6.08940 0.229830
\(703\) 23.0649 0.869911
\(704\) −0.119016 + 0.206142i −0.00448559 + 0.00776927i
\(705\) −0.714709 + 1.23791i −0.0269175 + 0.0466225i
\(706\) 7.62705 13.2104i 0.287048 0.497181i
\(707\) 0.384641 + 0.666218i 0.0144659 + 0.0250557i
\(708\) −4.65320 8.05957i −0.174878 0.302897i
\(709\) 25.0533 43.3937i 0.940898 1.62968i 0.177135 0.984187i \(-0.443317\pi\)
0.763763 0.645496i \(-0.223349\pi\)
\(710\) −2.48606 −0.0933002
\(711\) 4.02459 + 6.97079i 0.150934 + 0.261425i
\(712\) −4.61528 7.99390i −0.172965 0.299584i
\(713\) 3.30138 5.71817i 0.123638 0.214147i
\(714\) −0.0724042 0.125408i −0.00270966 0.00469327i
\(715\) −0.515956 0.893662i −0.0192957 0.0334211i
\(716\) −10.4033 + 18.0190i −0.388790 + 0.673403i
\(717\) −6.84131 11.8495i −0.255494 0.442528i
\(718\) −27.3141 −1.01935
\(719\) 26.0177 + 45.0639i 0.970296 + 1.68060i 0.694659 + 0.719339i \(0.255555\pi\)
0.275637 + 0.961262i \(0.411111\pi\)
\(720\) −0.355961 0.616542i −0.0132659 0.0229772i
\(721\) 0.696917 0.0259545
\(722\) −4.44688 + 7.70222i −0.165496 + 0.286647i
\(723\) −16.4651 −0.612345
\(724\) 10.6949 + 18.5241i 0.397472 + 0.688441i
\(725\) 36.3214 1.34894
\(726\) 5.47167 9.47721i 0.203073 0.351732i
\(727\) 21.4731 37.1925i 0.796393 1.37939i −0.125557 0.992086i \(-0.540072\pi\)
0.921951 0.387307i \(-0.126595\pi\)
\(728\) −0.305000 −0.0113041
\(729\) 1.00000 0.0370370
\(730\) −0.262784 0.455155i −0.00972607 0.0168460i
\(731\) −1.57019 2.71964i −0.0580754 0.100590i
\(732\) 0.798509 1.38306i 0.0295138 0.0511193i
\(733\) −2.15962 −0.0797672 −0.0398836 0.999204i \(-0.512699\pi\)
−0.0398836 + 0.999204i \(0.512699\pi\)
\(734\) 3.19056 5.52621i 0.117766 0.203976i
\(735\) −4.98166 −0.183751
\(736\) −1.63887 2.83860i −0.0604095 0.104632i
\(737\) −1.03826 −0.0382447
\(738\) −5.18670 + 8.98363i −0.190925 + 0.330692i
\(739\) 9.95834 17.2484i 0.366324 0.634491i −0.622664 0.782489i \(-0.713950\pi\)
0.988988 + 0.147998i \(0.0472830\pi\)
\(740\) 1.55454 + 2.69254i 0.0571459 + 0.0989796i
\(741\) 16.0805 27.8522i 0.590730 1.02317i
\(742\) −0.111836 + 0.193706i −0.00410565 + 0.00711119i
\(743\) 9.20375 15.9414i 0.337653 0.584832i −0.646338 0.763051i \(-0.723700\pi\)
0.983991 + 0.178220i \(0.0570337\pi\)
\(744\) 1.00721 1.74455i 0.0369263 0.0639582i
\(745\) 2.71156 + 4.69656i 0.0993440 + 0.172069i
\(746\) 2.70078 4.67788i 0.0988824 0.171269i
\(747\) −4.53232 7.85020i −0.165829 0.287224i
\(748\) 0.344092 0.595984i 0.0125812 0.0217913i
\(749\) 0.172967 0.299588i 0.00632008 0.0109467i
\(750\) 3.37919 + 5.85293i 0.123391 + 0.213719i
\(751\) −14.4658 −0.527866 −0.263933 0.964541i \(-0.585020\pi\)
−0.263933 + 0.964541i \(0.585020\pi\)
\(752\) −1.00392 + 1.73883i −0.0366091 + 0.0634088i
\(753\) −5.82605 10.0910i −0.212313 0.367737i
\(754\) 24.6125 42.6300i 0.896333 1.55249i
\(755\) −6.79298 11.7658i −0.247222 0.428201i
\(756\) −0.0500871 −0.00182165
\(757\) 1.17056 2.02747i 0.0425448 0.0736898i −0.843969 0.536392i \(-0.819787\pi\)
0.886514 + 0.462702i \(0.153120\pi\)
\(758\) −2.14889 3.72199i −0.0780513 0.135189i
\(759\) −0.390104 0.675679i −0.0141599 0.0245256i
\(760\) −3.75998 −0.136389
\(761\) 16.6798 + 28.8903i 0.604643 + 1.04727i 0.992108 + 0.125388i \(0.0400175\pi\)
−0.387465 + 0.921884i \(0.626649\pi\)
\(762\) 2.66370 4.61366i 0.0964956 0.167135i
\(763\) 0.0959261 0.166149i 0.00347276 0.00601499i
\(764\) −21.0306 −0.760862
\(765\) 1.02913 + 1.78250i 0.0372083 + 0.0644466i
\(766\) 4.19654 7.26862i 0.151627 0.262626i
\(767\) 56.6704 2.04625
\(768\) −0.500000 0.866025i −0.0180422 0.0312500i
\(769\) 16.9215 + 29.3089i 0.610206 + 1.05691i 0.991205 + 0.132332i \(0.0422466\pi\)
−0.381000 + 0.924575i \(0.624420\pi\)
\(770\) 0.00424388 + 0.00735062i 0.000152939 + 0.000264898i
\(771\) 5.63732 + 9.76412i 0.203023 + 0.351646i
\(772\) −22.9321 −0.825344
\(773\) −2.06534 −0.0742852 −0.0371426 0.999310i \(-0.511826\pi\)
−0.0371426 + 0.999310i \(0.511826\pi\)
\(774\) −1.08621 −0.0390429
\(775\) −4.52558 + 7.83854i −0.162564 + 0.281569i
\(776\) 1.07175 1.85633i 0.0384737 0.0666384i
\(777\) 0.218738 0.00784719
\(778\) −17.4688 + 30.2568i −0.626286 + 1.08476i
\(779\) 27.3933 + 47.4466i 0.981467 + 1.69995i
\(780\) 4.33518 0.155224
\(781\) −0.831220 −0.0297434
\(782\) 4.73819 + 8.20679i 0.169437 + 0.293474i
\(783\) 4.04185 7.00069i 0.144444 0.250184i
\(784\) −6.99749 −0.249910
\(785\) −2.30837 + 3.99822i −0.0823894 + 0.142703i
\(786\) −1.75869 + 3.04614i −0.0627303 + 0.108652i
\(787\) −44.3100 −1.57948 −0.789740 0.613442i \(-0.789785\pi\)
−0.789740 + 0.613442i \(0.789785\pi\)
\(788\) −7.87651 −0.280589
\(789\) 12.3054 0.438085
\(790\) 2.86519 + 4.96265i 0.101939 + 0.176563i
\(791\) −0.102126 0.176887i −0.00363117 0.00628937i
\(792\) −0.119016 0.206142i −0.00422905 0.00732494i
\(793\) 4.86245 + 8.42200i 0.172671 + 0.299074i
\(794\) −10.0967 −0.358319
\(795\) 1.58961 2.75328i 0.0563775 0.0976488i
\(796\) −11.8545 20.5326i −0.420171 0.727757i
\(797\) −47.5531 −1.68442 −0.842209 0.539151i \(-0.818745\pi\)
−0.842209 + 0.539151i \(0.818745\pi\)
\(798\) −0.132266 + 0.229092i −0.00468217 + 0.00810976i
\(799\) 2.90246 5.02720i 0.102682 0.177850i
\(800\) 2.24658 + 3.89120i 0.0794287 + 0.137575i
\(801\) 9.23056 0.326146
\(802\) 3.37268 + 5.84166i 0.119094 + 0.206276i
\(803\) −0.0878623 0.152182i −0.00310059 0.00537039i
\(804\) 2.18092 3.77746i 0.0769150 0.133221i
\(805\) −0.116878 −0.00411940
\(806\) 6.13334 + 10.6233i 0.216038 + 0.374188i
\(807\) −5.20507 + 9.01544i −0.183227 + 0.317359i
\(808\) −7.67946 13.3012i −0.270162 0.467935i
\(809\) −3.83432 + 6.64124i −0.134808 + 0.233494i −0.925524 0.378689i \(-0.876375\pi\)
0.790716 + 0.612183i \(0.209708\pi\)
\(810\) 0.711921 0.0250144
\(811\) 6.22974 + 10.7902i 0.218756 + 0.378896i 0.954428 0.298442i \(-0.0964668\pi\)
−0.735672 + 0.677338i \(0.763134\pi\)
\(812\) −0.202444 + 0.350644i −0.00710440 + 0.0123052i
\(813\) −8.72371 + 15.1099i −0.305954 + 0.529927i
\(814\) 0.519762 + 0.900255i 0.0182177 + 0.0315539i
\(815\) 1.97025 3.41258i 0.0690150 0.119538i
\(816\) 1.44557 + 2.50380i 0.0506050 + 0.0876504i
\(817\) −2.86838 + 4.96818i −0.100352 + 0.173814i
\(818\) 16.4609 28.5112i 0.575543 0.996869i
\(819\) 0.152500 0.264138i 0.00532879 0.00922973i
\(820\) −3.69252 + 6.39563i −0.128948 + 0.223345i
\(821\) 24.1305 + 41.7952i 0.842160 + 1.45866i 0.888065 + 0.459718i \(0.152050\pi\)
−0.0459049 + 0.998946i \(0.514617\pi\)
\(822\) −6.77141 + 11.7284i −0.236180 + 0.409076i
\(823\) 13.4462 23.2895i 0.468705 0.811822i −0.530655 0.847588i \(-0.678054\pi\)
0.999360 + 0.0357664i \(0.0113872\pi\)
\(824\) −13.9141 −0.484721
\(825\) 0.534760 + 0.926231i 0.0186179 + 0.0322472i
\(826\) −0.466130 −0.0162187
\(827\) 7.28594 12.6196i 0.253357 0.438827i −0.711091 0.703100i \(-0.751799\pi\)
0.964448 + 0.264273i \(0.0851319\pi\)
\(828\) 3.27774 0.113909
\(829\) 4.27916 7.41173i 0.148621 0.257420i −0.782097 0.623157i \(-0.785850\pi\)
0.930718 + 0.365737i \(0.119183\pi\)
\(830\) −3.22665 5.58872i −0.111999 0.193987i
\(831\) 10.7816 + 18.6743i 0.374010 + 0.647804i
\(832\) 6.08940 0.211112
\(833\) 20.2307 0.700952
\(834\) −1.31959 + 2.28560i −0.0456937 + 0.0791438i
\(835\) −1.36951 + 2.37206i −0.0473937 + 0.0820884i
\(836\) −1.25716 −0.0434797
\(837\) 1.00721 + 1.74455i 0.0348144 + 0.0603004i
\(838\) −21.4045 −0.739406
\(839\) 26.4520 45.8162i 0.913224 1.58175i 0.103743 0.994604i \(-0.466918\pi\)
0.809481 0.587146i \(-0.199749\pi\)
\(840\) −0.0356580 −0.00123032
\(841\) −18.1731 31.4767i −0.626658 1.08540i
\(842\) 10.2834 + 17.8114i 0.354390 + 0.613821i
\(843\) −5.67445 −0.195439
\(844\) −5.37153 9.30377i −0.184896 0.320249i
\(845\) −8.57183 + 14.8468i −0.294880 + 0.510747i
\(846\) −1.00392 1.73883i −0.0345154 0.0597823i
\(847\) −0.274060 0.474686i −0.00941681 0.0163104i
\(848\) 2.23284 3.86739i 0.0766761 0.132807i
\(849\) −0.439638 0.761476i −0.0150883 0.0261338i
\(850\) −6.49518 11.2500i −0.222783 0.385871i
\(851\) −14.3144 −0.490691
\(852\) 1.74602 3.02420i 0.0598178 0.103607i
\(853\) 17.0838 + 29.5900i 0.584938 + 1.01314i 0.994883 + 0.101033i \(0.0322146\pi\)
−0.409945 + 0.912110i \(0.634452\pi\)
\(854\) −0.0399950 0.0692733i −0.00136860 0.00237049i
\(855\) 1.87999 3.25624i 0.0642943 0.111361i
\(856\) −3.45333 + 5.98134i −0.118032 + 0.204438i
\(857\) 22.5276 39.0190i 0.769529 1.33286i −0.168290 0.985738i \(-0.553824\pi\)
0.937819 0.347126i \(-0.112842\pi\)
\(858\) 1.44947 0.0494843
\(859\) 35.3463 1.20600 0.602999 0.797742i \(-0.293972\pi\)
0.602999 + 0.797742i \(0.293972\pi\)
\(860\) −0.773294 −0.0263691
\(861\) 0.259787 + 0.449963i 0.00885350 + 0.0153347i
\(862\) −3.62208 −0.123369
\(863\) −14.0683 + 24.3669i −0.478889 + 0.829460i −0.999707 0.0242075i \(-0.992294\pi\)
0.520818 + 0.853668i \(0.325627\pi\)
\(864\) 1.00000 0.0340207
\(865\) −0.920694 −0.0313045
\(866\) 23.5556 0.800452
\(867\) 4.32067 + 7.48362i 0.146738 + 0.254157i
\(868\) −0.0504484 0.0873792i −0.00171233 0.00296584i
\(869\) 0.957982 + 1.65927i 0.0324973 + 0.0562870i
\(870\) 2.87748 4.98394i 0.0975556 0.168971i
\(871\) 13.2805 + 23.0025i 0.449992 + 0.779409i
\(872\) −1.91519 + 3.31720i −0.0648564 + 0.112335i
\(873\) 1.07175 + 1.85633i 0.0362734 + 0.0628273i
\(874\) 8.65561 14.9920i 0.292780 0.507110i
\(875\) 0.338508 0.0114436
\(876\) 0.738239 0.0249428
\(877\) −35.0531 −1.18366 −0.591829 0.806064i \(-0.701594\pi\)
−0.591829 + 0.806064i \(0.701594\pi\)
\(878\) 16.0295 0.540970
\(879\) 1.39141 0.0469309
\(880\) −0.0847301 0.146757i −0.00285625 0.00494717i
\(881\) 12.0494 20.8702i 0.405955 0.703134i −0.588477 0.808514i \(-0.700272\pi\)
0.994432 + 0.105380i \(0.0336057\pi\)
\(882\) 3.49875 6.06001i 0.117809 0.204051i
\(883\) 12.8255 22.2144i 0.431612 0.747573i −0.565401 0.824816i \(-0.691278\pi\)
0.997012 + 0.0772431i \(0.0246117\pi\)
\(884\) −17.6053 −0.592130
\(885\) 6.62542 0.222711
\(886\) 7.41778 + 12.8480i 0.249205 + 0.431636i
\(887\) 3.49064 6.04597i 0.117204 0.203004i −0.801454 0.598056i \(-0.795940\pi\)
0.918659 + 0.395052i \(0.129273\pi\)
\(888\) −4.36716 −0.146552
\(889\) −0.133417 0.231085i −0.00447466 0.00775033i
\(890\) 6.57143 0.220275
\(891\) 0.238032 0.00797438
\(892\) 3.73581 + 14.4583i 0.125084 + 0.484101i
\(893\) −10.6043 −0.354859
\(894\) −7.61759 −0.254770
\(895\) −7.40633 12.8281i −0.247566 0.428797i
\(896\) −0.0500871 −0.00167329
\(897\) −9.97974 + 17.2854i −0.333214 + 0.577143i
\(898\) −0.0524197 0.0907936i −0.00174927 0.00302982i
\(899\) 16.2840 0.543103
\(900\) −4.49317 −0.149772
\(901\) −6.45544 + 11.1812i −0.215062 + 0.372498i
\(902\) −1.23460 + 2.13839i −0.0411077 + 0.0712007i
\(903\) −0.0272025 + 0.0471161i −0.000905242 + 0.00156792i
\(904\) 2.03896 + 3.53159i 0.0678149 + 0.117459i
\(905\) −15.2278 −0.506189
\(906\) 19.0835 0.634008
\(907\) −51.4319 −1.70777 −0.853885 0.520462i \(-0.825760\pi\)
−0.853885 + 0.520462i \(0.825760\pi\)
\(908\) −9.78329 −0.324670
\(909\) 15.3589 0.509423
\(910\) 0.108568 0.188045i 0.00359900 0.00623365i
\(911\) 2.90709 + 5.03522i 0.0963161 + 0.166824i 0.910157 0.414263i \(-0.135961\pi\)
−0.813841 + 0.581088i \(0.802627\pi\)
\(912\) 2.64073 4.57387i 0.0874432 0.151456i
\(913\) −1.07884 1.86860i −0.0357043 0.0618417i
\(914\) 15.2865 26.4770i 0.505633 0.875782i
\(915\) 0.568476 + 0.984629i 0.0187932 + 0.0325508i
\(916\) 2.54981 + 4.41641i 0.0842482 + 0.145922i
\(917\) 0.0880875 + 0.152572i 0.00290890 + 0.00503837i
\(918\) −2.89113 −0.0954217
\(919\) 9.40255 0.310162 0.155081 0.987902i \(-0.450436\pi\)
0.155081 + 0.987902i \(0.450436\pi\)
\(920\) 2.33349 0.0769329
\(921\) 0.860812 1.49097i 0.0283647 0.0491292i
\(922\) 27.9212 0.919535
\(923\) 10.6322 + 18.4156i 0.349965 + 0.606156i
\(924\) −0.0119223 −0.000392216
\(925\) 19.6224 0.645180
\(926\) −3.93371 −0.129270
\(927\) 6.95706 12.0500i 0.228500 0.395773i
\(928\) 4.04185 7.00069i 0.132680 0.229809i
\(929\) 10.4614 18.1197i 0.343228 0.594489i −0.641802 0.766870i \(-0.721813\pi\)
0.985030 + 0.172382i \(0.0551462\pi\)
\(930\) 0.717057 + 1.24198i 0.0235132 + 0.0407261i
\(931\) −18.4785 32.0056i −0.605607 1.04894i
\(932\) −4.65509 + 8.06286i −0.152483 + 0.264108i
\(933\) 0.647235 0.0211895
\(934\) −8.19816 14.1996i −0.268252 0.464626i
\(935\) 0.244966 + 0.424294i 0.00801125 + 0.0138759i
\(936\) −3.04470 + 5.27358i −0.0995192 + 0.172372i
\(937\) −0.499929 0.865903i −0.0163320 0.0282878i 0.857744 0.514077i \(-0.171866\pi\)
−0.874076 + 0.485789i \(0.838532\pi\)
\(938\) −0.109236 0.189202i −0.00356667 0.00617766i
\(939\) 14.0059 24.2589i 0.457066 0.791661i
\(940\) −0.714709 1.23791i −0.0233112 0.0403763i
\(941\) −31.9629 −1.04196 −0.520980 0.853569i \(-0.674433\pi\)
−0.520980 + 0.853569i \(0.674433\pi\)
\(942\) −3.24246 5.61610i −0.105645 0.182983i
\(943\) −17.0006 29.4460i −0.553617 0.958893i
\(944\) 9.30639 0.302897
\(945\) 0.0178290 0.0308808i 0.000579978 0.00100455i
\(946\) −0.258552 −0.00840626
\(947\) −1.48187 2.56668i −0.0481544 0.0834058i 0.840944 0.541123i \(-0.182001\pi\)
−0.889098 + 0.457717i \(0.848667\pi\)
\(948\) −8.04918 −0.261425
\(949\) −2.24772 + 3.89316i −0.0729640 + 0.126377i
\(950\) −11.8652 + 20.5512i −0.384959 + 0.666768i
\(951\) −12.9725 −0.420662
\(952\) 0.144808 0.00469327
\(953\) −7.57833 13.1261i −0.245486 0.425195i 0.716782 0.697297i \(-0.245614\pi\)
−0.962268 + 0.272103i \(0.912281\pi\)
\(954\) 2.23284 + 3.86739i 0.0722909 + 0.125212i
\(955\) 7.48608 12.9663i 0.242244 0.419579i
\(956\) 13.6826 0.442528
\(957\) 0.962091 1.66639i 0.0311000 0.0538667i
\(958\) 30.4075 0.982423
\(959\) 0.339160 + 0.587442i 0.0109520 + 0.0189695i
\(960\) 0.711921 0.0229772
\(961\) 13.4710 23.3325i 0.434550 0.752662i
\(962\) 13.2967 23.0306i 0.428703 0.742535i
\(963\) −3.45333 5.98134i −0.111282 0.192746i
\(964\) 8.23257 14.2592i 0.265153 0.459259i
\(965\) 8.16292 14.1386i 0.262774 0.455137i
\(966\) 0.0820861 0.142177i 0.00264108 0.00457448i
\(967\) 15.1835 26.2987i 0.488270 0.845708i −0.511639 0.859200i \(-0.670962\pi\)
0.999909 + 0.0134925i \(0.00429492\pi\)
\(968\) 5.47167 + 9.47721i 0.175866 + 0.304609i
\(969\) −7.63470 + 13.2237i −0.245262 + 0.424806i
\(970\) 0.763004 + 1.32156i 0.0244986 + 0.0424328i
\(971\) −21.6894 + 37.5671i −0.696045 + 1.20559i 0.273782 + 0.961792i \(0.411725\pi\)
−0.969827 + 0.243794i \(0.921608\pi\)
\(972\) −0.500000 + 0.866025i −0.0160375 + 0.0277778i
\(973\) 0.0660945 + 0.114479i 0.00211889 + 0.00367003i
\(974\) 39.0435 1.25104
\(975\) 13.6804 23.6951i 0.438122 0.758850i
\(976\) 0.798509 + 1.38306i 0.0255597 + 0.0442706i
\(977\) −12.9093 + 22.3595i −0.413004 + 0.715343i −0.995217 0.0976932i \(-0.968854\pi\)
0.582213 + 0.813036i \(0.302187\pi\)
\(978\) 2.76752 + 4.79348i 0.0884955 + 0.153279i
\(979\) 2.19717 0.0702219
\(980\) 2.49083 4.31425i 0.0795667 0.137814i
\(981\) −1.91519 3.31720i −0.0611472 0.105910i
\(982\) −16.1006 27.8871i −0.513792 0.889914i
\(983\) 17.3761 0.554211 0.277106 0.960839i \(-0.410625\pi\)
0.277106 + 0.960839i \(0.410625\pi\)
\(984\) −5.18670 8.98363i −0.165346 0.286388i
\(985\) 2.80373 4.85619i 0.0893341 0.154731i
\(986\) −11.6855 + 20.2399i −0.372143 + 0.644571i
\(987\) −0.100566 −0.00320107
\(988\) 16.0805 + 27.8522i 0.511587 + 0.886095i
\(989\) 1.78015 3.08331i 0.0566055 0.0980436i
\(990\) 0.169460 0.00538580
\(991\) 2.59261 + 4.49053i 0.0823569 + 0.142646i 0.904262 0.426978i \(-0.140422\pi\)
−0.821905 + 0.569625i \(0.807089\pi\)
\(992\) 1.00721 + 1.74455i 0.0319791 + 0.0553894i
\(993\) 9.72076 + 16.8369i 0.308479 + 0.534301i
\(994\) −0.0874532 0.151473i −0.00277385 0.00480444i
\(995\) 16.8789 0.535097
\(996\) 9.06463 0.287224
\(997\) −13.7049 −0.434038 −0.217019 0.976167i \(-0.569633\pi\)
−0.217019 + 0.976167i \(0.569633\pi\)
\(998\) −8.88900 + 15.3962i −0.281376 + 0.487358i
\(999\) 2.18358 3.78207i 0.0690854 0.119659i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1338.2.e.j.1075.3 yes 18
223.39 even 3 inner 1338.2.e.j.931.3 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1338.2.e.j.931.3 18 223.39 even 3 inner
1338.2.e.j.1075.3 yes 18 1.1 even 1 trivial