Properties

Label 1344.4.a.b
Level 13441344
Weight 44
Character orbit 1344.a
Self dual yes
Analytic conductor 79.29979.299
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1344,4,Mod(1,1344)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1344, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1344.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 1344=2637 1344 = 2^{6} \cdot 3 \cdot 7
Weight: k k == 4 4
Character orbit: [χ][\chi] == 1344.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 79.298567047779.2985670477
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 84)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q3q314q57q7+9q94q1154q13+42q1514q1792q19+21q21152q23+71q2527q27+106q29144q31+12q33+98q35+36q99+O(q100) q - 3 q^{3} - 14 q^{5} - 7 q^{7} + 9 q^{9} - 4 q^{11} - 54 q^{13} + 42 q^{15} - 14 q^{17} - 92 q^{19} + 21 q^{21} - 152 q^{23} + 71 q^{25} - 27 q^{27} + 106 q^{29} - 144 q^{31} + 12 q^{33} + 98 q^{35}+ \cdots - 36 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 −3.00000 0 −14.0000 0 −7.00000 0 9.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
33 +1 +1
77 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1344.4.a.b 1
4.b odd 2 1 1344.4.a.p 1
8.b even 2 1 84.4.a.b 1
8.d odd 2 1 336.4.a.e 1
24.f even 2 1 1008.4.a.d 1
24.h odd 2 1 252.4.a.a 1
40.f even 2 1 2100.4.a.g 1
40.i odd 4 2 2100.4.k.g 2
56.e even 2 1 2352.4.a.v 1
56.h odd 2 1 588.4.a.a 1
56.j odd 6 2 588.4.i.h 2
56.p even 6 2 588.4.i.a 2
168.i even 2 1 1764.4.a.l 1
168.s odd 6 2 1764.4.k.n 2
168.ba even 6 2 1764.4.k.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
84.4.a.b 1 8.b even 2 1
252.4.a.a 1 24.h odd 2 1
336.4.a.e 1 8.d odd 2 1
588.4.a.a 1 56.h odd 2 1
588.4.i.a 2 56.p even 6 2
588.4.i.h 2 56.j odd 6 2
1008.4.a.d 1 24.f even 2 1
1344.4.a.b 1 1.a even 1 1 trivial
1344.4.a.p 1 4.b odd 2 1
1764.4.a.l 1 168.i even 2 1
1764.4.k.c 2 168.ba even 6 2
1764.4.k.n 2 168.s odd 6 2
2100.4.a.g 1 40.f even 2 1
2100.4.k.g 2 40.i odd 4 2
2352.4.a.v 1 56.e even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S4new(Γ0(1344))S_{4}^{\mathrm{new}}(\Gamma_0(1344)):

T5+14 T_{5} + 14 Copy content Toggle raw display
T11+4 T_{11} + 4 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T+3 T + 3 Copy content Toggle raw display
55 T+14 T + 14 Copy content Toggle raw display
77 T+7 T + 7 Copy content Toggle raw display
1111 T+4 T + 4 Copy content Toggle raw display
1313 T+54 T + 54 Copy content Toggle raw display
1717 T+14 T + 14 Copy content Toggle raw display
1919 T+92 T + 92 Copy content Toggle raw display
2323 T+152 T + 152 Copy content Toggle raw display
2929 T106 T - 106 Copy content Toggle raw display
3131 T+144 T + 144 Copy content Toggle raw display
3737 T+158 T + 158 Copy content Toggle raw display
4141 T+390 T + 390 Copy content Toggle raw display
4343 T508 T - 508 Copy content Toggle raw display
4747 T+528 T + 528 Copy content Toggle raw display
5353 T+606 T + 606 Copy content Toggle raw display
5959 T364 T - 364 Copy content Toggle raw display
6161 T+678 T + 678 Copy content Toggle raw display
6767 T+844 T + 844 Copy content Toggle raw display
7171 T+8 T + 8 Copy content Toggle raw display
7373 T+422 T + 422 Copy content Toggle raw display
7979 T384 T - 384 Copy content Toggle raw display
8383 T548 T - 548 Copy content Toggle raw display
8989 T1194 T - 1194 Copy content Toggle raw display
9797 T+1502 T + 1502 Copy content Toggle raw display
show more
show less