Properties

Label 1344.4.a.bv
Level $1344$
Weight $4$
Character orbit 1344.a
Self dual yes
Analytic conductor $79.299$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1344,4,Mod(1,1344)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1344, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1344.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1344 = 2^{6} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1344.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(79.2985670477\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.22700.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 28x + 12 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 672)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 3 q^{3} + (\beta_{2} + 3) q^{5} + 7 q^{7} + 9 q^{9} + ( - 2 \beta_{2} - \beta_1 + 1) q^{11} + (\beta_{2} + \beta_1 + 16) q^{13} + (3 \beta_{2} + 9) q^{15} + (4 \beta_{2} - \beta_1 + 9) q^{17} + ( - 5 \beta_{2} + \beta_1 + 48) q^{19}+ \cdots + ( - 18 \beta_{2} - 9 \beta_1 + 9) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 9 q^{3} + 10 q^{5} + 21 q^{7} + 27 q^{9} + 50 q^{13} + 30 q^{15} + 30 q^{17} + 140 q^{19} + 63 q^{21} - 56 q^{23} + 325 q^{25} + 81 q^{27} - 298 q^{29} + 80 q^{31} + 70 q^{35} - 10 q^{37} + 150 q^{39}+ \cdots - 130 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 28x + 12 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( -\nu^{2} + 7\nu + 17 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + \nu - 19 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} + \beta _1 + 2 ) / 8 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 7\beta_{2} - \beta _1 + 150 ) / 8 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0.424864
−5.03475
5.60988
0 3.00000 0 −15.3946 0 7.00000 0 9.00000 0
1.2 0 3.00000 0 4.31394 0 7.00000 0 9.00000 0
1.3 0 3.00000 0 21.0807 0 7.00000 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1344.4.a.bv 3
4.b odd 2 1 1344.4.a.bt 3
8.b even 2 1 672.4.a.o 3
8.d odd 2 1 672.4.a.q yes 3
24.f even 2 1 2016.4.a.y 3
24.h odd 2 1 2016.4.a.z 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
672.4.a.o 3 8.b even 2 1
672.4.a.q yes 3 8.d odd 2 1
1344.4.a.bt 3 4.b odd 2 1
1344.4.a.bv 3 1.a even 1 1 trivial
2016.4.a.y 3 24.f even 2 1
2016.4.a.z 3 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1344))\):

\( T_{5}^{3} - 10T_{5}^{2} - 300T_{5} + 1400 \) Copy content Toggle raw display
\( T_{11}^{3} - 2840T_{11} + 45280 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( (T - 3)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} - 10 T^{2} + \cdots + 1400 \) Copy content Toggle raw display
$7$ \( (T - 7)^{3} \) Copy content Toggle raw display
$11$ \( T^{3} - 2840T + 45280 \) Copy content Toggle raw display
$13$ \( T^{3} - 50 T^{2} + \cdots + 26920 \) Copy content Toggle raw display
$17$ \( T^{3} - 30 T^{2} + \cdots + 275880 \) Copy content Toggle raw display
$19$ \( T^{3} - 140 T^{2} + \cdots - 6080 \) Copy content Toggle raw display
$23$ \( T^{3} + 56 T^{2} + \cdots - 3285792 \) Copy content Toggle raw display
$29$ \( T^{3} + 298 T^{2} + \cdots - 5325704 \) Copy content Toggle raw display
$31$ \( T^{3} - 80 T^{2} + \cdots + 8700160 \) Copy content Toggle raw display
$37$ \( T^{3} + 10 T^{2} + \cdots - 4978760 \) Copy content Toggle raw display
$41$ \( T^{3} - 390 T^{2} + \cdots + 21358600 \) Copy content Toggle raw display
$43$ \( T^{3} - 784 T^{2} + \cdots - 12439552 \) Copy content Toggle raw display
$47$ \( T^{3} + 248 T^{2} + \cdots + 452096 \) Copy content Toggle raw display
$53$ \( T^{3} + 10 T^{2} + \cdots - 32747080 \) Copy content Toggle raw display
$59$ \( T^{3} - 1500 T^{2} + \cdots - 90301120 \) Copy content Toggle raw display
$61$ \( T^{3} - 810 T^{2} + \cdots + 276011400 \) Copy content Toggle raw display
$67$ \( T^{3} - 1272 T^{2} + \cdots - 71066624 \) Copy content Toggle raw display
$71$ \( T^{3} + 160 T^{2} + \cdots + 258709600 \) Copy content Toggle raw display
$73$ \( T^{3} + 1170 T^{2} + \cdots - 337981800 \) Copy content Toggle raw display
$79$ \( T^{3} + 840 T^{2} + \cdots - 29596160 \) Copy content Toggle raw display
$83$ \( T^{3} - 1564 T^{2} + \cdots - 33022272 \) Copy content Toggle raw display
$89$ \( T^{3} + 178 T^{2} + \cdots - 53515224 \) Copy content Toggle raw display
$97$ \( T^{3} + 130 T^{2} + \cdots - 400247720 \) Copy content Toggle raw display
show more
show less