Properties

Label 1344.4.a.y
Level $1344$
Weight $4$
Character orbit 1344.a
Self dual yes
Analytic conductor $79.299$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1344,4,Mod(1,1344)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1344, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1344.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1344 = 2^{6} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1344.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(79.2985670477\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 168)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 3 q^{3} + 10 q^{5} + 7 q^{7} + 9 q^{9} + 12 q^{11} - 30 q^{13} + 30 q^{15} + 34 q^{17} - 148 q^{19} + 21 q^{21} + 152 q^{23} - 25 q^{25} + 27 q^{27} + 106 q^{29} + 304 q^{31} + 36 q^{33} + 70 q^{35}+ \cdots + 108 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 3.00000 0 10.0000 0 7.00000 0 9.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1344.4.a.y 1
4.b odd 2 1 1344.4.a.j 1
8.b even 2 1 168.4.a.a 1
8.d odd 2 1 336.4.a.g 1
24.f even 2 1 1008.4.a.p 1
24.h odd 2 1 504.4.a.f 1
56.e even 2 1 2352.4.a.n 1
56.h odd 2 1 1176.4.a.m 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
168.4.a.a 1 8.b even 2 1
336.4.a.g 1 8.d odd 2 1
504.4.a.f 1 24.h odd 2 1
1008.4.a.p 1 24.f even 2 1
1176.4.a.m 1 56.h odd 2 1
1344.4.a.j 1 4.b odd 2 1
1344.4.a.y 1 1.a even 1 1 trivial
2352.4.a.n 1 56.e even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1344))\):

\( T_{5} - 10 \) Copy content Toggle raw display
\( T_{11} - 12 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 3 \) Copy content Toggle raw display
$5$ \( T - 10 \) Copy content Toggle raw display
$7$ \( T - 7 \) Copy content Toggle raw display
$11$ \( T - 12 \) Copy content Toggle raw display
$13$ \( T + 30 \) Copy content Toggle raw display
$17$ \( T - 34 \) Copy content Toggle raw display
$19$ \( T + 148 \) Copy content Toggle raw display
$23$ \( T - 152 \) Copy content Toggle raw display
$29$ \( T - 106 \) Copy content Toggle raw display
$31$ \( T - 304 \) Copy content Toggle raw display
$37$ \( T - 114 \) Copy content Toggle raw display
$41$ \( T - 202 \) Copy content Toggle raw display
$43$ \( T + 116 \) Copy content Toggle raw display
$47$ \( T - 224 \) Copy content Toggle raw display
$53$ \( T - 274 \) Copy content Toggle raw display
$59$ \( T - 660 \) Copy content Toggle raw display
$61$ \( T + 382 \) Copy content Toggle raw display
$67$ \( T + 12 \) Copy content Toggle raw display
$71$ \( T + 552 \) Copy content Toggle raw display
$73$ \( T + 614 \) Copy content Toggle raw display
$79$ \( T - 880 \) Copy content Toggle raw display
$83$ \( T - 108 \) Copy content Toggle raw display
$89$ \( T + 86 \) Copy content Toggle raw display
$97$ \( T - 1426 \) Copy content Toggle raw display
show more
show less