Properties

Label 135.2.e
Level $135$
Weight $2$
Character orbit 135.e
Rep. character $\chi_{135}(46,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $8$
Newform subspaces $2$
Sturm bound $36$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 135 = 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 135.e (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 2 \)
Sturm bound: \(36\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(135, [\chi])\).

Total New Old
Modular forms 48 8 40
Cusp forms 24 8 16
Eisenstein series 24 0 24

Trace form

\( 8 q + 2 q^{2} - 4 q^{4} + 2 q^{5} - 2 q^{7} - 4 q^{11} - 2 q^{13} - 12 q^{14} - 4 q^{16} - 4 q^{17} - 8 q^{19} + 6 q^{20} + 6 q^{22} + 6 q^{23} - 4 q^{25} + 8 q^{26} + 16 q^{28} - 8 q^{29} - 8 q^{31} + 22 q^{32}+ \cdots + 76 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(135, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
135.2.e.a 135.e 9.c $2$ $1.078$ \(\Q(\sqrt{-3}) \) None 45.2.e.a \(1\) \(0\) \(-1\) \(3\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1-\zeta_{6})q^{2}+\zeta_{6}q^{4}-\zeta_{6}q^{5}+(3-3\zeta_{6})q^{7}+\cdots\)
135.2.e.b 135.e 9.c $6$ $1.078$ 6.0.954288.1 None 45.2.e.b \(1\) \(0\) \(3\) \(-5\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-\beta _{4}+\beta _{5})q^{2}+(-2-\beta _{1}-\beta _{2}+\cdots)q^{4}+\cdots\)

Decomposition of \(S_{2}^{\mathrm{old}}(135, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(135, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 2}\)