Properties

Label 135.2.e
Level 135135
Weight 22
Character orbit 135.e
Rep. character χ135(46,)\chi_{135}(46,\cdot)
Character field Q(ζ3)\Q(\zeta_{3})
Dimension 88
Newform subspaces 22
Sturm bound 3636
Trace bound 11

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 135=335 135 = 3^{3} \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 135.e (of order 33 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 9 9
Character field: Q(ζ3)\Q(\zeta_{3})
Newform subspaces: 2 2
Sturm bound: 3636
Trace bound: 11
Distinguishing TpT_p: 22

Dimensions

The following table gives the dimensions of various subspaces of M2(135,[χ])M_{2}(135, [\chi]).

Total New Old
Modular forms 48 8 40
Cusp forms 24 8 16
Eisenstein series 24 0 24

Trace form

8q+2q24q4+2q52q74q112q1312q144q164q178q19+6q20+6q22+6q234q25+8q26+16q288q298q31+22q32++76q98+O(q100) 8 q + 2 q^{2} - 4 q^{4} + 2 q^{5} - 2 q^{7} - 4 q^{11} - 2 q^{13} - 12 q^{14} - 4 q^{16} - 4 q^{17} - 8 q^{19} + 6 q^{20} + 6 q^{22} + 6 q^{23} - 4 q^{25} + 8 q^{26} + 16 q^{28} - 8 q^{29} - 8 q^{31} + 22 q^{32}+ \cdots + 76 q^{98}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(135,[χ])S_{2}^{\mathrm{new}}(135, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
135.2.e.a 135.e 9.c 22 1.0781.078 Q(3)\Q(\sqrt{-3}) None 45.2.e.a 11 00 1-1 33 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(1ζ6)q2+ζ6q4ζ6q5+(33ζ6)q7+q+(1-\zeta_{6})q^{2}+\zeta_{6}q^{4}-\zeta_{6}q^{5}+(3-3\zeta_{6})q^{7}+\cdots
135.2.e.b 135.e 9.c 66 1.0781.078 6.0.954288.1 None 45.2.e.b 11 00 33 5-5 SU(2)[C3]\mathrm{SU}(2)[C_{3}] q+(β4+β5)q2+(2β1β2+)q4+q+(-\beta _{4}+\beta _{5})q^{2}+(-2-\beta _{1}-\beta _{2}+\cdots)q^{4}+\cdots

Decomposition of S2old(135,[χ])S_{2}^{\mathrm{old}}(135, [\chi]) into lower level spaces

S2old(135,[χ]) S_{2}^{\mathrm{old}}(135, [\chi]) \simeq S2new(45,[χ])S_{2}^{\mathrm{new}}(45, [\chi])2^{\oplus 2}