Defining parameters
Level: | \( N \) | \(=\) | \( 135 = 3^{3} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 135.e (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(36\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(135, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 48 | 8 | 40 |
Cusp forms | 24 | 8 | 16 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(135, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
135.2.e.a | $2$ | $1.078$ | \(\Q(\sqrt{-3}) \) | None | \(1\) | \(0\) | \(-1\) | \(3\) | \(q+(1-\zeta_{6})q^{2}+\zeta_{6}q^{4}-\zeta_{6}q^{5}+(3-3\zeta_{6})q^{7}+\cdots\) |
135.2.e.b | $6$ | $1.078$ | 6.0.954288.1 | None | \(1\) | \(0\) | \(3\) | \(-5\) | \(q+(-\beta _{4}+\beta _{5})q^{2}+(-2-\beta _{1}-\beta _{2}+\cdots)q^{4}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(135, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(135, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 2}\)