Defining parameters
Level: | \( N \) | \(=\) | \( 135 = 3^{3} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 135.f (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 15 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(36\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(135, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 48 | 16 | 32 |
Cusp forms | 24 | 16 | 8 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(135, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
135.2.f.a | $8$ | $1.078$ | 8.0.\(\cdots\).1 | None | \(0\) | \(0\) | \(0\) | \(-4\) | \(q+\beta _{1}q^{2}+(\beta _{4}+\beta _{6})q^{4}+(-\beta _{3}-\beta _{5}+\cdots)q^{5}+\cdots\) |
135.2.f.b | $8$ | $1.078$ | 8.0.\(\cdots\).8 | None | \(0\) | \(0\) | \(0\) | \(8\) | \(q+\beta _{1}q^{2}+(2\beta _{2}+\beta _{3}+\beta _{6})q^{4}+(-\beta _{4}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(135, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(135, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(45, [\chi])\)\(^{\oplus 2}\)