Properties

Label 135.2.f
Level 135135
Weight 22
Character orbit 135.f
Rep. character χ135(53,)\chi_{135}(53,\cdot)
Character field Q(ζ4)\Q(\zeta_{4})
Dimension 1616
Newform subspaces 22
Sturm bound 3636
Trace bound 77

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 135=335 135 = 3^{3} \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 135.f (of order 44 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 15 15
Character field: Q(i)\Q(i)
Newform subspaces: 2 2
Sturm bound: 3636
Trace bound: 77
Distinguishing TpT_p: 22

Dimensions

The following table gives the dimensions of various subspaces of M2(135,[χ])M_{2}(135, [\chi]).

Total New Old
Modular forms 48 16 32
Cusp forms 24 16 8
Eisenstein series 24 0 24

Trace form

16q+4q7+4q1020q1320q164q228q254q28+8q3156q37+60q40+52q4328q46+52q524q5524q5816q618q67120q70++40q97+O(q100) 16 q + 4 q^{7} + 4 q^{10} - 20 q^{13} - 20 q^{16} - 4 q^{22} - 8 q^{25} - 4 q^{28} + 8 q^{31} - 56 q^{37} + 60 q^{40} + 52 q^{43} - 28 q^{46} + 52 q^{52} - 4 q^{55} - 24 q^{58} - 16 q^{61} - 8 q^{67} - 120 q^{70}+ \cdots + 40 q^{97}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(135,[χ])S_{2}^{\mathrm{new}}(135, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
135.2.f.a 135.f 15.e 88 1.0781.078 8.0.\cdots.1 None 135.2.f.a 00 00 00 4-4 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+β1q2+(β4+β6)q4+(β3β5+)q5+q+\beta _{1}q^{2}+(\beta _{4}+\beta _{6})q^{4}+(-\beta _{3}-\beta _{5}+\cdots)q^{5}+\cdots
135.2.f.b 135.f 15.e 88 1.0781.078 8.0.\cdots.8 None 135.2.f.b 00 00 00 88 SU(2)[C4]\mathrm{SU}(2)[C_{4}] q+β1q2+(2β2+β3+β6)q4+(β4+)q5+q+\beta _{1}q^{2}+(2\beta _{2}+\beta _{3}+\beta _{6})q^{4}+(-\beta _{4}+\cdots)q^{5}+\cdots

Decomposition of S2old(135,[χ])S_{2}^{\mathrm{old}}(135, [\chi]) into lower level spaces

S2old(135,[χ]) S_{2}^{\mathrm{old}}(135, [\chi]) \simeq S2new(45,[χ])S_{2}^{\mathrm{new}}(45, [\chi])2^{\oplus 2}