Properties

Label 135.3.g.a.28.5
Level $135$
Weight $3$
Character 135.28
Analytic conductor $3.678$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [135,3,Mod(28,135)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(135, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("135.28");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 135 = 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 135.g (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.67848356886\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 217x^{12} + 9264x^{8} + 59497x^{4} + 28561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{8} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 28.5
Root \(0.601022 - 0.601022i\) of defining polynomial
Character \(\chi\) \(=\) 135.28
Dual form 135.3.g.a.82.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.601022 - 0.601022i) q^{2} +3.27754i q^{4} +(-4.98774 + 0.349865i) q^{5} +(-7.13454 + 7.13454i) q^{7} +(4.37397 + 4.37397i) q^{8} +(-2.78747 + 3.20802i) q^{10} -6.84616 q^{11} +(5.13850 + 5.13850i) q^{13} +8.57603i q^{14} -7.85248 q^{16} +(17.0856 - 17.0856i) q^{17} +21.9632i q^{19} +(-1.14670 - 16.3476i) q^{20} +(-4.11469 + 4.11469i) q^{22} +(-3.06284 - 3.06284i) q^{23} +(24.7552 - 3.49008i) q^{25} +6.17670 q^{26} +(-23.3838 - 23.3838i) q^{28} +41.1349i q^{29} +20.3793 q^{31} +(-22.2154 + 22.2154i) q^{32} -20.5376i q^{34} +(33.0891 - 38.0814i) q^{35} +(30.7953 - 30.7953i) q^{37} +(13.2004 + 13.2004i) q^{38} +(-23.3465 - 20.2859i) q^{40} -79.7736 q^{41} +(-16.8417 - 16.8417i) q^{43} -22.4386i q^{44} -3.68166 q^{46} +(21.1840 - 21.1840i) q^{47} -52.8032i q^{49} +(12.7808 - 16.9760i) q^{50} +(-16.8417 + 16.8417i) q^{52} +(48.1359 + 48.1359i) q^{53} +(34.1469 - 2.39523i) q^{55} -62.4124 q^{56} +(24.7230 + 24.7230i) q^{58} +32.3498i q^{59} +53.3901 q^{61} +(12.2484 - 12.2484i) q^{62} -4.70606i q^{64} +(-27.4273 - 23.8317i) q^{65} +(7.43409 - 7.43409i) q^{67} +(55.9987 + 55.9987i) q^{68} +(-3.00045 - 42.7750i) q^{70} -62.5131 q^{71} +(16.4036 + 16.4036i) q^{73} -37.0173i q^{74} -71.9854 q^{76} +(48.8441 - 48.8441i) q^{77} +141.870i q^{79} +(39.1662 - 2.74731i) q^{80} +(-47.9457 + 47.9457i) q^{82} +(18.7813 + 18.7813i) q^{83} +(-79.2408 + 91.1960i) q^{85} -20.2444 q^{86} +(-29.9448 - 29.9448i) q^{88} +48.7354i q^{89} -73.3216 q^{91} +(10.0386 - 10.0386i) q^{92} -25.4641i q^{94} +(-7.68416 - 109.547i) q^{95} +(6.96035 - 6.96035i) q^{97} +(-31.7359 - 31.7359i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{7} - 32 q^{10} + 28 q^{13} - 20 q^{16} + 176 q^{22} + 64 q^{25} + 80 q^{28} - 208 q^{31} - 176 q^{37} - 252 q^{40} - 188 q^{43} + 188 q^{46} - 188 q^{52} - 136 q^{55} + 504 q^{58} + 296 q^{61}+ \cdots - 284 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/135\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(82\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.601022 0.601022i 0.300511 0.300511i −0.540703 0.841214i \(-0.681842\pi\)
0.841214 + 0.540703i \(0.181842\pi\)
\(3\) 0 0
\(4\) 3.27754i 0.819386i
\(5\) −4.98774 + 0.349865i −0.997549 + 0.0699731i
\(6\) 0 0
\(7\) −7.13454 + 7.13454i −1.01922 + 1.01922i −0.0194078 + 0.999812i \(0.506178\pi\)
−0.999812 + 0.0194078i \(0.993822\pi\)
\(8\) 4.37397 + 4.37397i 0.546746 + 0.546746i
\(9\) 0 0
\(10\) −2.78747 + 3.20802i −0.278747 + 0.320802i
\(11\) −6.84616 −0.622378 −0.311189 0.950348i \(-0.600727\pi\)
−0.311189 + 0.950348i \(0.600727\pi\)
\(12\) 0 0
\(13\) 5.13850 + 5.13850i 0.395269 + 0.395269i 0.876561 0.481292i \(-0.159832\pi\)
−0.481292 + 0.876561i \(0.659832\pi\)
\(14\) 8.57603i 0.612573i
\(15\) 0 0
\(16\) −7.85248 −0.490780
\(17\) 17.0856 17.0856i 1.00503 1.00503i 0.00504558 0.999987i \(-0.498394\pi\)
0.999987 0.00504558i \(-0.00160606\pi\)
\(18\) 0 0
\(19\) 21.9632i 1.15596i 0.816051 + 0.577979i \(0.196159\pi\)
−0.816051 + 0.577979i \(0.803841\pi\)
\(20\) −1.14670 16.3476i −0.0573350 0.817378i
\(21\) 0 0
\(22\) −4.11469 + 4.11469i −0.187031 + 0.187031i
\(23\) −3.06284 3.06284i −0.133167 0.133167i 0.637382 0.770548i \(-0.280018\pi\)
−0.770548 + 0.637382i \(0.780018\pi\)
\(24\) 0 0
\(25\) 24.7552 3.49008i 0.990208 0.139603i
\(26\) 6.17670 0.237565
\(27\) 0 0
\(28\) −23.3838 23.3838i −0.835134 0.835134i
\(29\) 41.1349i 1.41845i 0.704984 + 0.709223i \(0.250954\pi\)
−0.704984 + 0.709223i \(0.749046\pi\)
\(30\) 0 0
\(31\) 20.3793 0.657395 0.328698 0.944435i \(-0.393390\pi\)
0.328698 + 0.944435i \(0.393390\pi\)
\(32\) −22.2154 + 22.2154i −0.694230 + 0.694230i
\(33\) 0 0
\(34\) 20.5376i 0.604047i
\(35\) 33.0891 38.0814i 0.945403 1.08804i
\(36\) 0 0
\(37\) 30.7953 30.7953i 0.832305 0.832305i −0.155526 0.987832i \(-0.549707\pi\)
0.987832 + 0.155526i \(0.0497074\pi\)
\(38\) 13.2004 + 13.2004i 0.347378 + 0.347378i
\(39\) 0 0
\(40\) −23.3465 20.2859i −0.583663 0.507148i
\(41\) −79.7736 −1.94570 −0.972849 0.231440i \(-0.925656\pi\)
−0.972849 + 0.231440i \(0.925656\pi\)
\(42\) 0 0
\(43\) −16.8417 16.8417i −0.391666 0.391666i 0.483615 0.875281i \(-0.339324\pi\)
−0.875281 + 0.483615i \(0.839324\pi\)
\(44\) 22.4386i 0.509968i
\(45\) 0 0
\(46\) −3.68166 −0.0800362
\(47\) 21.1840 21.1840i 0.450723 0.450723i −0.444872 0.895594i \(-0.646751\pi\)
0.895594 + 0.444872i \(0.146751\pi\)
\(48\) 0 0
\(49\) 52.8032i 1.07762i
\(50\) 12.7808 16.9760i 0.255616 0.339521i
\(51\) 0 0
\(52\) −16.8417 + 16.8417i −0.323878 + 0.323878i
\(53\) 48.1359 + 48.1359i 0.908225 + 0.908225i 0.996129 0.0879040i \(-0.0280169\pi\)
−0.0879040 + 0.996129i \(0.528017\pi\)
\(54\) 0 0
\(55\) 34.1469 2.39523i 0.620852 0.0435497i
\(56\) −62.4124 −1.11451
\(57\) 0 0
\(58\) 24.7230 + 24.7230i 0.426259 + 0.426259i
\(59\) 32.3498i 0.548301i 0.961687 + 0.274150i \(0.0883966\pi\)
−0.961687 + 0.274150i \(0.911603\pi\)
\(60\) 0 0
\(61\) 53.3901 0.875247 0.437624 0.899158i \(-0.355820\pi\)
0.437624 + 0.899158i \(0.355820\pi\)
\(62\) 12.2484 12.2484i 0.197555 0.197555i
\(63\) 0 0
\(64\) 4.70606i 0.0735322i
\(65\) −27.4273 23.8317i −0.421958 0.366642i
\(66\) 0 0
\(67\) 7.43409 7.43409i 0.110957 0.110957i −0.649449 0.760405i \(-0.725000\pi\)
0.760405 + 0.649449i \(0.225000\pi\)
\(68\) 55.9987 + 55.9987i 0.823510 + 0.823510i
\(69\) 0 0
\(70\) −3.00045 42.7750i −0.0428636 0.611072i
\(71\) −62.5131 −0.880466 −0.440233 0.897884i \(-0.645104\pi\)
−0.440233 + 0.897884i \(0.645104\pi\)
\(72\) 0 0
\(73\) 16.4036 + 16.4036i 0.224707 + 0.224707i 0.810477 0.585770i \(-0.199208\pi\)
−0.585770 + 0.810477i \(0.699208\pi\)
\(74\) 37.0173i 0.500234i
\(75\) 0 0
\(76\) −71.9854 −0.947176
\(77\) 48.8441 48.8441i 0.634340 0.634340i
\(78\) 0 0
\(79\) 141.870i 1.79583i 0.440170 + 0.897914i \(0.354918\pi\)
−0.440170 + 0.897914i \(0.645082\pi\)
\(80\) 39.1662 2.74731i 0.489577 0.0343414i
\(81\) 0 0
\(82\) −47.9457 + 47.9457i −0.584704 + 0.584704i
\(83\) 18.7813 + 18.7813i 0.226281 + 0.226281i 0.811137 0.584856i \(-0.198849\pi\)
−0.584856 + 0.811137i \(0.698849\pi\)
\(84\) 0 0
\(85\) −79.2408 + 91.1960i −0.932244 + 1.07289i
\(86\) −20.2444 −0.235400
\(87\) 0 0
\(88\) −29.9448 29.9448i −0.340282 0.340282i
\(89\) 48.7354i 0.547589i 0.961788 + 0.273795i \(0.0882789\pi\)
−0.961788 + 0.273795i \(0.911721\pi\)
\(90\) 0 0
\(91\) −73.3216 −0.805732
\(92\) 10.0386 10.0386i 0.109115 0.109115i
\(93\) 0 0
\(94\) 25.4641i 0.270894i
\(95\) −7.68416 109.547i −0.0808859 1.15313i
\(96\) 0 0
\(97\) 6.96035 6.96035i 0.0717562 0.0717562i −0.670318 0.742074i \(-0.733842\pi\)
0.742074 + 0.670318i \(0.233842\pi\)
\(98\) −31.7359 31.7359i −0.323836 0.323836i
\(99\) 0 0
\(100\) 11.4389 + 81.1362i 0.114389 + 0.811362i
\(101\) 105.583 1.04538 0.522690 0.852523i \(-0.324929\pi\)
0.522690 + 0.852523i \(0.324929\pi\)
\(102\) 0 0
\(103\) 119.756 + 119.756i 1.16268 + 1.16268i 0.983888 + 0.178788i \(0.0572177\pi\)
0.178788 + 0.983888i \(0.442782\pi\)
\(104\) 44.9512i 0.432223i
\(105\) 0 0
\(106\) 57.8615 0.545863
\(107\) −66.8231 + 66.8231i −0.624515 + 0.624515i −0.946683 0.322168i \(-0.895589\pi\)
0.322168 + 0.946683i \(0.395589\pi\)
\(108\) 0 0
\(109\) 48.2233i 0.442415i −0.975227 0.221208i \(-0.929000\pi\)
0.975227 0.221208i \(-0.0709998\pi\)
\(110\) 19.0834 21.9626i 0.173486 0.199660i
\(111\) 0 0
\(112\) 56.0238 56.0238i 0.500213 0.500213i
\(113\) −35.7855 35.7855i −0.316686 0.316686i 0.530807 0.847493i \(-0.321889\pi\)
−0.847493 + 0.530807i \(0.821889\pi\)
\(114\) 0 0
\(115\) 16.3482 + 14.2051i 0.142158 + 0.123522i
\(116\) −134.822 −1.16226
\(117\) 0 0
\(118\) 19.4429 + 19.4429i 0.164770 + 0.164770i
\(119\) 243.795i 2.04870i
\(120\) 0 0
\(121\) −74.1302 −0.612646
\(122\) 32.0886 32.0886i 0.263021 0.263021i
\(123\) 0 0
\(124\) 66.7939i 0.538661i
\(125\) −122.251 + 26.0686i −0.978012 + 0.208549i
\(126\) 0 0
\(127\) −48.1040 + 48.1040i −0.378772 + 0.378772i −0.870659 0.491887i \(-0.836307\pi\)
0.491887 + 0.870659i \(0.336307\pi\)
\(128\) −91.6899 91.6899i −0.716328 0.716328i
\(129\) 0 0
\(130\) −30.8078 + 2.16101i −0.236983 + 0.0166232i
\(131\) 178.550 1.36297 0.681487 0.731830i \(-0.261333\pi\)
0.681487 + 0.731830i \(0.261333\pi\)
\(132\) 0 0
\(133\) −156.697 156.697i −1.17818 1.17818i
\(134\) 8.93610i 0.0666873i
\(135\) 0 0
\(136\) 149.463 1.09899
\(137\) 57.1514 57.1514i 0.417164 0.417164i −0.467061 0.884225i \(-0.654687\pi\)
0.884225 + 0.467061i \(0.154687\pi\)
\(138\) 0 0
\(139\) 169.100i 1.21655i −0.793727 0.608274i \(-0.791862\pi\)
0.793727 0.608274i \(-0.208138\pi\)
\(140\) 124.813 + 108.451i 0.891524 + 0.774650i
\(141\) 0 0
\(142\) −37.5718 + 37.5718i −0.264590 + 0.264590i
\(143\) −35.1790 35.1790i −0.246007 0.246007i
\(144\) 0 0
\(145\) −14.3917 205.171i −0.0992530 1.41497i
\(146\) 19.7179 0.135054
\(147\) 0 0
\(148\) 100.933 + 100.933i 0.681979 + 0.681979i
\(149\) 252.758i 1.69636i −0.529705 0.848182i \(-0.677697\pi\)
0.529705 0.848182i \(-0.322303\pi\)
\(150\) 0 0
\(151\) −95.1486 −0.630123 −0.315062 0.949071i \(-0.602025\pi\)
−0.315062 + 0.949071i \(0.602025\pi\)
\(152\) −96.0663 + 96.0663i −0.632015 + 0.632015i
\(153\) 0 0
\(154\) 58.7128i 0.381252i
\(155\) −101.647 + 7.12999i −0.655784 + 0.0460000i
\(156\) 0 0
\(157\) 202.553 202.553i 1.29015 1.29015i 0.355453 0.934694i \(-0.384327\pi\)
0.934694 0.355453i \(-0.115673\pi\)
\(158\) 85.2673 + 85.2673i 0.539666 + 0.539666i
\(159\) 0 0
\(160\) 103.032 118.577i 0.643951 0.741106i
\(161\) 43.7038 0.271452
\(162\) 0 0
\(163\) −34.5104 34.5104i −0.211720 0.211720i 0.593278 0.804998i \(-0.297834\pi\)
−0.804998 + 0.593278i \(0.797834\pi\)
\(164\) 261.462i 1.59428i
\(165\) 0 0
\(166\) 22.5760 0.136000
\(167\) 36.8934 36.8934i 0.220918 0.220918i −0.587967 0.808885i \(-0.700071\pi\)
0.808885 + 0.587967i \(0.200071\pi\)
\(168\) 0 0
\(169\) 116.192i 0.687525i
\(170\) 7.18539 + 102.436i 0.0422670 + 0.602566i
\(171\) 0 0
\(172\) 55.1993 55.1993i 0.320926 0.320926i
\(173\) 76.7538 + 76.7538i 0.443663 + 0.443663i 0.893241 0.449578i \(-0.148426\pi\)
−0.449578 + 0.893241i \(0.648426\pi\)
\(174\) 0 0
\(175\) −151.717 + 201.517i −0.866953 + 1.15152i
\(176\) 53.7593 0.305451
\(177\) 0 0
\(178\) 29.2911 + 29.2911i 0.164557 + 0.164557i
\(179\) 0.472314i 0.00263862i 0.999999 + 0.00131931i \(0.000419950\pi\)
−0.999999 + 0.00131931i \(0.999580\pi\)
\(180\) 0 0
\(181\) 71.0814 0.392715 0.196357 0.980532i \(-0.437089\pi\)
0.196357 + 0.980532i \(0.437089\pi\)
\(182\) −44.0679 + 44.0679i −0.242131 + 0.242131i
\(183\) 0 0
\(184\) 26.7935i 0.145617i
\(185\) −142.825 + 164.373i −0.772026 + 0.888504i
\(186\) 0 0
\(187\) −116.970 + 116.970i −0.625510 + 0.625510i
\(188\) 69.4314 + 69.4314i 0.369316 + 0.369316i
\(189\) 0 0
\(190\) −70.4584 61.2217i −0.370834 0.322220i
\(191\) 37.9492 0.198687 0.0993435 0.995053i \(-0.468326\pi\)
0.0993435 + 0.995053i \(0.468326\pi\)
\(192\) 0 0
\(193\) −72.2919 72.2919i −0.374570 0.374570i 0.494569 0.869138i \(-0.335326\pi\)
−0.869138 + 0.494569i \(0.835326\pi\)
\(194\) 8.36665i 0.0431270i
\(195\) 0 0
\(196\) 173.065 0.882984
\(197\) 2.95917 2.95917i 0.0150212 0.0150212i −0.699556 0.714577i \(-0.746619\pi\)
0.714577 + 0.699556i \(0.246619\pi\)
\(198\) 0 0
\(199\) 250.929i 1.26095i 0.776210 + 0.630475i \(0.217140\pi\)
−0.776210 + 0.630475i \(0.782860\pi\)
\(200\) 123.544 + 93.0129i 0.617719 + 0.465064i
\(201\) 0 0
\(202\) 63.4579 63.4579i 0.314148 0.314148i
\(203\) −293.479 293.479i −1.44571 1.44571i
\(204\) 0 0
\(205\) 397.890 27.9100i 1.94093 0.136146i
\(206\) 143.952 0.698794
\(207\) 0 0
\(208\) −40.3500 40.3500i −0.193990 0.193990i
\(209\) 150.364i 0.719443i
\(210\) 0 0
\(211\) −242.283 −1.14826 −0.574131 0.818764i \(-0.694660\pi\)
−0.574131 + 0.818764i \(0.694660\pi\)
\(212\) −157.768 + 157.768i −0.744187 + 0.744187i
\(213\) 0 0
\(214\) 80.3243i 0.375347i
\(215\) 89.8942 + 78.1096i 0.418113 + 0.363300i
\(216\) 0 0
\(217\) −145.397 + 145.397i −0.670030 + 0.670030i
\(218\) −28.9832 28.9832i −0.132951 0.132951i
\(219\) 0 0
\(220\) 7.85048 + 111.918i 0.0356840 + 0.508718i
\(221\) 175.588 0.794517
\(222\) 0 0
\(223\) −173.530 173.530i −0.778163 0.778163i 0.201355 0.979518i \(-0.435465\pi\)
−0.979518 + 0.201355i \(0.935465\pi\)
\(224\) 316.993i 1.41515i
\(225\) 0 0
\(226\) −43.0158 −0.190335
\(227\) −111.249 + 111.249i −0.490082 + 0.490082i −0.908332 0.418250i \(-0.862644\pi\)
0.418250 + 0.908332i \(0.362644\pi\)
\(228\) 0 0
\(229\) 10.3095i 0.0450198i 0.999747 + 0.0225099i \(0.00716574\pi\)
−0.999747 + 0.0225099i \(0.992834\pi\)
\(230\) 18.3632 1.28809i 0.0798400 0.00560038i
\(231\) 0 0
\(232\) −179.923 + 179.923i −0.775529 + 0.775529i
\(233\) −224.189 224.189i −0.962184 0.962184i 0.0371270 0.999311i \(-0.488179\pi\)
−0.999311 + 0.0371270i \(0.988179\pi\)
\(234\) 0 0
\(235\) −98.2486 + 113.072i −0.418079 + 0.481156i
\(236\) −106.028 −0.449270
\(237\) 0 0
\(238\) 146.526 + 146.526i 0.615656 + 0.615656i
\(239\) 209.920i 0.878327i 0.898407 + 0.439164i \(0.144725\pi\)
−0.898407 + 0.439164i \(0.855275\pi\)
\(240\) 0 0
\(241\) −12.3229 −0.0511323 −0.0255662 0.999673i \(-0.508139\pi\)
−0.0255662 + 0.999673i \(0.508139\pi\)
\(242\) −44.5539 + 44.5539i −0.184107 + 0.184107i
\(243\) 0 0
\(244\) 174.988i 0.717165i
\(245\) 18.4740 + 263.369i 0.0754041 + 1.07498i
\(246\) 0 0
\(247\) −112.858 + 112.858i −0.456915 + 0.456915i
\(248\) 89.1381 + 89.1381i 0.359428 + 0.359428i
\(249\) 0 0
\(250\) −57.8080 + 89.1436i −0.231232 + 0.356575i
\(251\) 396.814 1.58093 0.790466 0.612506i \(-0.209839\pi\)
0.790466 + 0.612506i \(0.209839\pi\)
\(252\) 0 0
\(253\) 20.9687 + 20.9687i 0.0828801 + 0.0828801i
\(254\) 57.8232i 0.227650i
\(255\) 0 0
\(256\) −91.3911 −0.356997
\(257\) −133.629 + 133.629i −0.519957 + 0.519957i −0.917558 0.397601i \(-0.869843\pi\)
0.397601 + 0.917558i \(0.369843\pi\)
\(258\) 0 0
\(259\) 439.420i 1.69660i
\(260\) 78.1096 89.8942i 0.300421 0.345747i
\(261\) 0 0
\(262\) 107.312 107.312i 0.409589 0.409589i
\(263\) −185.126 185.126i −0.703903 0.703903i 0.261343 0.965246i \(-0.415835\pi\)
−0.965246 + 0.261343i \(0.915835\pi\)
\(264\) 0 0
\(265\) −256.931 223.249i −0.969550 0.842447i
\(266\) −188.357 −0.708109
\(267\) 0 0
\(268\) 24.3656 + 24.3656i 0.0909162 + 0.0909162i
\(269\) 289.745i 1.07712i 0.842588 + 0.538559i \(0.181031\pi\)
−0.842588 + 0.538559i \(0.818969\pi\)
\(270\) 0 0
\(271\) 253.543 0.935582 0.467791 0.883839i \(-0.345050\pi\)
0.467791 + 0.883839i \(0.345050\pi\)
\(272\) −134.164 + 134.164i −0.493250 + 0.493250i
\(273\) 0 0
\(274\) 68.6986i 0.250725i
\(275\) −169.478 + 23.8936i −0.616283 + 0.0868859i
\(276\) 0 0
\(277\) 58.8124 58.8124i 0.212319 0.212319i −0.592933 0.805252i \(-0.702030\pi\)
0.805252 + 0.592933i \(0.202030\pi\)
\(278\) −101.633 101.633i −0.365586 0.365586i
\(279\) 0 0
\(280\) 311.297 21.8359i 1.11178 0.0779855i
\(281\) 428.466 1.52479 0.762395 0.647112i \(-0.224023\pi\)
0.762395 + 0.647112i \(0.224023\pi\)
\(282\) 0 0
\(283\) 320.183 + 320.183i 1.13139 + 1.13139i 0.989946 + 0.141444i \(0.0451744\pi\)
0.141444 + 0.989946i \(0.454826\pi\)
\(284\) 204.889i 0.721442i
\(285\) 0 0
\(286\) −42.2867 −0.147855
\(287\) 569.148 569.148i 1.98309 1.98309i
\(288\) 0 0
\(289\) 294.833i 1.02018i
\(290\) −131.962 114.662i −0.455041 0.395387i
\(291\) 0 0
\(292\) −53.7636 + 53.7636i −0.184122 + 0.184122i
\(293\) −7.37108 7.37108i −0.0251573 0.0251573i 0.694416 0.719574i \(-0.255663\pi\)
−0.719574 + 0.694416i \(0.755663\pi\)
\(294\) 0 0
\(295\) −11.3181 161.352i −0.0383663 0.546957i
\(296\) 269.395 0.910119
\(297\) 0 0
\(298\) −151.913 151.913i −0.509776 0.509776i
\(299\) 31.4768i 0.105273i
\(300\) 0 0
\(301\) 240.315 0.798388
\(302\) −57.1864 + 57.1864i −0.189359 + 0.189359i
\(303\) 0 0
\(304\) 172.466i 0.567321i
\(305\) −266.296 + 18.6793i −0.873102 + 0.0612437i
\(306\) 0 0
\(307\) −75.2762 + 75.2762i −0.245199 + 0.245199i −0.818997 0.573798i \(-0.805470\pi\)
0.573798 + 0.818997i \(0.305470\pi\)
\(308\) 160.089 + 160.089i 0.519769 + 0.519769i
\(309\) 0 0
\(310\) −56.8065 + 65.3771i −0.183247 + 0.210894i
\(311\) −307.264 −0.987988 −0.493994 0.869465i \(-0.664463\pi\)
−0.493994 + 0.869465i \(0.664463\pi\)
\(312\) 0 0
\(313\) −150.851 150.851i −0.481951 0.481951i 0.423803 0.905754i \(-0.360695\pi\)
−0.905754 + 0.423803i \(0.860695\pi\)
\(314\) 243.478i 0.775407i
\(315\) 0 0
\(316\) −464.987 −1.47148
\(317\) 80.7274 80.7274i 0.254661 0.254661i −0.568218 0.822878i \(-0.692367\pi\)
0.822878 + 0.568218i \(0.192367\pi\)
\(318\) 0 0
\(319\) 281.616i 0.882809i
\(320\) 1.64649 + 23.4726i 0.00514527 + 0.0733520i
\(321\) 0 0
\(322\) 26.2670 26.2670i 0.0815744 0.0815744i
\(323\) 375.254 + 375.254i 1.16178 + 1.16178i
\(324\) 0 0
\(325\) 145.138 + 109.271i 0.446579 + 0.336218i
\(326\) −41.4830 −0.127248
\(327\) 0 0
\(328\) −348.927 348.927i −1.06380 1.06380i
\(329\) 302.275i 0.918770i
\(330\) 0 0
\(331\) 310.505 0.938080 0.469040 0.883177i \(-0.344600\pi\)
0.469040 + 0.883177i \(0.344600\pi\)
\(332\) −61.5567 + 61.5567i −0.185412 + 0.185412i
\(333\) 0 0
\(334\) 44.3474i 0.132777i
\(335\) −34.4784 + 39.6803i −0.102921 + 0.118449i
\(336\) 0 0
\(337\) 173.720 173.720i 0.515489 0.515489i −0.400714 0.916203i \(-0.631238\pi\)
0.916203 + 0.400714i \(0.131238\pi\)
\(338\) −69.8338 69.8338i −0.206609 0.206609i
\(339\) 0 0
\(340\) −298.899 259.715i −0.879115 0.763868i
\(341\) −139.520 −0.409148
\(342\) 0 0
\(343\) 27.1342 + 27.1342i 0.0791084 + 0.0791084i
\(344\) 147.330i 0.428284i
\(345\) 0 0
\(346\) 92.2614 0.266651
\(347\) 108.486 108.486i 0.312639 0.312639i −0.533292 0.845931i \(-0.679045\pi\)
0.845931 + 0.533292i \(0.179045\pi\)
\(348\) 0 0
\(349\) 0.0961855i 0.000275603i −1.00000 0.000137802i \(-0.999956\pi\)
1.00000 0.000137802i \(-4.38636e-5\pi\)
\(350\) 29.9310 + 212.301i 0.0855171 + 0.606575i
\(351\) 0 0
\(352\) 152.090 152.090i 0.432074 0.432074i
\(353\) −191.489 191.489i −0.542461 0.542461i 0.381789 0.924250i \(-0.375308\pi\)
−0.924250 + 0.381789i \(0.875308\pi\)
\(354\) 0 0
\(355\) 311.799 21.8712i 0.878308 0.0616089i
\(356\) −159.733 −0.448687
\(357\) 0 0
\(358\) 0.283871 + 0.283871i 0.000792936 + 0.000792936i
\(359\) 147.318i 0.410356i 0.978725 + 0.205178i \(0.0657774\pi\)
−0.978725 + 0.205178i \(0.934223\pi\)
\(360\) 0 0
\(361\) −121.383 −0.336240
\(362\) 42.7215 42.7215i 0.118015 0.118015i
\(363\) 0 0
\(364\) 240.315i 0.660206i
\(365\) −87.5561 76.0780i −0.239880 0.208433i
\(366\) 0 0
\(367\) 480.412 480.412i 1.30902 1.30902i 0.386904 0.922120i \(-0.373544\pi\)
0.922120 0.386904i \(-0.126456\pi\)
\(368\) 24.0509 + 24.0509i 0.0653556 + 0.0653556i
\(369\) 0 0
\(370\) 12.9511 + 184.633i 0.0350029 + 0.499008i
\(371\) −686.855 −1.85136
\(372\) 0 0
\(373\) 387.842 + 387.842i 1.03979 + 1.03979i 0.999175 + 0.0406159i \(0.0129320\pi\)
0.0406159 + 0.999175i \(0.487068\pi\)
\(374\) 140.604i 0.375945i
\(375\) 0 0
\(376\) 185.316 0.492861
\(377\) −211.372 + 211.372i −0.560668 + 0.560668i
\(378\) 0 0
\(379\) 306.368i 0.808358i −0.914680 0.404179i \(-0.867557\pi\)
0.914680 0.404179i \(-0.132443\pi\)
\(380\) 359.045 25.1852i 0.944855 0.0662768i
\(381\) 0 0
\(382\) 22.8083 22.8083i 0.0597076 0.0597076i
\(383\) 316.156 + 316.156i 0.825474 + 0.825474i 0.986887 0.161413i \(-0.0516052\pi\)
−0.161413 + 0.986887i \(0.551605\pi\)
\(384\) 0 0
\(385\) −226.533 + 260.711i −0.588398 + 0.677171i
\(386\) −86.8981 −0.225125
\(387\) 0 0
\(388\) 22.8129 + 22.8129i 0.0587960 + 0.0587960i
\(389\) 20.6616i 0.0531145i −0.999647 0.0265573i \(-0.991546\pi\)
0.999647 0.0265573i \(-0.00845443\pi\)
\(390\) 0 0
\(391\) −104.661 −0.267674
\(392\) 230.959 230.959i 0.589182 0.589182i
\(393\) 0 0
\(394\) 3.55706i 0.00902806i
\(395\) −49.6356 707.614i −0.125660 1.79143i
\(396\) 0 0
\(397\) 144.786 144.786i 0.364701 0.364701i −0.500839 0.865540i \(-0.666975\pi\)
0.865540 + 0.500839i \(0.166975\pi\)
\(398\) 150.814 + 150.814i 0.378929 + 0.378929i
\(399\) 0 0
\(400\) −194.390 + 27.4058i −0.485974 + 0.0685144i
\(401\) 509.332 1.27016 0.635078 0.772448i \(-0.280968\pi\)
0.635078 + 0.772448i \(0.280968\pi\)
\(402\) 0 0
\(403\) 104.719 + 104.719i 0.259848 + 0.259848i
\(404\) 346.054i 0.856569i
\(405\) 0 0
\(406\) −352.774 −0.868902
\(407\) −210.829 + 210.829i −0.518008 + 0.518008i
\(408\) 0 0
\(409\) 446.139i 1.09080i 0.838174 + 0.545402i \(0.183623\pi\)
−0.838174 + 0.545402i \(0.816377\pi\)
\(410\) 222.366 255.916i 0.542357 0.624184i
\(411\) 0 0
\(412\) −392.504 + 392.504i −0.952681 + 0.952681i
\(413\) −230.801 230.801i −0.558839 0.558839i
\(414\) 0 0
\(415\) −100.247 87.1056i −0.241560 0.209893i
\(416\) −228.307 −0.548816
\(417\) 0 0
\(418\) −90.3718 90.3718i −0.216201 0.216201i
\(419\) 53.7826i 0.128359i −0.997938 0.0641797i \(-0.979557\pi\)
0.997938 0.0641797i \(-0.0204431\pi\)
\(420\) 0 0
\(421\) −499.578 −1.18665 −0.593323 0.804965i \(-0.702184\pi\)
−0.593323 + 0.804965i \(0.702184\pi\)
\(422\) −145.618 + 145.618i −0.345065 + 0.345065i
\(423\) 0 0
\(424\) 421.090i 0.993136i
\(425\) 363.326 482.586i 0.854885 1.13550i
\(426\) 0 0
\(427\) −380.913 + 380.913i −0.892069 + 0.892069i
\(428\) −219.016 219.016i −0.511719 0.511719i
\(429\) 0 0
\(430\) 100.974 7.08282i 0.234823 0.0164717i
\(431\) −618.642 −1.43536 −0.717682 0.696371i \(-0.754797\pi\)
−0.717682 + 0.696371i \(0.754797\pi\)
\(432\) 0 0
\(433\) 170.934 + 170.934i 0.394768 + 0.394768i 0.876383 0.481615i \(-0.159950\pi\)
−0.481615 + 0.876383i \(0.659950\pi\)
\(434\) 174.773i 0.402703i
\(435\) 0 0
\(436\) 158.054 0.362509
\(437\) 67.2697 67.2697i 0.153935 0.153935i
\(438\) 0 0
\(439\) 14.7887i 0.0336872i −0.999858 0.0168436i \(-0.994638\pi\)
0.999858 0.0168436i \(-0.00536174\pi\)
\(440\) 159.834 + 138.881i 0.363259 + 0.315638i
\(441\) 0 0
\(442\) 105.532 105.532i 0.238761 0.238761i
\(443\) 584.922 + 584.922i 1.32037 + 1.32037i 0.913478 + 0.406888i \(0.133386\pi\)
0.406888 + 0.913478i \(0.366614\pi\)
\(444\) 0 0
\(445\) −17.0508 243.080i −0.0383165 0.546247i
\(446\) −208.591 −0.467693
\(447\) 0 0
\(448\) 33.5756 + 33.5756i 0.0749454 + 0.0749454i
\(449\) 227.191i 0.505993i 0.967467 + 0.252997i \(0.0814162\pi\)
−0.967467 + 0.252997i \(0.918584\pi\)
\(450\) 0 0
\(451\) 546.143 1.21096
\(452\) 117.289 117.289i 0.259488 0.259488i
\(453\) 0 0
\(454\) 133.726i 0.294550i
\(455\) 365.709 25.6527i 0.803757 0.0563795i
\(456\) 0 0
\(457\) −234.242 + 234.242i −0.512565 + 0.512565i −0.915311 0.402747i \(-0.868055\pi\)
0.402747 + 0.915311i \(0.368055\pi\)
\(458\) 6.19626 + 6.19626i 0.0135290 + 0.0135290i
\(459\) 0 0
\(460\) −46.5577 + 53.5820i −0.101212 + 0.116483i
\(461\) 138.139 0.299651 0.149826 0.988712i \(-0.452129\pi\)
0.149826 + 0.988712i \(0.452129\pi\)
\(462\) 0 0
\(463\) −222.375 222.375i −0.480291 0.480291i 0.424934 0.905225i \(-0.360297\pi\)
−0.905225 + 0.424934i \(0.860297\pi\)
\(464\) 323.011i 0.696145i
\(465\) 0 0
\(466\) −269.485 −0.578294
\(467\) −108.181 + 108.181i −0.231651 + 0.231651i −0.813382 0.581730i \(-0.802376\pi\)
0.581730 + 0.813382i \(0.302376\pi\)
\(468\) 0 0
\(469\) 106.078i 0.226178i
\(470\) 8.90899 + 127.008i 0.0189553 + 0.270230i
\(471\) 0 0
\(472\) −141.497 + 141.497i −0.299781 + 0.299781i
\(473\) 115.301 + 115.301i 0.243764 + 0.243764i
\(474\) 0 0
\(475\) 76.6533 + 543.703i 0.161375 + 1.14464i
\(476\) −799.049 −1.67868
\(477\) 0 0
\(478\) 126.167 + 126.167i 0.263947 + 0.263947i
\(479\) 44.0316i 0.0919239i −0.998943 0.0459620i \(-0.985365\pi\)
0.998943 0.0459620i \(-0.0146353\pi\)
\(480\) 0 0
\(481\) 316.483 0.657969
\(482\) −7.40633 + 7.40633i −0.0153658 + 0.0153658i
\(483\) 0 0
\(484\) 242.965i 0.501994i
\(485\) −32.2813 + 37.1516i −0.0665593 + 0.0766013i
\(486\) 0 0
\(487\) −491.002 + 491.002i −1.00822 + 1.00822i −0.00825217 + 0.999966i \(0.502627\pi\)
−0.999966 + 0.00825217i \(0.997373\pi\)
\(488\) 233.526 + 233.526i 0.478538 + 0.478538i
\(489\) 0 0
\(490\) 169.394 + 147.187i 0.345702 + 0.300382i
\(491\) 120.685 0.245795 0.122897 0.992419i \(-0.460781\pi\)
0.122897 + 0.992419i \(0.460781\pi\)
\(492\) 0 0
\(493\) 702.813 + 702.813i 1.42558 + 1.42558i
\(494\) 135.660i 0.274616i
\(495\) 0 0
\(496\) −160.028 −0.322636
\(497\) 446.002 446.002i 0.897388 0.897388i
\(498\) 0 0
\(499\) 37.0345i 0.0742174i 0.999311 + 0.0371087i \(0.0118148\pi\)
−0.999311 + 0.0371087i \(0.988185\pi\)
\(500\) −85.4410 400.685i −0.170882 0.801370i
\(501\) 0 0
\(502\) 238.494 238.494i 0.475087 0.475087i
\(503\) 105.860 + 105.860i 0.210458 + 0.210458i 0.804462 0.594004i \(-0.202454\pi\)
−0.594004 + 0.804462i \(0.702454\pi\)
\(504\) 0 0
\(505\) −526.623 + 36.9399i −1.04282 + 0.0731484i
\(506\) 25.2052 0.0498127
\(507\) 0 0
\(508\) −157.663 157.663i −0.310360 0.310360i
\(509\) 55.5038i 0.109045i −0.998513 0.0545224i \(-0.982636\pi\)
0.998513 0.0545224i \(-0.0173636\pi\)
\(510\) 0 0
\(511\) −234.064 −0.458051
\(512\) 311.832 311.832i 0.609046 0.609046i
\(513\) 0 0
\(514\) 160.628i 0.312506i
\(515\) −639.209 555.412i −1.24118 1.07847i
\(516\) 0 0
\(517\) −145.029 + 145.029i −0.280520 + 0.280520i
\(518\) 264.101 + 264.101i 0.509848 + 0.509848i
\(519\) 0 0
\(520\) −15.7269 224.205i −0.0302440 0.431164i
\(521\) −297.883 −0.571753 −0.285876 0.958266i \(-0.592285\pi\)
−0.285876 + 0.958266i \(0.592285\pi\)
\(522\) 0 0
\(523\) −172.407 172.407i −0.329650 0.329650i 0.522803 0.852453i \(-0.324886\pi\)
−0.852453 + 0.522803i \(0.824886\pi\)
\(524\) 585.205i 1.11680i
\(525\) 0 0
\(526\) −222.530 −0.423061
\(527\) 348.191 348.191i 0.660704 0.660704i
\(528\) 0 0
\(529\) 510.238i 0.964533i
\(530\) −288.598 + 20.2437i −0.544525 + 0.0381957i
\(531\) 0 0
\(532\) 513.583 513.583i 0.965381 0.965381i
\(533\) −409.917 409.917i −0.769074 0.769074i
\(534\) 0 0
\(535\) 309.918 356.676i 0.579285 0.666684i
\(536\) 65.0329 0.121330
\(537\) 0 0
\(538\) 174.143 + 174.143i 0.323686 + 0.323686i
\(539\) 361.499i 0.670685i
\(540\) 0 0
\(541\) 659.182 1.21845 0.609225 0.792997i \(-0.291481\pi\)
0.609225 + 0.792997i \(0.291481\pi\)
\(542\) 152.385 152.385i 0.281153 0.281153i
\(543\) 0 0
\(544\) 759.124i 1.39545i
\(545\) 16.8716 + 240.525i 0.0309571 + 0.441331i
\(546\) 0 0
\(547\) 521.656 521.656i 0.953667 0.953667i −0.0453063 0.998973i \(-0.514426\pi\)
0.998973 + 0.0453063i \(0.0144264\pi\)
\(548\) 187.316 + 187.316i 0.341818 + 0.341818i
\(549\) 0 0
\(550\) −87.4994 + 116.221i −0.159090 + 0.211310i
\(551\) −903.455 −1.63966
\(552\) 0 0
\(553\) −1012.18 1012.18i −1.83034 1.83034i
\(554\) 70.6951i 0.127608i
\(555\) 0 0
\(556\) 554.233 0.996822
\(557\) −612.302 + 612.302i −1.09929 + 1.09929i −0.104792 + 0.994494i \(0.533418\pi\)
−0.994494 + 0.104792i \(0.966582\pi\)
\(558\) 0 0
\(559\) 173.082i 0.309627i
\(560\) −259.832 + 299.033i −0.463985 + 0.533988i
\(561\) 0 0
\(562\) 257.518 257.518i 0.458216 0.458216i
\(563\) 589.642 + 589.642i 1.04732 + 1.04732i 0.998823 + 0.0484975i \(0.0154433\pi\)
0.0484975 + 0.998823i \(0.484557\pi\)
\(564\) 0 0
\(565\) 191.009 + 165.969i 0.338069 + 0.293750i
\(566\) 384.875 0.679990
\(567\) 0 0
\(568\) −273.430 273.430i −0.481391 0.481391i
\(569\) 224.057i 0.393773i −0.980426 0.196886i \(-0.936917\pi\)
0.980426 0.196886i \(-0.0630830\pi\)
\(570\) 0 0
\(571\) −513.775 −0.899781 −0.449891 0.893084i \(-0.648537\pi\)
−0.449891 + 0.893084i \(0.648537\pi\)
\(572\) 115.301 115.301i 0.201574 0.201574i
\(573\) 0 0
\(574\) 684.141i 1.19188i
\(575\) −86.5106 65.1316i −0.150453 0.113272i
\(576\) 0 0
\(577\) −264.261 + 264.261i −0.457991 + 0.457991i −0.897996 0.440004i \(-0.854977\pi\)
0.440004 + 0.897996i \(0.354977\pi\)
\(578\) −177.201 177.201i −0.306576 0.306576i
\(579\) 0 0
\(580\) 672.456 47.1694i 1.15941 0.0813265i
\(581\) −267.992 −0.461260
\(582\) 0 0
\(583\) −329.546 329.546i −0.565259 0.565259i
\(584\) 143.498i 0.245715i
\(585\) 0 0
\(586\) −8.86036 −0.0151201
\(587\) 147.347 147.347i 0.251016 0.251016i −0.570371 0.821387i \(-0.693201\pi\)
0.821387 + 0.570371i \(0.193201\pi\)
\(588\) 0 0
\(589\) 447.594i 0.759922i
\(590\) −103.779 90.1739i −0.175896 0.152837i
\(591\) 0 0
\(592\) −241.819 + 241.819i −0.408479 + 0.408479i
\(593\) 120.017 + 120.017i 0.202389 + 0.202389i 0.801023 0.598634i \(-0.204289\pi\)
−0.598634 + 0.801023i \(0.704289\pi\)
\(594\) 0 0
\(595\) −85.2954 1215.99i −0.143354 2.04368i
\(596\) 828.427 1.38998
\(597\) 0 0
\(598\) −18.9182 18.9182i −0.0316358 0.0316358i
\(599\) 603.402i 1.00735i 0.863894 + 0.503674i \(0.168019\pi\)
−0.863894 + 0.503674i \(0.831981\pi\)
\(600\) 0 0
\(601\) −891.282 −1.48300 −0.741499 0.670954i \(-0.765885\pi\)
−0.741499 + 0.670954i \(0.765885\pi\)
\(602\) 144.435 144.435i 0.239924 0.239924i
\(603\) 0 0
\(604\) 311.854i 0.516314i
\(605\) 369.742 25.9356i 0.611144 0.0428687i
\(606\) 0 0
\(607\) 272.546 272.546i 0.449004 0.449004i −0.446019 0.895023i \(-0.647159\pi\)
0.895023 + 0.446019i \(0.147159\pi\)
\(608\) −487.921 487.921i −0.802502 0.802502i
\(609\) 0 0
\(610\) −148.823 + 171.276i −0.243972 + 0.280781i
\(611\) 217.707 0.356313
\(612\) 0 0
\(613\) 280.729 + 280.729i 0.457960 + 0.457960i 0.897985 0.440025i \(-0.145031\pi\)
−0.440025 + 0.897985i \(0.645031\pi\)
\(614\) 90.4853i 0.147370i
\(615\) 0 0
\(616\) 427.285 0.693645
\(617\) −323.273 + 323.273i −0.523943 + 0.523943i −0.918760 0.394817i \(-0.870808\pi\)
0.394817 + 0.918760i \(0.370808\pi\)
\(618\) 0 0
\(619\) 229.642i 0.370989i −0.982645 0.185494i \(-0.940611\pi\)
0.982645 0.185494i \(-0.0593887\pi\)
\(620\) −23.3689 333.151i −0.0376917 0.537340i
\(621\) 0 0
\(622\) −184.673 + 184.673i −0.296901 + 0.296901i
\(623\) −347.705 347.705i −0.558114 0.558114i
\(624\) 0 0
\(625\) 600.639 172.795i 0.961022 0.276472i
\(626\) −181.329 −0.289663
\(627\) 0 0
\(628\) 663.877 + 663.877i 1.05713 + 1.05713i
\(629\) 1052.31i 1.67299i
\(630\) 0 0
\(631\) 69.8714 0.110731 0.0553656 0.998466i \(-0.482368\pi\)
0.0553656 + 0.998466i \(0.482368\pi\)
\(632\) −620.537 + 620.537i −0.981862 + 0.981862i
\(633\) 0 0
\(634\) 97.0379i 0.153057i
\(635\) 223.101 256.760i 0.351340 0.404347i
\(636\) 0 0
\(637\) 271.329 271.329i 0.425949 0.425949i
\(638\) −169.258 169.258i −0.265294 0.265294i
\(639\) 0 0
\(640\) 489.405 + 425.247i 0.764696 + 0.664448i
\(641\) 1087.22 1.69613 0.848065 0.529892i \(-0.177768\pi\)
0.848065 + 0.529892i \(0.177768\pi\)
\(642\) 0 0
\(643\) −554.713 554.713i −0.862695 0.862695i 0.128955 0.991650i \(-0.458838\pi\)
−0.991650 + 0.128955i \(0.958838\pi\)
\(644\) 143.241i 0.222424i
\(645\) 0 0
\(646\) 451.072 0.698253
\(647\) 646.211 646.211i 0.998780 0.998780i −0.00121929 0.999999i \(-0.500388\pi\)
0.999999 + 0.00121929i \(0.000388112\pi\)
\(648\) 0 0
\(649\) 221.471i 0.341250i
\(650\) 152.905 21.5572i 0.235239 0.0331649i
\(651\) 0 0
\(652\) 113.109 113.109i 0.173481 0.173481i
\(653\) −725.130 725.130i −1.11046 1.11046i −0.993088 0.117371i \(-0.962553\pi\)
−0.117371 0.993088i \(-0.537447\pi\)
\(654\) 0 0
\(655\) −890.560 + 62.4683i −1.35963 + 0.0953715i
\(656\) 626.421 0.954910
\(657\) 0 0
\(658\) 181.674 + 181.674i 0.276101 + 0.276101i
\(659\) 393.373i 0.596924i 0.954421 + 0.298462i \(0.0964737\pi\)
−0.954421 + 0.298462i \(0.903526\pi\)
\(660\) 0 0
\(661\) 1035.22 1.56614 0.783070 0.621934i \(-0.213653\pi\)
0.783070 + 0.621934i \(0.213653\pi\)
\(662\) 186.620 186.620i 0.281903 0.281903i
\(663\) 0 0
\(664\) 164.298i 0.247436i
\(665\) 836.389 + 726.743i 1.25773 + 1.09285i
\(666\) 0 0
\(667\) 125.990 125.990i 0.188890 0.188890i
\(668\) 120.920 + 120.920i 0.181017 + 0.181017i
\(669\) 0 0
\(670\) 3.12643 + 44.5710i 0.00466632 + 0.0665239i
\(671\) −365.517 −0.544734
\(672\) 0 0
\(673\) −463.125 463.125i −0.688151 0.688151i 0.273672 0.961823i \(-0.411762\pi\)
−0.961823 + 0.273672i \(0.911762\pi\)
\(674\) 208.819i 0.309820i
\(675\) 0 0
\(676\) 380.823 0.563348
\(677\) −103.341 + 103.341i −0.152645 + 0.152645i −0.779298 0.626653i \(-0.784424\pi\)
0.626653 + 0.779298i \(0.284424\pi\)
\(678\) 0 0
\(679\) 99.3177i 0.146271i
\(680\) −745.485 + 52.2920i −1.09630 + 0.0769000i
\(681\) 0 0
\(682\) −83.8543 + 83.8543i −0.122954 + 0.122954i
\(683\) 68.3094 + 68.3094i 0.100014 + 0.100014i 0.755343 0.655329i \(-0.227470\pi\)
−0.655329 + 0.755343i \(0.727470\pi\)
\(684\) 0 0
\(685\) −265.061 + 305.052i −0.386951 + 0.445332i
\(686\) 32.6165 0.0475459
\(687\) 0 0
\(688\) 132.249 + 132.249i 0.192222 + 0.192222i
\(689\) 494.693i 0.717986i
\(690\) 0 0
\(691\) −608.394 −0.880454 −0.440227 0.897887i \(-0.645102\pi\)
−0.440227 + 0.897887i \(0.645102\pi\)
\(692\) −251.564 + 251.564i −0.363532 + 0.363532i
\(693\) 0 0
\(694\) 130.405i 0.187903i
\(695\) 59.1623 + 843.428i 0.0851256 + 1.21357i
\(696\) 0 0
\(697\) −1362.98 + 1362.98i −1.95549 + 1.95549i
\(698\) −0.0578096 0.0578096i −8.28218e−5 8.28218e-5i
\(699\) 0 0
\(700\) −660.481 497.258i −0.943544 0.710369i
\(701\) 147.038 0.209755 0.104877 0.994485i \(-0.466555\pi\)
0.104877 + 0.994485i \(0.466555\pi\)
\(702\) 0 0
\(703\) 676.364 + 676.364i 0.962110 + 0.962110i
\(704\) 32.2184i 0.0457648i
\(705\) 0 0
\(706\) −230.178 −0.326031
\(707\) −753.288 + 753.288i −1.06547 + 1.06547i
\(708\) 0 0
\(709\) 1093.46i 1.54225i 0.636682 + 0.771127i \(0.280307\pi\)
−0.636682 + 0.771127i \(0.719693\pi\)
\(710\) 174.253 200.543i 0.245427 0.282455i
\(711\) 0 0
\(712\) −213.167 + 213.167i −0.299392 + 0.299392i
\(713\) −62.4183 62.4183i −0.0875432 0.0875432i
\(714\) 0 0
\(715\) 187.772 + 163.156i 0.262618 + 0.228190i
\(716\) −1.54803 −0.00216205
\(717\) 0 0
\(718\) 88.5413 + 88.5413i 0.123317 + 0.123317i
\(719\) 1213.55i 1.68783i −0.536476 0.843916i \(-0.680245\pi\)
0.536476 0.843916i \(-0.319755\pi\)
\(720\) 0 0
\(721\) −1708.80 −2.37004
\(722\) −72.9536 + 72.9536i −0.101044 + 0.101044i
\(723\) 0 0
\(724\) 232.972i 0.321785i
\(725\) 143.564 + 1018.30i 0.198019 + 1.40456i
\(726\) 0 0
\(727\) 508.711 508.711i 0.699740 0.699740i −0.264615 0.964354i \(-0.585245\pi\)
0.964354 + 0.264615i \(0.0852447\pi\)
\(728\) −320.706 320.706i −0.440530 0.440530i
\(729\) 0 0
\(730\) −98.3477 + 6.89860i −0.134723 + 0.00945013i
\(731\) −575.498 −0.787275
\(732\) 0 0
\(733\) −173.434 173.434i −0.236608 0.236608i 0.578836 0.815444i \(-0.303507\pi\)
−0.815444 + 0.578836i \(0.803507\pi\)
\(734\) 577.476i 0.786752i
\(735\) 0 0
\(736\) 136.084 0.184897
\(737\) −50.8949 + 50.8949i −0.0690569 + 0.0690569i
\(738\) 0 0
\(739\) 346.404i 0.468747i −0.972147 0.234374i \(-0.924696\pi\)
0.972147 0.234374i \(-0.0753039\pi\)
\(740\) −538.741 468.115i −0.728028 0.632588i
\(741\) 0 0
\(742\) −412.815 + 412.815i −0.556354 + 0.556354i
\(743\) 537.923 + 537.923i 0.723987 + 0.723987i 0.969415 0.245428i \(-0.0789284\pi\)
−0.245428 + 0.969415i \(0.578928\pi\)
\(744\) 0 0
\(745\) 88.4314 + 1260.69i 0.118700 + 1.69221i
\(746\) 466.203 0.624937
\(747\) 0 0
\(748\) −383.376 383.376i −0.512534 0.512534i
\(749\) 953.504i 1.27304i
\(750\) 0 0
\(751\) 806.139 1.07342 0.536710 0.843767i \(-0.319667\pi\)
0.536710 + 0.843767i \(0.319667\pi\)
\(752\) −166.347 + 166.347i −0.221206 + 0.221206i
\(753\) 0 0
\(754\) 254.078i 0.336974i
\(755\) 474.577 33.2892i 0.628579 0.0440916i
\(756\) 0 0
\(757\) −588.844 + 588.844i −0.777866 + 0.777866i −0.979468 0.201602i \(-0.935385\pi\)
0.201602 + 0.979468i \(0.435385\pi\)
\(758\) −184.134 184.134i −0.242921 0.242921i
\(759\) 0 0
\(760\) 445.544 512.764i 0.586242 0.674690i
\(761\) 317.363 0.417035 0.208517 0.978019i \(-0.433136\pi\)
0.208517 + 0.978019i \(0.433136\pi\)
\(762\) 0 0
\(763\) 344.051 + 344.051i 0.450918 + 0.450918i
\(764\) 124.380i 0.162801i
\(765\) 0 0
\(766\) 380.034 0.496128
\(767\) −166.229 + 166.229i −0.216726 + 0.216726i
\(768\) 0 0
\(769\) 1060.67i 1.37929i 0.724149 + 0.689644i \(0.242233\pi\)
−0.724149 + 0.689644i \(0.757767\pi\)
\(770\) 20.5416 + 292.845i 0.0266774 + 0.380318i
\(771\) 0 0
\(772\) 236.940 236.940i 0.306917 0.306917i
\(773\) 273.893 + 273.893i 0.354325 + 0.354325i 0.861716 0.507391i \(-0.169390\pi\)
−0.507391 + 0.861716i \(0.669390\pi\)
\(774\) 0 0
\(775\) 504.492 71.1252i 0.650958 0.0917744i
\(776\) 60.8886 0.0784647
\(777\) 0 0
\(778\) −12.4181 12.4181i −0.0159615 0.0159615i
\(779\) 1752.09i 2.24915i
\(780\) 0 0
\(781\) 427.974 0.547983
\(782\) −62.9033 + 62.9033i −0.0804390 + 0.0804390i
\(783\) 0 0
\(784\) 414.636i 0.528873i
\(785\) −939.417 + 1081.15i −1.19671 + 1.37726i
\(786\) 0 0
\(787\) 539.840 539.840i 0.685947 0.685947i −0.275386 0.961334i \(-0.588806\pi\)
0.961334 + 0.275386i \(0.0888058\pi\)
\(788\) 9.69882 + 9.69882i 0.0123082 + 0.0123082i
\(789\) 0 0
\(790\) −455.124 395.459i −0.576106 0.500582i
\(791\) 510.626 0.645545
\(792\) 0 0
\(793\) 274.345 + 274.345i 0.345958 + 0.345958i
\(794\) 174.040i 0.219193i
\(795\) 0 0
\(796\) −822.431 −1.03320
\(797\) −807.143 + 807.143i −1.01273 + 1.01273i −0.0128090 + 0.999918i \(0.504077\pi\)
−0.999918 + 0.0128090i \(0.995923\pi\)
\(798\) 0 0
\(799\) 723.880i 0.905982i
\(800\) −472.412 + 627.479i −0.590516 + 0.784349i
\(801\) 0 0
\(802\) 306.120 306.120i 0.381696 0.381696i
\(803\) −112.302 112.302i −0.139853 0.139853i
\(804\) 0 0
\(805\) −217.984 + 15.2905i −0.270787 + 0.0189944i
\(806\) 125.877 0.156174
\(807\) 0 0
\(808\) 461.818 + 461.818i 0.571557 + 0.571557i
\(809\) 483.669i 0.597861i −0.954275 0.298930i \(-0.903370\pi\)
0.954275 0.298930i \(-0.0966298\pi\)
\(810\) 0 0
\(811\) −303.549 −0.374289 −0.187145 0.982332i \(-0.559923\pi\)
−0.187145 + 0.982332i \(0.559923\pi\)
\(812\) 961.890 961.890i 1.18459 1.18459i
\(813\) 0 0
\(814\) 253.426i 0.311334i
\(815\) 184.203 + 160.055i 0.226016 + 0.196386i
\(816\) 0 0
\(817\) 369.897 369.897i 0.452750 0.452750i
\(818\) 268.139 + 268.139i 0.327799 + 0.327799i
\(819\) 0 0
\(820\) 91.4764 + 1304.10i 0.111557 + 1.59037i
\(821\) 694.915 0.846425 0.423213 0.906030i \(-0.360902\pi\)
0.423213 + 0.906030i \(0.360902\pi\)
\(822\) 0 0
\(823\) 216.871 + 216.871i 0.263513 + 0.263513i 0.826480 0.562967i \(-0.190340\pi\)
−0.562967 + 0.826480i \(0.690340\pi\)
\(824\) 1047.61i 1.27138i
\(825\) 0 0
\(826\) −277.432 −0.335875
\(827\) 418.921 418.921i 0.506555 0.506555i −0.406912 0.913467i \(-0.633395\pi\)
0.913467 + 0.406912i \(0.133395\pi\)
\(828\) 0 0
\(829\) 282.787i 0.341119i −0.985347 0.170559i \(-0.945443\pi\)
0.985347 0.170559i \(-0.0545574\pi\)
\(830\) −112.603 + 7.89856i −0.135667 + 0.00951633i
\(831\) 0 0
\(832\) 24.1821 24.1821i 0.0290650 0.0290650i
\(833\) −902.172 902.172i −1.08304 1.08304i
\(834\) 0 0
\(835\) −171.107 + 196.922i −0.204918 + 0.235835i
\(836\) 492.823 0.589502
\(837\) 0 0
\(838\) −32.3245 32.3245i −0.0385734 0.0385734i
\(839\) 537.577i 0.640735i 0.947293 + 0.320368i \(0.103806\pi\)
−0.947293 + 0.320368i \(0.896194\pi\)
\(840\) 0 0
\(841\) −851.083 −1.01199
\(842\) −300.257 + 300.257i −0.356600 + 0.356600i
\(843\) 0 0
\(844\) 794.094i 0.940869i
\(845\) 40.6514 + 579.534i 0.0481082 + 0.685840i
\(846\) 0 0
\(847\) 528.884 528.884i 0.624421 0.624421i
\(848\) −377.986 377.986i −0.445739 0.445739i
\(849\) 0 0
\(850\) −71.6778 508.412i −0.0843268 0.598132i
\(851\) −188.642 −0.221671
\(852\) 0 0
\(853\) 311.281 + 311.281i 0.364925 + 0.364925i 0.865623 0.500697i \(-0.166923\pi\)
−0.500697 + 0.865623i \(0.666923\pi\)
\(854\) 457.875i 0.536153i
\(855\) 0 0
\(856\) −584.564 −0.682902
\(857\) −395.094 + 395.094i −0.461020 + 0.461020i −0.898990 0.437970i \(-0.855698\pi\)
0.437970 + 0.898990i \(0.355698\pi\)
\(858\) 0 0
\(859\) 1392.98i 1.62163i −0.585301 0.810816i \(-0.699024\pi\)
0.585301 0.810816i \(-0.300976\pi\)
\(860\) −256.008 + 294.632i −0.297683 + 0.342596i
\(861\) 0 0
\(862\) −371.817 + 371.817i −0.431343 + 0.431343i
\(863\) −489.876 489.876i −0.567643 0.567643i 0.363824 0.931468i \(-0.381471\pi\)
−0.931468 + 0.363824i \(0.881471\pi\)
\(864\) 0 0
\(865\) −409.682 355.975i −0.473620 0.411531i
\(866\) 205.471 0.237264
\(867\) 0 0
\(868\) −476.544 476.544i −0.549013 0.549013i
\(869\) 971.267i 1.11768i
\(870\) 0 0
\(871\) 76.4001 0.0877154
\(872\) 210.927 210.927i 0.241889 0.241889i
\(873\) 0 0
\(874\) 80.8612i 0.0925185i
\(875\) 686.220 1058.20i 0.784252 1.20937i
\(876\) 0 0
\(877\) −77.0982 + 77.0982i −0.0879112 + 0.0879112i −0.749695 0.661784i \(-0.769800\pi\)
0.661784 + 0.749695i \(0.269800\pi\)
\(878\) −8.88833 8.88833i −0.0101234 0.0101234i
\(879\) 0 0
\(880\) −268.138 + 18.8085i −0.304702 + 0.0213733i
\(881\) 76.9529 0.0873473 0.0436736 0.999046i \(-0.486094\pi\)
0.0436736 + 0.999046i \(0.486094\pi\)
\(882\) 0 0
\(883\) −583.159 583.159i −0.660430 0.660430i 0.295052 0.955481i \(-0.404663\pi\)
−0.955481 + 0.295052i \(0.904663\pi\)
\(884\) 575.498i 0.651016i
\(885\) 0 0
\(886\) 703.102 0.793569
\(887\) 488.552 488.552i 0.550792 0.550792i −0.375878 0.926669i \(-0.622659\pi\)
0.926669 + 0.375878i \(0.122659\pi\)
\(888\) 0 0
\(889\) 686.400i 0.772103i
\(890\) −156.344 135.848i −0.175668 0.152639i
\(891\) 0 0
\(892\) 568.753 568.753i 0.637616 0.637616i
\(893\) 465.268 + 465.268i 0.521016 + 0.521016i
\(894\) 0 0
\(895\) −0.165246 2.35578i −0.000184633 0.00263216i
\(896\) 1308.33 1.46019
\(897\) 0 0
\(898\) 136.547 + 136.547i 0.152057 + 0.152057i
\(899\) 838.299i 0.932480i
\(900\) 0 0
\(901\) 1644.86 1.82559
\(902\) 328.244 328.244i 0.363907 0.363907i
\(903\) 0 0
\(904\) 313.049i 0.346294i
\(905\) −354.536 + 24.8689i −0.391752 + 0.0274795i
\(906\) 0 0
\(907\) 292.322 292.322i 0.322295 0.322295i −0.527352 0.849647i \(-0.676815\pi\)
0.849647 + 0.527352i \(0.176815\pi\)
\(908\) −364.622 364.622i −0.401566 0.401566i
\(909\) 0 0
\(910\) 204.382 235.217i 0.224595 0.258480i
\(911\) 406.514 0.446229 0.223114 0.974792i \(-0.428378\pi\)
0.223114 + 0.974792i \(0.428378\pi\)
\(912\) 0 0
\(913\) −128.580 128.580i −0.140832 0.140832i
\(914\) 281.569i 0.308063i
\(915\) 0 0
\(916\) −33.7900 −0.0368886
\(917\) −1273.87 + 1273.87i −1.38917 + 1.38917i
\(918\) 0 0
\(919\) 250.621i 0.272710i 0.990660 + 0.136355i \(0.0435388\pi\)
−0.990660 + 0.136355i \(0.956461\pi\)
\(920\) 9.37411 + 133.639i 0.0101892 + 0.145260i
\(921\) 0 0
\(922\) 83.0247 83.0247i 0.0900484 0.0900484i
\(923\) −321.223 321.223i −0.348021 0.348021i
\(924\) 0 0
\(925\) 654.865 869.821i 0.707963 0.940347i
\(926\) −267.304 −0.288666
\(927\) 0 0
\(928\) −913.828 913.828i −0.984728 0.984728i
\(929\) 1099.09i 1.18309i −0.806274 0.591543i \(-0.798519\pi\)
0.806274 0.591543i \(-0.201481\pi\)
\(930\) 0 0
\(931\) 1159.73 1.24568
\(932\) 734.789 734.789i 0.788400 0.788400i
\(933\) 0 0
\(934\) 130.039i 0.139228i
\(935\) 542.495 624.342i 0.580208 0.667746i
\(936\) 0 0
\(937\) 999.231 999.231i 1.06642 1.06642i 0.0687838 0.997632i \(-0.478088\pi\)
0.997632 0.0687838i \(-0.0219119\pi\)
\(938\) 63.7549 + 63.7549i 0.0679690 + 0.0679690i
\(939\) 0 0
\(940\) −370.598 322.014i −0.394253 0.342568i
\(941\) 1082.29 1.15015 0.575074 0.818101i \(-0.304973\pi\)
0.575074 + 0.818101i \(0.304973\pi\)
\(942\) 0 0
\(943\) 244.334 + 244.334i 0.259102 + 0.259102i
\(944\) 254.026i 0.269095i
\(945\) 0 0
\(946\) 138.596 0.146508
\(947\) −888.185 + 888.185i −0.937893 + 0.937893i −0.998181 0.0602880i \(-0.980798\pi\)
0.0602880 + 0.998181i \(0.480798\pi\)
\(948\) 0 0
\(949\) 168.580i 0.177639i
\(950\) 372.848 + 280.707i 0.392472 + 0.295481i
\(951\) 0 0
\(952\) −1066.35 + 1066.35i −1.12012 + 1.12012i
\(953\) −819.972 819.972i −0.860411 0.860411i 0.130974 0.991386i \(-0.458189\pi\)
−0.991386 + 0.130974i \(0.958189\pi\)
\(954\) 0 0
\(955\) −189.281 + 13.2771i −0.198200 + 0.0139027i
\(956\) −688.023 −0.719689
\(957\) 0 0
\(958\) −26.4639 26.4639i −0.0276242 0.0276242i
\(959\) 815.498i 0.850363i
\(960\) 0 0
\(961\) −545.686 −0.567832
\(962\) 190.213 190.213i 0.197727 0.197727i
\(963\) 0 0
\(964\) 40.3888i 0.0418971i
\(965\) 385.866 + 335.281i 0.399861 + 0.347442i
\(966\) 0 0
\(967\) −628.270 + 628.270i −0.649711 + 0.649711i −0.952923 0.303212i \(-0.901941\pi\)
0.303212 + 0.952923i \(0.401941\pi\)
\(968\) −324.243 324.243i −0.334961 0.334961i
\(969\) 0 0
\(970\) 2.92720 + 41.7307i 0.00301773 + 0.0430213i
\(971\) −1286.55 −1.32497 −0.662486 0.749074i \(-0.730499\pi\)
−0.662486 + 0.749074i \(0.730499\pi\)
\(972\) 0 0
\(973\) 1206.45 + 1206.45i 1.23993 + 1.23993i
\(974\) 590.206i 0.605961i
\(975\) 0 0
\(976\) −419.245 −0.429554
\(977\) 1038.76 1038.76i 1.06321 1.06321i 0.0653473 0.997863i \(-0.479184\pi\)
0.997863 0.0653473i \(-0.0208155\pi\)
\(978\) 0 0
\(979\) 333.650i 0.340807i
\(980\) −863.204 + 60.5494i −0.880820 + 0.0617851i
\(981\) 0 0
\(982\) 72.5345 72.5345i 0.0738640 0.0738640i
\(983\) −335.407 335.407i −0.341207 0.341207i 0.515614 0.856821i \(-0.327564\pi\)
−0.856821 + 0.515614i \(0.827564\pi\)
\(984\) 0 0
\(985\) −13.7243 + 15.7949i −0.0139333 + 0.0160354i
\(986\) 844.813 0.856808
\(987\) 0 0
\(988\) −369.897 369.897i −0.374390 0.374390i
\(989\) 103.166i 0.104314i
\(990\) 0 0
\(991\) −361.054 −0.364333 −0.182167 0.983268i \(-0.558311\pi\)
−0.182167 + 0.983268i \(0.558311\pi\)
\(992\) −452.733 + 452.733i −0.456384 + 0.456384i
\(993\) 0 0
\(994\) 536.114i 0.539350i
\(995\) −87.7913 1251.57i −0.0882325 1.25786i
\(996\) 0 0
\(997\) 535.002 535.002i 0.536612 0.536612i −0.385920 0.922532i \(-0.626116\pi\)
0.922532 + 0.385920i \(0.126116\pi\)
\(998\) 22.2585 + 22.2585i 0.0223032 + 0.0223032i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 135.3.g.a.28.5 yes 16
3.2 odd 2 inner 135.3.g.a.28.4 16
5.2 odd 4 inner 135.3.g.a.82.5 yes 16
5.3 odd 4 675.3.g.k.82.4 16
5.4 even 2 675.3.g.k.568.4 16
9.2 odd 6 405.3.l.o.28.5 32
9.4 even 3 405.3.l.o.298.5 32
9.5 odd 6 405.3.l.o.298.4 32
9.7 even 3 405.3.l.o.28.4 32
15.2 even 4 inner 135.3.g.a.82.4 yes 16
15.8 even 4 675.3.g.k.82.5 16
15.14 odd 2 675.3.g.k.568.5 16
45.2 even 12 405.3.l.o.352.4 32
45.7 odd 12 405.3.l.o.352.5 32
45.22 odd 12 405.3.l.o.217.4 32
45.32 even 12 405.3.l.o.217.5 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.3.g.a.28.4 16 3.2 odd 2 inner
135.3.g.a.28.5 yes 16 1.1 even 1 trivial
135.3.g.a.82.4 yes 16 15.2 even 4 inner
135.3.g.a.82.5 yes 16 5.2 odd 4 inner
405.3.l.o.28.4 32 9.7 even 3
405.3.l.o.28.5 32 9.2 odd 6
405.3.l.o.217.4 32 45.22 odd 12
405.3.l.o.217.5 32 45.32 even 12
405.3.l.o.298.4 32 9.5 odd 6
405.3.l.o.298.5 32 9.4 even 3
405.3.l.o.352.4 32 45.2 even 12
405.3.l.o.352.5 32 45.7 odd 12
675.3.g.k.82.4 16 5.3 odd 4
675.3.g.k.82.5 16 15.8 even 4
675.3.g.k.568.4 16 5.4 even 2
675.3.g.k.568.5 16 15.14 odd 2