Properties

Label 135.3.g.b.82.5
Level $135$
Weight $3$
Character 135.82
Analytic conductor $3.678$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [135,3,Mod(28,135)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(135, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("135.28");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 135 = 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 135.g (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.67848356886\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 286x^{12} + 16269x^{8} + 85684x^{4} + 62500 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{8}\cdot 5 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 82.5
Root \(0.683187 + 0.683187i\) of defining polynomial
Character \(\chi\) \(=\) 135.82
Dual form 135.3.g.b.28.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.683187 + 0.683187i) q^{2} -3.06651i q^{4} +(2.52793 + 4.31388i) q^{5} +(1.91393 + 1.91393i) q^{7} +(4.82775 - 4.82775i) q^{8} +(-1.22013 + 4.67423i) q^{10} +16.0422 q^{11} +(0.607722 - 0.607722i) q^{13} +2.61514i q^{14} -5.66955 q^{16} +(7.56049 + 7.56049i) q^{17} -21.0707i q^{19} +(13.2286 - 7.75194i) q^{20} +(10.9598 + 10.9598i) q^{22} +(-25.2822 + 25.2822i) q^{23} +(-12.2191 + 21.8104i) q^{25} +0.830376 q^{26} +(5.86908 - 5.86908i) q^{28} -13.4595i q^{29} -39.2058 q^{31} +(-23.1843 - 23.1843i) q^{32} +10.3305i q^{34} +(-3.41817 + 13.0947i) q^{35} +(5.47784 + 5.47784i) q^{37} +(14.3952 - 14.3952i) q^{38} +(33.0305 + 8.62209i) q^{40} -69.4260 q^{41} +(55.6177 - 55.6177i) q^{43} -49.1937i q^{44} -34.5449 q^{46} +(-13.7120 - 13.7120i) q^{47} -41.6738i q^{49} +(-23.2485 + 6.55265i) q^{50} +(-1.86359 - 1.86359i) q^{52} +(-34.8894 + 34.8894i) q^{53} +(40.5537 + 69.2043i) q^{55} +18.4799 q^{56} +(9.19538 - 9.19538i) q^{58} +62.0004i q^{59} -67.2121 q^{61} +(-26.7849 - 26.7849i) q^{62} -9.00028i q^{64} +(4.15792 + 1.08536i) q^{65} +(29.2919 + 29.2919i) q^{67} +(23.1843 - 23.1843i) q^{68} +(-11.2814 + 6.61090i) q^{70} +71.3882 q^{71} +(-23.5751 + 23.5751i) q^{73} +7.48478i q^{74} -64.6135 q^{76} +(30.7037 + 30.7037i) q^{77} -5.61768i q^{79} +(-14.3322 - 24.4577i) q^{80} +(-47.4309 - 47.4309i) q^{82} +(26.0960 - 26.0960i) q^{83} +(-13.5026 + 51.7275i) q^{85} +75.9945 q^{86} +(77.4479 - 77.4479i) q^{88} +23.2369i q^{89} +2.32627 q^{91} +(77.5282 + 77.5282i) q^{92} -18.7357i q^{94} +(90.8964 - 53.2653i) q^{95} +(97.3193 + 97.3193i) q^{97} +(28.4710 - 28.4710i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 16 q^{7} + 40 q^{10} + 40 q^{13} - 152 q^{16} - 136 q^{22} - 32 q^{25} - 112 q^{28} + 200 q^{31} + 16 q^{37} - 48 q^{40} + 136 q^{43} + 152 q^{46} + 640 q^{52} + 248 q^{55} + 48 q^{58} - 280 q^{61}+ \cdots + 448 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/135\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(82\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.683187 + 0.683187i 0.341593 + 0.341593i 0.856966 0.515373i \(-0.172347\pi\)
−0.515373 + 0.856966i \(0.672347\pi\)
\(3\) 0 0
\(4\) 3.06651i 0.766628i
\(5\) 2.52793 + 4.31388i 0.505587 + 0.862776i
\(6\) 0 0
\(7\) 1.91393 + 1.91393i 0.273418 + 0.273418i 0.830475 0.557056i \(-0.188069\pi\)
−0.557056 + 0.830475i \(0.688069\pi\)
\(8\) 4.82775 4.82775i 0.603468 0.603468i
\(9\) 0 0
\(10\) −1.22013 + 4.67423i −0.122013 + 0.467423i
\(11\) 16.0422 1.45839 0.729193 0.684308i \(-0.239896\pi\)
0.729193 + 0.684308i \(0.239896\pi\)
\(12\) 0 0
\(13\) 0.607722 0.607722i 0.0467479 0.0467479i −0.683346 0.730094i \(-0.739476\pi\)
0.730094 + 0.683346i \(0.239476\pi\)
\(14\) 2.61514i 0.186796i
\(15\) 0 0
\(16\) −5.66955 −0.354347
\(17\) 7.56049 + 7.56049i 0.444735 + 0.444735i 0.893600 0.448865i \(-0.148172\pi\)
−0.448865 + 0.893600i \(0.648172\pi\)
\(18\) 0 0
\(19\) 21.0707i 1.10898i −0.832189 0.554492i \(-0.812913\pi\)
0.832189 0.554492i \(-0.187087\pi\)
\(20\) 13.2286 7.75194i 0.661428 0.387597i
\(21\) 0 0
\(22\) 10.9598 + 10.9598i 0.498175 + 0.498175i
\(23\) −25.2822 + 25.2822i −1.09923 + 1.09923i −0.104725 + 0.994501i \(0.533396\pi\)
−0.994501 + 0.104725i \(0.966604\pi\)
\(24\) 0 0
\(25\) −12.2191 + 21.8104i −0.488764 + 0.872416i
\(26\) 0.830376 0.0319375
\(27\) 0 0
\(28\) 5.86908 5.86908i 0.209610 0.209610i
\(29\) 13.4595i 0.464122i −0.972701 0.232061i \(-0.925453\pi\)
0.972701 0.232061i \(-0.0745469\pi\)
\(30\) 0 0
\(31\) −39.2058 −1.26470 −0.632352 0.774681i \(-0.717910\pi\)
−0.632352 + 0.774681i \(0.717910\pi\)
\(32\) −23.1843 23.1843i −0.724511 0.724511i
\(33\) 0 0
\(34\) 10.3305i 0.303837i
\(35\) −3.41817 + 13.0947i −0.0976620 + 0.374135i
\(36\) 0 0
\(37\) 5.47784 + 5.47784i 0.148050 + 0.148050i 0.777246 0.629196i \(-0.216616\pi\)
−0.629196 + 0.777246i \(0.716616\pi\)
\(38\) 14.3952 14.3952i 0.378821 0.378821i
\(39\) 0 0
\(40\) 33.0305 + 8.62209i 0.825763 + 0.215552i
\(41\) −69.4260 −1.69332 −0.846658 0.532137i \(-0.821389\pi\)
−0.846658 + 0.532137i \(0.821389\pi\)
\(42\) 0 0
\(43\) 55.6177 55.6177i 1.29343 1.29343i 0.360785 0.932649i \(-0.382509\pi\)
0.932649 0.360785i \(-0.117491\pi\)
\(44\) 49.1937i 1.11804i
\(45\) 0 0
\(46\) −34.5449 −0.750976
\(47\) −13.7120 13.7120i −0.291745 0.291745i 0.546024 0.837769i \(-0.316141\pi\)
−0.837769 + 0.546024i \(0.816141\pi\)
\(48\) 0 0
\(49\) 41.6738i 0.850485i
\(50\) −23.2485 + 6.55265i −0.464970 + 0.131053i
\(51\) 0 0
\(52\) −1.86359 1.86359i −0.0358382 0.0358382i
\(53\) −34.8894 + 34.8894i −0.658290 + 0.658290i −0.954975 0.296685i \(-0.904119\pi\)
0.296685 + 0.954975i \(0.404119\pi\)
\(54\) 0 0
\(55\) 40.5537 + 69.2043i 0.737341 + 1.25826i
\(56\) 18.4799 0.329998
\(57\) 0 0
\(58\) 9.19538 9.19538i 0.158541 0.158541i
\(59\) 62.0004i 1.05085i 0.850839 + 0.525427i \(0.176094\pi\)
−0.850839 + 0.525427i \(0.823906\pi\)
\(60\) 0 0
\(61\) −67.2121 −1.10184 −0.550919 0.834559i \(-0.685723\pi\)
−0.550919 + 0.834559i \(0.685723\pi\)
\(62\) −26.7849 26.7849i −0.432014 0.432014i
\(63\) 0 0
\(64\) 9.00028i 0.140629i
\(65\) 4.15792 + 1.08536i 0.0639680 + 0.0166978i
\(66\) 0 0
\(67\) 29.2919 + 29.2919i 0.437192 + 0.437192i 0.891066 0.453874i \(-0.149958\pi\)
−0.453874 + 0.891066i \(0.649958\pi\)
\(68\) 23.1843 23.1843i 0.340946 0.340946i
\(69\) 0 0
\(70\) −11.2814 + 6.61090i −0.161163 + 0.0944414i
\(71\) 71.3882 1.00547 0.502734 0.864441i \(-0.332328\pi\)
0.502734 + 0.864441i \(0.332328\pi\)
\(72\) 0 0
\(73\) −23.5751 + 23.5751i −0.322947 + 0.322947i −0.849896 0.526950i \(-0.823336\pi\)
0.526950 + 0.849896i \(0.323336\pi\)
\(74\) 7.48478i 0.101146i
\(75\) 0 0
\(76\) −64.6135 −0.850178
\(77\) 30.7037 + 30.7037i 0.398749 + 0.398749i
\(78\) 0 0
\(79\) 5.61768i 0.0711099i −0.999368 0.0355550i \(-0.988680\pi\)
0.999368 0.0355550i \(-0.0113199\pi\)
\(80\) −14.3322 24.4577i −0.179153 0.305722i
\(81\) 0 0
\(82\) −47.4309 47.4309i −0.578425 0.578425i
\(83\) 26.0960 26.0960i 0.314410 0.314410i −0.532206 0.846615i \(-0.678637\pi\)
0.846615 + 0.532206i \(0.178637\pi\)
\(84\) 0 0
\(85\) −13.5026 + 51.7275i −0.158854 + 0.608559i
\(86\) 75.9945 0.883657
\(87\) 0 0
\(88\) 77.4479 77.4479i 0.880089 0.880089i
\(89\) 23.2369i 0.261089i 0.991442 + 0.130545i \(0.0416726\pi\)
−0.991442 + 0.130545i \(0.958327\pi\)
\(90\) 0 0
\(91\) 2.32627 0.0255634
\(92\) 77.5282 + 77.5282i 0.842698 + 0.842698i
\(93\) 0 0
\(94\) 18.7357i 0.199316i
\(95\) 90.8964 53.2653i 0.956804 0.560688i
\(96\) 0 0
\(97\) 97.3193 + 97.3193i 1.00329 + 1.00329i 0.999995 + 0.00329707i \(0.00104949\pi\)
0.00329707 + 0.999995i \(0.498951\pi\)
\(98\) 28.4710 28.4710i 0.290520 0.290520i
\(99\) 0 0
\(100\) 66.8819 + 37.4700i 0.668819 + 0.374700i
\(101\) −122.375 −1.21163 −0.605815 0.795606i \(-0.707153\pi\)
−0.605815 + 0.795606i \(0.707153\pi\)
\(102\) 0 0
\(103\) −14.4661 + 14.4661i −0.140447 + 0.140447i −0.773835 0.633387i \(-0.781664\pi\)
0.633387 + 0.773835i \(0.281664\pi\)
\(104\) 5.86786i 0.0564217i
\(105\) 0 0
\(106\) −47.6719 −0.449735
\(107\) 133.967 + 133.967i 1.25203 + 1.25203i 0.954809 + 0.297221i \(0.0960599\pi\)
0.297221 + 0.954809i \(0.403940\pi\)
\(108\) 0 0
\(109\) 162.075i 1.48692i −0.668778 0.743462i \(-0.733183\pi\)
0.668778 0.743462i \(-0.266817\pi\)
\(110\) −19.5737 + 74.9852i −0.177942 + 0.681684i
\(111\) 0 0
\(112\) −10.8511 10.8511i −0.0968848 0.0968848i
\(113\) 93.7017 93.7017i 0.829219 0.829219i −0.158190 0.987409i \(-0.550566\pi\)
0.987409 + 0.158190i \(0.0505658\pi\)
\(114\) 0 0
\(115\) −172.976 45.1526i −1.50414 0.392631i
\(116\) −41.2738 −0.355809
\(117\) 0 0
\(118\) −42.3578 + 42.3578i −0.358965 + 0.358965i
\(119\) 28.9405i 0.243197i
\(120\) 0 0
\(121\) 136.353 1.12689
\(122\) −45.9184 45.9184i −0.376380 0.376380i
\(123\) 0 0
\(124\) 120.225i 0.969558i
\(125\) −124.977 + 2.42357i −0.999812 + 0.0193885i
\(126\) 0 0
\(127\) 24.9948 + 24.9948i 0.196810 + 0.196810i 0.798631 0.601821i \(-0.205558\pi\)
−0.601821 + 0.798631i \(0.705558\pi\)
\(128\) −86.5885 + 86.5885i −0.676473 + 0.676473i
\(129\) 0 0
\(130\) 2.09913 + 3.58214i 0.0161472 + 0.0275549i
\(131\) 80.1902 0.612139 0.306069 0.952009i \(-0.400986\pi\)
0.306069 + 0.952009i \(0.400986\pi\)
\(132\) 0 0
\(133\) 40.3278 40.3278i 0.303216 0.303216i
\(134\) 40.0237i 0.298684i
\(135\) 0 0
\(136\) 73.0003 0.536767
\(137\) −156.457 156.457i −1.14202 1.14202i −0.988080 0.153940i \(-0.950804\pi\)
−0.153940 0.988080i \(-0.549196\pi\)
\(138\) 0 0
\(139\) 63.5449i 0.457158i −0.973525 0.228579i \(-0.926592\pi\)
0.973525 0.228579i \(-0.0734079\pi\)
\(140\) 40.1552 + 10.4819i 0.286823 + 0.0748704i
\(141\) 0 0
\(142\) 48.7715 + 48.7715i 0.343461 + 0.343461i
\(143\) 9.74923 9.74923i 0.0681764 0.0681764i
\(144\) 0 0
\(145\) 58.0628 34.0248i 0.400433 0.234654i
\(146\) −32.2124 −0.220633
\(147\) 0 0
\(148\) 16.7979 16.7979i 0.113499 0.113499i
\(149\) 148.160i 0.994360i −0.867647 0.497180i \(-0.834369\pi\)
0.867647 0.497180i \(-0.165631\pi\)
\(150\) 0 0
\(151\) −37.1721 −0.246173 −0.123086 0.992396i \(-0.539279\pi\)
−0.123086 + 0.992396i \(0.539279\pi\)
\(152\) −101.724 101.724i −0.669237 0.669237i
\(153\) 0 0
\(154\) 41.9527i 0.272420i
\(155\) −99.1097 169.129i −0.639418 1.09116i
\(156\) 0 0
\(157\) −135.379 135.379i −0.862285 0.862285i 0.129318 0.991603i \(-0.458721\pi\)
−0.991603 + 0.129318i \(0.958721\pi\)
\(158\) 3.83793 3.83793i 0.0242907 0.0242907i
\(159\) 0 0
\(160\) 41.4059 158.623i 0.258787 0.991393i
\(161\) −96.7766 −0.601097
\(162\) 0 0
\(163\) −202.426 + 202.426i −1.24188 + 1.24188i −0.282654 + 0.959222i \(0.591215\pi\)
−0.959222 + 0.282654i \(0.908785\pi\)
\(164\) 212.896i 1.29814i
\(165\) 0 0
\(166\) 35.6569 0.214800
\(167\) 15.4478 + 15.4478i 0.0925018 + 0.0925018i 0.751843 0.659342i \(-0.229165\pi\)
−0.659342 + 0.751843i \(0.729165\pi\)
\(168\) 0 0
\(169\) 168.261i 0.995629i
\(170\) −44.5643 + 26.1147i −0.262143 + 0.153616i
\(171\) 0 0
\(172\) −170.552 170.552i −0.991583 0.991583i
\(173\) −102.849 + 102.849i −0.594501 + 0.594501i −0.938844 0.344343i \(-0.888102\pi\)
0.344343 + 0.938844i \(0.388102\pi\)
\(174\) 0 0
\(175\) −65.1300 + 18.3571i −0.372171 + 0.104898i
\(176\) −90.9522 −0.516774
\(177\) 0 0
\(178\) −15.8752 + 15.8752i −0.0891863 + 0.0891863i
\(179\) 159.775i 0.892599i −0.894884 0.446299i \(-0.852742\pi\)
0.894884 0.446299i \(-0.147258\pi\)
\(180\) 0 0
\(181\) 204.918 1.13214 0.566070 0.824357i \(-0.308463\pi\)
0.566070 + 0.824357i \(0.308463\pi\)
\(182\) 1.58928 + 1.58928i 0.00873230 + 0.00873230i
\(183\) 0 0
\(184\) 244.112i 1.32670i
\(185\) −9.78312 + 37.4784i −0.0528817 + 0.202586i
\(186\) 0 0
\(187\) 121.287 + 121.287i 0.648595 + 0.648595i
\(188\) −42.0481 + 42.0481i −0.223660 + 0.223660i
\(189\) 0 0
\(190\) 98.4894 + 25.7091i 0.518365 + 0.135311i
\(191\) 57.2319 0.299644 0.149822 0.988713i \(-0.452130\pi\)
0.149822 + 0.988713i \(0.452130\pi\)
\(192\) 0 0
\(193\) −94.2729 + 94.2729i −0.488461 + 0.488461i −0.907820 0.419359i \(-0.862255\pi\)
0.419359 + 0.907820i \(0.362255\pi\)
\(194\) 132.974i 0.685435i
\(195\) 0 0
\(196\) −127.793 −0.652006
\(197\) −45.0889 45.0889i −0.228878 0.228878i 0.583346 0.812224i \(-0.301743\pi\)
−0.812224 + 0.583346i \(0.801743\pi\)
\(198\) 0 0
\(199\) 158.275i 0.795352i −0.917526 0.397676i \(-0.869817\pi\)
0.917526 0.397676i \(-0.130183\pi\)
\(200\) 46.3044 + 164.286i 0.231522 + 0.821429i
\(201\) 0 0
\(202\) −83.6047 83.6047i −0.413885 0.413885i
\(203\) 25.7606 25.7606i 0.126899 0.126899i
\(204\) 0 0
\(205\) −175.504 299.495i −0.856118 1.46095i
\(206\) −19.7661 −0.0959518
\(207\) 0 0
\(208\) −3.44551 + 3.44551i −0.0165650 + 0.0165650i
\(209\) 338.021i 1.61733i
\(210\) 0 0
\(211\) 261.703 1.24030 0.620150 0.784484i \(-0.287072\pi\)
0.620150 + 0.784484i \(0.287072\pi\)
\(212\) 106.989 + 106.989i 0.504664 + 0.504664i
\(213\) 0 0
\(214\) 183.049i 0.855370i
\(215\) 380.526 + 99.3300i 1.76989 + 0.462000i
\(216\) 0 0
\(217\) −75.0371 75.0371i −0.345793 0.345793i
\(218\) 110.727 110.727i 0.507923 0.507923i
\(219\) 0 0
\(220\) 212.216 124.359i 0.964617 0.565266i
\(221\) 9.18936 0.0415808
\(222\) 0 0
\(223\) 180.063 180.063i 0.807458 0.807458i −0.176790 0.984249i \(-0.556572\pi\)
0.984249 + 0.176790i \(0.0565715\pi\)
\(224\) 88.7463i 0.396189i
\(225\) 0 0
\(226\) 128.032 0.566511
\(227\) 187.888 + 187.888i 0.827699 + 0.827699i 0.987198 0.159499i \(-0.0509880\pi\)
−0.159499 + 0.987198i \(0.550988\pi\)
\(228\) 0 0
\(229\) 132.747i 0.579679i 0.957075 + 0.289840i \(0.0936020\pi\)
−0.957075 + 0.289840i \(0.906398\pi\)
\(230\) −87.3273 149.023i −0.379684 0.647924i
\(231\) 0 0
\(232\) −64.9792 64.9792i −0.280083 0.280083i
\(233\) −53.9875 + 53.9875i −0.231706 + 0.231706i −0.813404 0.581699i \(-0.802388\pi\)
0.581699 + 0.813404i \(0.302388\pi\)
\(234\) 0 0
\(235\) 24.4889 93.8151i 0.104208 0.399213i
\(236\) 190.125 0.805614
\(237\) 0 0
\(238\) −19.7717 + 19.7717i −0.0830745 + 0.0830745i
\(239\) 103.767i 0.434171i 0.976153 + 0.217085i \(0.0696550\pi\)
−0.976153 + 0.217085i \(0.930345\pi\)
\(240\) 0 0
\(241\) 281.196 1.16679 0.583395 0.812188i \(-0.301724\pi\)
0.583395 + 0.812188i \(0.301724\pi\)
\(242\) 93.1549 + 93.1549i 0.384938 + 0.384938i
\(243\) 0 0
\(244\) 206.107i 0.844699i
\(245\) 179.776 105.349i 0.733778 0.429994i
\(246\) 0 0
\(247\) −12.8051 12.8051i −0.0518426 0.0518426i
\(248\) −189.276 + 189.276i −0.763209 + 0.763209i
\(249\) 0 0
\(250\) −87.0380 83.7265i −0.348152 0.334906i
\(251\) 313.354 1.24842 0.624212 0.781255i \(-0.285420\pi\)
0.624212 + 0.781255i \(0.285420\pi\)
\(252\) 0 0
\(253\) −405.583 + 405.583i −1.60310 + 1.60310i
\(254\) 34.1523i 0.134458i
\(255\) 0 0
\(256\) −154.313 −0.602786
\(257\) −141.763 141.763i −0.551609 0.551609i 0.375296 0.926905i \(-0.377541\pi\)
−0.926905 + 0.375296i \(0.877541\pi\)
\(258\) 0 0
\(259\) 20.9684i 0.0809590i
\(260\) 3.32826 12.7503i 0.0128010 0.0490397i
\(261\) 0 0
\(262\) 54.7849 + 54.7849i 0.209103 + 0.209103i
\(263\) 170.260 170.260i 0.647375 0.647375i −0.304983 0.952358i \(-0.598651\pi\)
0.952358 + 0.304983i \(0.0986507\pi\)
\(264\) 0 0
\(265\) −238.707 62.3105i −0.900780 0.235134i
\(266\) 55.1028 0.207153
\(267\) 0 0
\(268\) 89.8240 89.8240i 0.335164 0.335164i
\(269\) 476.960i 1.77309i 0.462646 + 0.886543i \(0.346900\pi\)
−0.462646 + 0.886543i \(0.653100\pi\)
\(270\) 0 0
\(271\) 105.987 0.391095 0.195548 0.980694i \(-0.437352\pi\)
0.195548 + 0.980694i \(0.437352\pi\)
\(272\) −42.8646 42.8646i −0.157590 0.157590i
\(273\) 0 0
\(274\) 213.778i 0.780213i
\(275\) −196.022 + 349.888i −0.712806 + 1.27232i
\(276\) 0 0
\(277\) 2.45621 + 2.45621i 0.00886718 + 0.00886718i 0.711526 0.702659i \(-0.248004\pi\)
−0.702659 + 0.711526i \(0.748004\pi\)
\(278\) 43.4130 43.4130i 0.156162 0.156162i
\(279\) 0 0
\(280\) 46.7160 + 79.7201i 0.166843 + 0.284715i
\(281\) 206.625 0.735321 0.367660 0.929960i \(-0.380159\pi\)
0.367660 + 0.929960i \(0.380159\pi\)
\(282\) 0 0
\(283\) −40.8251 + 40.8251i −0.144258 + 0.144258i −0.775547 0.631289i \(-0.782526\pi\)
0.631289 + 0.775547i \(0.282526\pi\)
\(284\) 218.913i 0.770820i
\(285\) 0 0
\(286\) 13.3211 0.0465772
\(287\) −132.876 132.876i −0.462984 0.462984i
\(288\) 0 0
\(289\) 174.678i 0.604422i
\(290\) 62.9130 + 16.4224i 0.216942 + 0.0566291i
\(291\) 0 0
\(292\) 72.2934 + 72.2934i 0.247580 + 0.247580i
\(293\) −212.663 + 212.663i −0.725811 + 0.725811i −0.969782 0.243971i \(-0.921550\pi\)
0.243971 + 0.969782i \(0.421550\pi\)
\(294\) 0 0
\(295\) −267.462 + 156.733i −0.906651 + 0.531298i
\(296\) 52.8913 0.178687
\(297\) 0 0
\(298\) 101.221 101.221i 0.339667 0.339667i
\(299\) 30.7291i 0.102773i
\(300\) 0 0
\(301\) 212.896 0.707297
\(302\) −25.3955 25.3955i −0.0840910 0.0840910i
\(303\) 0 0
\(304\) 119.461i 0.392965i
\(305\) −169.908 289.945i −0.557074 0.950638i
\(306\) 0 0
\(307\) 6.45878 + 6.45878i 0.0210384 + 0.0210384i 0.717548 0.696509i \(-0.245265\pi\)
−0.696509 + 0.717548i \(0.745265\pi\)
\(308\) 94.1532 94.1532i 0.305692 0.305692i
\(309\) 0 0
\(310\) 47.8363 183.257i 0.154311 0.591152i
\(311\) −429.168 −1.37996 −0.689980 0.723828i \(-0.742381\pi\)
−0.689980 + 0.723828i \(0.742381\pi\)
\(312\) 0 0
\(313\) −91.6067 + 91.6067i −0.292673 + 0.292673i −0.838135 0.545462i \(-0.816354\pi\)
0.545462 + 0.838135i \(0.316354\pi\)
\(314\) 184.978i 0.589102i
\(315\) 0 0
\(316\) −17.2267 −0.0545148
\(317\) −101.368 101.368i −0.319771 0.319771i 0.528908 0.848679i \(-0.322602\pi\)
−0.848679 + 0.528908i \(0.822602\pi\)
\(318\) 0 0
\(319\) 215.921i 0.676869i
\(320\) 38.8261 22.7521i 0.121332 0.0711003i
\(321\) 0 0
\(322\) −66.1165 66.1165i −0.205331 0.205331i
\(323\) 159.305 159.305i 0.493204 0.493204i
\(324\) 0 0
\(325\) 5.82885 + 20.6805i 0.0179349 + 0.0636323i
\(326\) −276.589 −0.848433
\(327\) 0 0
\(328\) −335.171 + 335.171i −1.02186 + 1.02186i
\(329\) 52.4877i 0.159537i
\(330\) 0 0
\(331\) −40.7620 −0.123148 −0.0615741 0.998103i \(-0.519612\pi\)
−0.0615741 + 0.998103i \(0.519612\pi\)
\(332\) −80.0237 80.0237i −0.241035 0.241035i
\(333\) 0 0
\(334\) 21.1075i 0.0631960i
\(335\) −52.3137 + 200.410i −0.156160 + 0.598238i
\(336\) 0 0
\(337\) 251.752 + 251.752i 0.747038 + 0.747038i 0.973922 0.226884i \(-0.0728539\pi\)
−0.226884 + 0.973922i \(0.572854\pi\)
\(338\) −114.954 + 114.954i −0.340100 + 0.340100i
\(339\) 0 0
\(340\) 158.623 + 41.4059i 0.466538 + 0.121782i
\(341\) −628.949 −1.84443
\(342\) 0 0
\(343\) 173.543 173.543i 0.505956 0.505956i
\(344\) 537.016i 1.56109i
\(345\) 0 0
\(346\) −140.530 −0.406155
\(347\) 119.157 + 119.157i 0.343392 + 0.343392i 0.857641 0.514249i \(-0.171929\pi\)
−0.514249 + 0.857641i \(0.671929\pi\)
\(348\) 0 0
\(349\) 16.0231i 0.0459116i 0.999736 + 0.0229558i \(0.00730770\pi\)
−0.999736 + 0.0229558i \(0.992692\pi\)
\(350\) −57.0372 31.9546i −0.162964 0.0912990i
\(351\) 0 0
\(352\) −371.929 371.929i −1.05662 1.05662i
\(353\) −147.916 + 147.916i −0.419025 + 0.419025i −0.884868 0.465842i \(-0.845751\pi\)
0.465842 + 0.884868i \(0.345751\pi\)
\(354\) 0 0
\(355\) 180.465 + 307.960i 0.508351 + 0.867493i
\(356\) 71.2563 0.200158
\(357\) 0 0
\(358\) 109.156 109.156i 0.304906 0.304906i
\(359\) 160.120i 0.446018i 0.974816 + 0.223009i \(0.0715879\pi\)
−0.974816 + 0.223009i \(0.928412\pi\)
\(360\) 0 0
\(361\) −82.9741 −0.229845
\(362\) 139.997 + 139.997i 0.386732 + 0.386732i
\(363\) 0 0
\(364\) 7.13355i 0.0195977i
\(365\) −161.297 42.1038i −0.441908 0.115353i
\(366\) 0 0
\(367\) 146.732 + 146.732i 0.399814 + 0.399814i 0.878168 0.478353i \(-0.158766\pi\)
−0.478353 + 0.878168i \(0.658766\pi\)
\(368\) 143.339 143.339i 0.389507 0.389507i
\(369\) 0 0
\(370\) −32.2884 + 18.9210i −0.0872660 + 0.0511379i
\(371\) −133.552 −0.359977
\(372\) 0 0
\(373\) 275.593 275.593i 0.738854 0.738854i −0.233502 0.972356i \(-0.575019\pi\)
0.972356 + 0.233502i \(0.0750185\pi\)
\(374\) 165.724i 0.443111i
\(375\) 0 0
\(376\) −132.396 −0.352118
\(377\) −8.17966 8.17966i −0.0216967 0.0216967i
\(378\) 0 0
\(379\) 276.991i 0.730846i −0.930842 0.365423i \(-0.880924\pi\)
0.930842 0.365423i \(-0.119076\pi\)
\(380\) −163.339 278.735i −0.429839 0.733513i
\(381\) 0 0
\(382\) 39.1001 + 39.1001i 0.102356 + 0.102356i
\(383\) −29.6395 + 29.6395i −0.0773876 + 0.0773876i −0.744741 0.667353i \(-0.767427\pi\)
0.667353 + 0.744741i \(0.267427\pi\)
\(384\) 0 0
\(385\) −54.8351 + 210.069i −0.142429 + 0.545634i
\(386\) −128.812 −0.333710
\(387\) 0 0
\(388\) 298.431 298.431i 0.769152 0.769152i
\(389\) 609.728i 1.56742i 0.621124 + 0.783712i \(0.286676\pi\)
−0.621124 + 0.783712i \(0.713324\pi\)
\(390\) 0 0
\(391\) −382.292 −0.977728
\(392\) −201.190 201.190i −0.513241 0.513241i
\(393\) 0 0
\(394\) 61.6083i 0.156366i
\(395\) 24.2340 14.2011i 0.0613519 0.0359522i
\(396\) 0 0
\(397\) 353.820 + 353.820i 0.891235 + 0.891235i 0.994639 0.103404i \(-0.0329735\pi\)
−0.103404 + 0.994639i \(0.532974\pi\)
\(398\) 108.131 108.131i 0.271687 0.271687i
\(399\) 0 0
\(400\) 69.2767 123.655i 0.173192 0.309138i
\(401\) 510.979 1.27426 0.637131 0.770756i \(-0.280121\pi\)
0.637131 + 0.770756i \(0.280121\pi\)
\(402\) 0 0
\(403\) −23.8263 + 23.8263i −0.0591222 + 0.0591222i
\(404\) 375.263i 0.928869i
\(405\) 0 0
\(406\) 35.1986 0.0866960
\(407\) 87.8769 + 87.8769i 0.215914 + 0.215914i
\(408\) 0 0
\(409\) 129.175i 0.315831i −0.987453 0.157916i \(-0.949523\pi\)
0.987453 0.157916i \(-0.0504774\pi\)
\(410\) 84.7089 324.513i 0.206607 0.791496i
\(411\) 0 0
\(412\) 44.3604 + 44.3604i 0.107671 + 0.107671i
\(413\) −118.664 + 118.664i −0.287323 + 0.287323i
\(414\) 0 0
\(415\) 178.544 + 46.6060i 0.430226 + 0.112304i
\(416\) −28.1793 −0.0677387
\(417\) 0 0
\(418\) 230.931 230.931i 0.552468 0.552468i
\(419\) 359.249i 0.857396i −0.903448 0.428698i \(-0.858972\pi\)
0.903448 0.428698i \(-0.141028\pi\)
\(420\) 0 0
\(421\) −105.532 −0.250669 −0.125335 0.992115i \(-0.540000\pi\)
−0.125335 + 0.992115i \(0.540000\pi\)
\(422\) 178.792 + 178.792i 0.423678 + 0.423678i
\(423\) 0 0
\(424\) 336.874i 0.794515i
\(425\) −257.280 + 72.5150i −0.605364 + 0.170624i
\(426\) 0 0
\(427\) −128.639 128.639i −0.301262 0.301262i
\(428\) 410.812 410.812i 0.959841 0.959841i
\(429\) 0 0
\(430\) 192.109 + 327.831i 0.446765 + 0.762398i
\(431\) 402.361 0.933551 0.466776 0.884376i \(-0.345416\pi\)
0.466776 + 0.884376i \(0.345416\pi\)
\(432\) 0 0
\(433\) 36.1598 36.1598i 0.0835098 0.0835098i −0.664118 0.747628i \(-0.731193\pi\)
0.747628 + 0.664118i \(0.231193\pi\)
\(434\) 102.529i 0.236241i
\(435\) 0 0
\(436\) −497.004 −1.13992
\(437\) 532.713 + 532.713i 1.21902 + 1.21902i
\(438\) 0 0
\(439\) 172.795i 0.393611i −0.980443 0.196805i \(-0.936943\pi\)
0.980443 0.196805i \(-0.0630567\pi\)
\(440\) 529.884 + 138.318i 1.20428 + 0.314358i
\(441\) 0 0
\(442\) 6.27805 + 6.27805i 0.0142037 + 0.0142037i
\(443\) −238.409 + 238.409i −0.538170 + 0.538170i −0.922991 0.384821i \(-0.874263\pi\)
0.384821 + 0.922991i \(0.374263\pi\)
\(444\) 0 0
\(445\) −100.241 + 58.7414i −0.225261 + 0.132003i
\(446\) 246.033 0.551644
\(447\) 0 0
\(448\) 17.2259 17.2259i 0.0384506 0.0384506i
\(449\) 272.621i 0.607174i −0.952804 0.303587i \(-0.901816\pi\)
0.952804 0.303587i \(-0.0981843\pi\)
\(450\) 0 0
\(451\) −1113.75 −2.46951
\(452\) −287.338 287.338i −0.635703 0.635703i
\(453\) 0 0
\(454\) 256.725i 0.565473i
\(455\) 5.88067 + 10.0353i 0.0129245 + 0.0220555i
\(456\) 0 0
\(457\) −583.277 583.277i −1.27632 1.27632i −0.942713 0.333605i \(-0.891735\pi\)
−0.333605 0.942713i \(-0.608265\pi\)
\(458\) −90.6907 + 90.6907i −0.198015 + 0.198015i
\(459\) 0 0
\(460\) −138.461 + 530.433i −0.301002 + 1.15312i
\(461\) 506.067 1.09776 0.548879 0.835902i \(-0.315055\pi\)
0.548879 + 0.835902i \(0.315055\pi\)
\(462\) 0 0
\(463\) 129.301 129.301i 0.279267 0.279267i −0.553549 0.832816i \(-0.686727\pi\)
0.832816 + 0.553549i \(0.186727\pi\)
\(464\) 76.3095i 0.164460i
\(465\) 0 0
\(466\) −73.7670 −0.158298
\(467\) −160.498 160.498i −0.343679 0.343679i 0.514070 0.857748i \(-0.328137\pi\)
−0.857748 + 0.514070i \(0.828137\pi\)
\(468\) 0 0
\(469\) 112.125i 0.239073i
\(470\) 80.8237 47.3627i 0.171965 0.100772i
\(471\) 0 0
\(472\) 299.322 + 299.322i 0.634157 + 0.634157i
\(473\) 892.232 892.232i 1.88633 1.88633i
\(474\) 0 0
\(475\) 459.560 + 257.465i 0.967495 + 0.542031i
\(476\) 88.7463 0.186442
\(477\) 0 0
\(478\) −70.8921 + 70.8921i −0.148310 + 0.148310i
\(479\) 779.221i 1.62677i 0.581729 + 0.813383i \(0.302376\pi\)
−0.581729 + 0.813383i \(0.697624\pi\)
\(480\) 0 0
\(481\) 6.65801 0.0138420
\(482\) 192.110 + 192.110i 0.398568 + 0.398568i
\(483\) 0 0
\(484\) 418.130i 0.863904i
\(485\) −173.807 + 665.840i −0.358365 + 1.37287i
\(486\) 0 0
\(487\) 523.288 + 523.288i 1.07451 + 1.07451i 0.996991 + 0.0775227i \(0.0247010\pi\)
0.0775227 + 0.996991i \(0.475299\pi\)
\(488\) −324.483 + 324.483i −0.664924 + 0.664924i
\(489\) 0 0
\(490\) 194.793 + 50.8475i 0.397537 + 0.103770i
\(491\) −160.638 −0.327166 −0.163583 0.986530i \(-0.552305\pi\)
−0.163583 + 0.986530i \(0.552305\pi\)
\(492\) 0 0
\(493\) 101.761 101.761i 0.206411 0.206411i
\(494\) 17.4966i 0.0354182i
\(495\) 0 0
\(496\) 222.279 0.448144
\(497\) 136.632 + 136.632i 0.274913 + 0.274913i
\(498\) 0 0
\(499\) 192.018i 0.384806i −0.981316 0.192403i \(-0.938372\pi\)
0.981316 0.192403i \(-0.0616280\pi\)
\(500\) 7.43189 + 383.242i 0.0148638 + 0.766484i
\(501\) 0 0
\(502\) 214.079 + 214.079i 0.426453 + 0.426453i
\(503\) 179.873 179.873i 0.357600 0.357600i −0.505328 0.862928i \(-0.668628\pi\)
0.862928 + 0.505328i \(0.168628\pi\)
\(504\) 0 0
\(505\) −309.355 527.909i −0.612584 1.04536i
\(506\) −554.178 −1.09521
\(507\) 0 0
\(508\) 76.6470 76.6470i 0.150880 0.150880i
\(509\) 45.1629i 0.0887286i −0.999015 0.0443643i \(-0.985874\pi\)
0.999015 0.0443643i \(-0.0141262\pi\)
\(510\) 0 0
\(511\) −90.2421 −0.176599
\(512\) 240.929 + 240.929i 0.470565 + 0.470565i
\(513\) 0 0
\(514\) 193.702i 0.376852i
\(515\) −98.9742 25.8356i −0.192183 0.0501662i
\(516\) 0 0
\(517\) −219.972 219.972i −0.425477 0.425477i
\(518\) −14.3253 + 14.3253i −0.0276551 + 0.0276551i
\(519\) 0 0
\(520\) 25.3132 14.8336i 0.0486793 0.0285261i
\(521\) −284.623 −0.546301 −0.273150 0.961971i \(-0.588066\pi\)
−0.273150 + 0.961971i \(0.588066\pi\)
\(522\) 0 0
\(523\) 451.674 451.674i 0.863621 0.863621i −0.128135 0.991757i \(-0.540899\pi\)
0.991757 + 0.128135i \(0.0408992\pi\)
\(524\) 245.904i 0.469283i
\(525\) 0 0
\(526\) 232.638 0.442278
\(527\) −296.415 296.415i −0.562458 0.562458i
\(528\) 0 0
\(529\) 749.379i 1.41660i
\(530\) −120.512 205.651i −0.227380 0.388021i
\(531\) 0 0
\(532\) −123.666 123.666i −0.232454 0.232454i
\(533\) −42.1917 + 42.1917i −0.0791589 + 0.0791589i
\(534\) 0 0
\(535\) −239.258 + 916.578i −0.447211 + 1.71323i
\(536\) 282.828 0.527664
\(537\) 0 0
\(538\) −325.853 + 325.853i −0.605674 + 0.605674i
\(539\) 668.541i 1.24033i
\(540\) 0 0
\(541\) 88.5229 0.163628 0.0818142 0.996648i \(-0.473929\pi\)
0.0818142 + 0.996648i \(0.473929\pi\)
\(542\) 72.4088 + 72.4088i 0.133595 + 0.133595i
\(543\) 0 0
\(544\) 350.570i 0.644430i
\(545\) 699.170 409.714i 1.28288 0.751769i
\(546\) 0 0
\(547\) 183.312 + 183.312i 0.335123 + 0.335123i 0.854528 0.519405i \(-0.173846\pi\)
−0.519405 + 0.854528i \(0.673846\pi\)
\(548\) −479.776 + 479.776i −0.875505 + 0.875505i
\(549\) 0 0
\(550\) −372.958 + 105.119i −0.678105 + 0.191126i
\(551\) −283.602 −0.514704
\(552\) 0 0
\(553\) 10.7518 10.7518i 0.0194427 0.0194427i
\(554\) 3.35610i 0.00605794i
\(555\) 0 0
\(556\) −194.861 −0.350470
\(557\) −372.533 372.533i −0.668821 0.668821i 0.288622 0.957443i \(-0.406803\pi\)
−0.957443 + 0.288622i \(0.906803\pi\)
\(558\) 0 0
\(559\) 67.6002i 0.120931i
\(560\) 19.3795 74.2412i 0.0346062 0.132574i
\(561\) 0 0
\(562\) 141.163 + 141.163i 0.251181 + 0.251181i
\(563\) −727.111 + 727.111i −1.29149 + 1.29149i −0.357630 + 0.933863i \(0.616415\pi\)
−0.933863 + 0.357630i \(0.883585\pi\)
\(564\) 0 0
\(565\) 641.090 + 167.346i 1.13467 + 0.296188i
\(566\) −55.7823 −0.0985553
\(567\) 0 0
\(568\) 344.644 344.644i 0.606768 0.606768i
\(569\) 407.776i 0.716653i −0.933596 0.358327i \(-0.883347\pi\)
0.933596 0.358327i \(-0.116653\pi\)
\(570\) 0 0
\(571\) −107.205 −0.187750 −0.0938748 0.995584i \(-0.529925\pi\)
−0.0938748 + 0.995584i \(0.529925\pi\)
\(572\) −29.8961 29.8961i −0.0522660 0.0522660i
\(573\) 0 0
\(574\) 181.559i 0.316304i
\(575\) −242.489 860.341i −0.421721 1.49624i
\(576\) 0 0
\(577\) 539.921 + 539.921i 0.935738 + 0.935738i 0.998056 0.0623179i \(-0.0198493\pi\)
−0.0623179 + 0.998056i \(0.519849\pi\)
\(578\) 119.338 119.338i 0.206466 0.206466i
\(579\) 0 0
\(580\) −104.338 178.050i −0.179892 0.306983i
\(581\) 99.8917 0.171931
\(582\) 0 0
\(583\) −559.704 + 559.704i −0.960041 + 0.960041i
\(584\) 227.629i 0.389776i
\(585\) 0 0
\(586\) −290.577 −0.495864
\(587\) −523.572 523.572i −0.891946 0.891946i 0.102760 0.994706i \(-0.467233\pi\)
−0.994706 + 0.102760i \(0.967233\pi\)
\(588\) 0 0
\(589\) 826.094i 1.40254i
\(590\) −289.804 75.6487i −0.491194 0.128218i
\(591\) 0 0
\(592\) −31.0569 31.0569i −0.0524609 0.0524609i
\(593\) −43.9329 + 43.9329i −0.0740858 + 0.0740858i −0.743179 0.669093i \(-0.766683\pi\)
0.669093 + 0.743179i \(0.266683\pi\)
\(594\) 0 0
\(595\) −124.846 + 73.1596i −0.209825 + 0.122957i
\(596\) −454.333 −0.762304
\(597\) 0 0
\(598\) −20.9937 + 20.9937i −0.0351066 + 0.0351066i
\(599\) 110.244i 0.184047i −0.995757 0.0920237i \(-0.970666\pi\)
0.995757 0.0920237i \(-0.0293336\pi\)
\(600\) 0 0
\(601\) 614.730 1.02284 0.511422 0.859329i \(-0.329119\pi\)
0.511422 + 0.859329i \(0.329119\pi\)
\(602\) 145.448 + 145.448i 0.241608 + 0.241608i
\(603\) 0 0
\(604\) 113.989i 0.188723i
\(605\) 344.693 + 588.212i 0.569740 + 0.972252i
\(606\) 0 0
\(607\) −643.427 643.427i −1.06001 1.06001i −0.998080 0.0619314i \(-0.980274\pi\)
−0.0619314 0.998080i \(-0.519726\pi\)
\(608\) −488.510 + 488.510i −0.803471 + 0.803471i
\(609\) 0 0
\(610\) 82.0077 314.165i 0.134439 0.515025i
\(611\) −16.6662 −0.0272769
\(612\) 0 0
\(613\) 60.7205 60.7205i 0.0990546 0.0990546i −0.655843 0.754897i \(-0.727687\pi\)
0.754897 + 0.655843i \(0.227687\pi\)
\(614\) 8.82511i 0.0143731i
\(615\) 0 0
\(616\) 296.459 0.481265
\(617\) −627.123 627.123i −1.01641 1.01641i −0.999863 0.0165444i \(-0.994734\pi\)
−0.0165444 0.999863i \(-0.505266\pi\)
\(618\) 0 0
\(619\) 587.816i 0.949622i −0.880088 0.474811i \(-0.842516\pi\)
0.880088 0.474811i \(-0.157484\pi\)
\(620\) −518.637 + 303.921i −0.836511 + 0.490196i
\(621\) 0 0
\(622\) −293.201 293.201i −0.471385 0.471385i
\(623\) −44.4738 + 44.4738i −0.0713865 + 0.0713865i
\(624\) 0 0
\(625\) −326.387 533.007i −0.522220 0.852811i
\(626\) −125.169 −0.199950
\(627\) 0 0
\(628\) −415.141 + 415.141i −0.661052 + 0.661052i
\(629\) 82.8304i 0.131686i
\(630\) 0 0
\(631\) −347.806 −0.551197 −0.275599 0.961273i \(-0.588876\pi\)
−0.275599 + 0.961273i \(0.588876\pi\)
\(632\) −27.1207 27.1207i −0.0429126 0.0429126i
\(633\) 0 0
\(634\) 138.506i 0.218464i
\(635\) −44.6394 + 171.010i −0.0702982 + 0.269307i
\(636\) 0 0
\(637\) −25.3261 25.3261i −0.0397584 0.0397584i
\(638\) 147.514 147.514i 0.231214 0.231214i
\(639\) 0 0
\(640\) −592.422 154.642i −0.925660 0.241629i
\(641\) 532.992 0.831500 0.415750 0.909479i \(-0.363519\pi\)
0.415750 + 0.909479i \(0.363519\pi\)
\(642\) 0 0
\(643\) 717.465 717.465i 1.11581 1.11581i 0.123460 0.992350i \(-0.460601\pi\)
0.992350 0.123460i \(-0.0393990\pi\)
\(644\) 296.767i 0.460818i
\(645\) 0 0
\(646\) 217.670 0.336950
\(647\) −28.7251 28.7251i −0.0443973 0.0443973i 0.684560 0.728957i \(-0.259995\pi\)
−0.728957 + 0.684560i \(0.759995\pi\)
\(648\) 0 0
\(649\) 994.625i 1.53255i
\(650\) −10.1464 + 18.1108i −0.0156099 + 0.0278628i
\(651\) 0 0
\(652\) 620.741 + 620.741i 0.952057 + 0.952057i
\(653\) 18.3291 18.3291i 0.0280690 0.0280690i −0.692933 0.721002i \(-0.743682\pi\)
0.721002 + 0.692933i \(0.243682\pi\)
\(654\) 0 0
\(655\) 202.716 + 345.931i 0.309489 + 0.528139i
\(656\) 393.614 0.600021
\(657\) 0 0
\(658\) 35.8589 35.8589i 0.0544968 0.0544968i
\(659\) 698.827i 1.06043i −0.847862 0.530217i \(-0.822110\pi\)
0.847862 0.530217i \(-0.177890\pi\)
\(660\) 0 0
\(661\) 229.808 0.347667 0.173833 0.984775i \(-0.444385\pi\)
0.173833 + 0.984775i \(0.444385\pi\)
\(662\) −27.8481 27.8481i −0.0420666 0.0420666i
\(663\) 0 0
\(664\) 251.970i 0.379472i
\(665\) 275.915 + 72.0232i 0.414910 + 0.108306i
\(666\) 0 0
\(667\) 340.287 + 340.287i 0.510175 + 0.510175i
\(668\) 47.3709 47.3709i 0.0709145 0.0709145i
\(669\) 0 0
\(670\) −172.657 + 101.177i −0.257697 + 0.151011i
\(671\) −1078.23 −1.60690
\(672\) 0 0
\(673\) −739.046 + 739.046i −1.09814 + 1.09814i −0.103509 + 0.994629i \(0.533007\pi\)
−0.994629 + 0.103509i \(0.966993\pi\)
\(674\) 343.987i 0.510366i
\(675\) 0 0
\(676\) 515.975 0.763277
\(677\) 671.650 + 671.650i 0.992098 + 0.992098i 0.999969 0.00787098i \(-0.00250544\pi\)
−0.00787098 + 0.999969i \(0.502505\pi\)
\(678\) 0 0
\(679\) 372.524i 0.548636i
\(680\) 184.540 + 314.914i 0.271382 + 0.463109i
\(681\) 0 0
\(682\) −429.690 429.690i −0.630044 0.630044i
\(683\) 293.612 293.612i 0.429885 0.429885i −0.458704 0.888589i \(-0.651686\pi\)
0.888589 + 0.458704i \(0.151686\pi\)
\(684\) 0 0
\(685\) 279.423 1070.45i 0.407917 1.56270i
\(686\) 237.125 0.345663
\(687\) 0 0
\(688\) −315.327 + 315.327i −0.458324 + 0.458324i
\(689\) 42.4061i 0.0615474i
\(690\) 0 0
\(691\) −566.147 −0.819316 −0.409658 0.912239i \(-0.634352\pi\)
−0.409658 + 0.912239i \(0.634352\pi\)
\(692\) 315.387 + 315.387i 0.455761 + 0.455761i
\(693\) 0 0
\(694\) 162.813i 0.234601i
\(695\) 274.125 160.637i 0.394425 0.231133i
\(696\) 0 0
\(697\) −524.895 524.895i −0.753077 0.753077i
\(698\) −10.9468 + 10.9468i −0.0156831 + 0.0156831i
\(699\) 0 0
\(700\) 56.2922 + 199.722i 0.0804174 + 0.285317i
\(701\) 660.345 0.942004 0.471002 0.882132i \(-0.343892\pi\)
0.471002 + 0.882132i \(0.343892\pi\)
\(702\) 0 0
\(703\) 115.422 115.422i 0.164185 0.164185i
\(704\) 144.385i 0.205092i
\(705\) 0 0
\(706\) −202.108 −0.286272
\(707\) −234.216 234.216i −0.331282 0.331282i
\(708\) 0 0
\(709\) 1216.32i 1.71554i 0.514034 + 0.857770i \(0.328151\pi\)
−0.514034 + 0.857770i \(0.671849\pi\)
\(710\) −87.1031 + 333.685i −0.122680 + 0.469979i
\(711\) 0 0
\(712\) 112.182 + 112.182i 0.157559 + 0.157559i
\(713\) 991.209 991.209i 1.39020 1.39020i
\(714\) 0 0
\(715\) 66.7024 + 17.4116i 0.0932901 + 0.0243519i
\(716\) −489.953 −0.684291
\(717\) 0 0
\(718\) −109.392 + 109.392i −0.152357 + 0.152357i
\(719\) 376.633i 0.523829i −0.965091 0.261914i \(-0.915646\pi\)
0.965091 0.261914i \(-0.0843538\pi\)
\(720\) 0 0
\(721\) −55.3741 −0.0768018
\(722\) −56.6868 56.6868i −0.0785135 0.0785135i
\(723\) 0 0
\(724\) 628.382i 0.867931i
\(725\) 293.558 + 164.463i 0.404908 + 0.226846i
\(726\) 0 0
\(727\) −562.754 562.754i −0.774077 0.774077i 0.204740 0.978816i \(-0.434365\pi\)
−0.978816 + 0.204740i \(0.934365\pi\)
\(728\) 11.2307 11.2307i 0.0154267 0.0154267i
\(729\) 0 0
\(730\) −81.4308 138.960i −0.111549 0.190357i
\(731\) 840.994 1.15047
\(732\) 0 0
\(733\) −316.775 + 316.775i −0.432163 + 0.432163i −0.889364 0.457201i \(-0.848852\pi\)
0.457201 + 0.889364i \(0.348852\pi\)
\(734\) 200.491i 0.273148i
\(735\) 0 0
\(736\) 1172.30 1.59280
\(737\) 469.908 + 469.908i 0.637595 + 0.637595i
\(738\) 0 0
\(739\) 322.406i 0.436273i 0.975918 + 0.218137i \(0.0699979\pi\)
−0.975918 + 0.218137i \(0.930002\pi\)
\(740\) 114.928 + 30.0001i 0.155308 + 0.0405406i
\(741\) 0 0
\(742\) −91.2406 91.2406i −0.122966 0.122966i
\(743\) 33.6619 33.6619i 0.0453054 0.0453054i −0.684091 0.729397i \(-0.739801\pi\)
0.729397 + 0.684091i \(0.239801\pi\)
\(744\) 0 0
\(745\) 639.143 374.538i 0.857910 0.502735i
\(746\) 376.562 0.504775
\(747\) 0 0
\(748\) 371.929 371.929i 0.497231 0.497231i
\(749\) 512.807i 0.684656i
\(750\) 0 0
\(751\) 1008.00 1.34221 0.671106 0.741362i \(-0.265820\pi\)
0.671106 + 0.741362i \(0.265820\pi\)
\(752\) 77.7410 + 77.7410i 0.103379 + 0.103379i
\(753\) 0 0
\(754\) 11.1765i 0.0148229i
\(755\) −93.9686 160.356i −0.124462 0.212392i
\(756\) 0 0
\(757\) −839.534 839.534i −1.10903 1.10903i −0.993278 0.115750i \(-0.963073\pi\)
−0.115750 0.993278i \(-0.536927\pi\)
\(758\) 189.236 189.236i 0.249652 0.249652i
\(759\) 0 0
\(760\) 181.673 695.976i 0.239044 0.915758i
\(761\) 233.272 0.306534 0.153267 0.988185i \(-0.451021\pi\)
0.153267 + 0.988185i \(0.451021\pi\)
\(762\) 0 0
\(763\) 310.199 310.199i 0.406552 0.406552i
\(764\) 175.502i 0.229715i
\(765\) 0 0
\(766\) −40.4986 −0.0528702
\(767\) 37.6790 + 37.6790i 0.0491252 + 0.0491252i
\(768\) 0 0
\(769\) 1059.42i 1.37766i 0.724922 + 0.688831i \(0.241876\pi\)
−0.724922 + 0.688831i \(0.758124\pi\)
\(770\) −180.979 + 106.054i −0.235037 + 0.137732i
\(771\) 0 0
\(772\) 289.089 + 289.089i 0.374468 + 0.374468i
\(773\) −672.938 + 672.938i −0.870554 + 0.870554i −0.992533 0.121979i \(-0.961076\pi\)
0.121979 + 0.992533i \(0.461076\pi\)
\(774\) 0 0
\(775\) 479.060 855.095i 0.618142 1.10335i
\(776\) 939.666 1.21091
\(777\) 0 0
\(778\) −416.558 + 416.558i −0.535421 + 0.535421i
\(779\) 1462.85i 1.87786i
\(780\) 0 0
\(781\) 1145.23 1.46636
\(782\) −261.177 261.177i −0.333985 0.333985i
\(783\) 0 0
\(784\) 236.271i 0.301366i
\(785\) 241.779 926.236i 0.307999 1.17992i
\(786\) 0 0
\(787\) 441.897 + 441.897i 0.561496 + 0.561496i 0.929732 0.368236i \(-0.120038\pi\)
−0.368236 + 0.929732i \(0.620038\pi\)
\(788\) −138.266 + 138.266i −0.175464 + 0.175464i
\(789\) 0 0
\(790\) 26.2584 + 6.85432i 0.0332384 + 0.00867635i
\(791\) 358.677 0.453447
\(792\) 0 0
\(793\) −40.8463 + 40.8463i −0.0515086 + 0.0515086i
\(794\) 483.451i 0.608880i
\(795\) 0 0
\(796\) −485.352 −0.609739
\(797\) 880.801 + 880.801i 1.10515 + 1.10515i 0.993779 + 0.111366i \(0.0355227\pi\)
0.111366 + 0.993779i \(0.464477\pi\)
\(798\) 0 0
\(799\) 207.339i 0.259499i
\(800\) 788.952 222.368i 0.986189 0.277960i
\(801\) 0 0
\(802\) 349.094 + 349.094i 0.435279 + 0.435279i
\(803\) −378.198 + 378.198i −0.470981 + 0.470981i
\(804\) 0 0
\(805\) −244.645 417.483i −0.303907 0.518612i
\(806\) −32.5556 −0.0403915
\(807\) 0 0
\(808\) −590.793 + 590.793i −0.731180 + 0.731180i
\(809\) 1201.69i 1.48540i −0.669623 0.742701i \(-0.733544\pi\)
0.669623 0.742701i \(-0.266456\pi\)
\(810\) 0 0
\(811\) −214.518 −0.264511 −0.132255 0.991216i \(-0.542222\pi\)
−0.132255 + 0.991216i \(0.542222\pi\)
\(812\) −78.9952 78.9952i −0.0972847 0.0972847i
\(813\) 0 0
\(814\) 120.073i 0.147509i
\(815\) −1384.96 361.521i −1.69934 0.443584i
\(816\) 0 0
\(817\) −1171.90 1171.90i −1.43440 1.43440i
\(818\) 88.2506 88.2506i 0.107886 0.107886i
\(819\) 0 0
\(820\) −918.406 + 538.186i −1.12001 + 0.656324i
\(821\) −1242.79 −1.51375 −0.756877 0.653557i \(-0.773276\pi\)
−0.756877 + 0.653557i \(0.773276\pi\)
\(822\) 0 0
\(823\) −76.3353 + 76.3353i −0.0927525 + 0.0927525i −0.751961 0.659208i \(-0.770892\pi\)
0.659208 + 0.751961i \(0.270892\pi\)
\(824\) 139.677i 0.169511i
\(825\) 0 0
\(826\) −162.140 −0.196295
\(827\) 323.536 + 323.536i 0.391216 + 0.391216i 0.875121 0.483905i \(-0.160782\pi\)
−0.483905 + 0.875121i \(0.660782\pi\)
\(828\) 0 0
\(829\) 361.865i 0.436507i 0.975892 + 0.218254i \(0.0700360\pi\)
−0.975892 + 0.218254i \(0.929964\pi\)
\(830\) 90.1382 + 153.819i 0.108600 + 0.185325i
\(831\) 0 0
\(832\) −5.46967 5.46967i −0.00657412 0.00657412i
\(833\) 315.074 315.074i 0.378240 0.378240i
\(834\) 0 0
\(835\) −27.5889 + 105.691i −0.0330406 + 0.126576i
\(836\) −1036.55 −1.23989
\(837\) 0 0
\(838\) 245.434 245.434i 0.292881 0.292881i
\(839\) 35.4295i 0.0422283i 0.999777 + 0.0211141i \(0.00672134\pi\)
−0.999777 + 0.0211141i \(0.993279\pi\)
\(840\) 0 0
\(841\) 659.841 0.784591
\(842\) −72.0979 72.0979i −0.0856270 0.0856270i
\(843\) 0 0
\(844\) 802.516i 0.950848i
\(845\) −725.859 + 425.354i −0.859005 + 0.503377i
\(846\) 0 0
\(847\) 260.971 + 260.971i 0.308112 + 0.308112i
\(848\) 197.807 197.807i 0.233263 0.233263i
\(849\) 0 0
\(850\) −225.311 126.229i −0.265072 0.148504i
\(851\) −276.984 −0.325480
\(852\) 0 0
\(853\) −996.367 + 996.367i −1.16807 + 1.16807i −0.185414 + 0.982661i \(0.559362\pi\)
−0.982661 + 0.185414i \(0.940638\pi\)
\(854\) 175.769i 0.205818i
\(855\) 0 0
\(856\) 1293.52 1.51112
\(857\) 613.451 + 613.451i 0.715812 + 0.715812i 0.967745 0.251932i \(-0.0810661\pi\)
−0.251932 + 0.967745i \(0.581066\pi\)
\(858\) 0 0
\(859\) 199.954i 0.232776i 0.993204 + 0.116388i \(0.0371316\pi\)
−0.993204 + 0.116388i \(0.962868\pi\)
\(860\) 304.597 1166.89i 0.354182 1.35684i
\(861\) 0 0
\(862\) 274.887 + 274.887i 0.318895 + 0.318895i
\(863\) 290.842 290.842i 0.337013 0.337013i −0.518229 0.855242i \(-0.673409\pi\)
0.855242 + 0.518229i \(0.173409\pi\)
\(864\) 0 0
\(865\) −703.671 183.682i −0.813493 0.212349i
\(866\) 49.4077 0.0570528
\(867\) 0 0
\(868\) −230.102 + 230.102i −0.265095 + 0.265095i
\(869\) 90.1202i 0.103706i
\(870\) 0 0
\(871\) 35.6027 0.0408756
\(872\) −782.455 782.455i −0.897311 0.897311i
\(873\) 0 0
\(874\) 727.885i 0.832821i
\(875\) −243.835 234.557i −0.278668 0.268066i
\(876\) 0 0
\(877\) 57.7576 + 57.7576i 0.0658582 + 0.0658582i 0.739269 0.673411i \(-0.235171\pi\)
−0.673411 + 0.739269i \(0.735171\pi\)
\(878\) 118.051 118.051i 0.134455 0.134455i
\(879\) 0 0
\(880\) −229.921 392.357i −0.261274 0.445860i
\(881\) −673.852 −0.764872 −0.382436 0.923982i \(-0.624915\pi\)
−0.382436 + 0.923982i \(0.624915\pi\)
\(882\) 0 0
\(883\) −701.206 + 701.206i −0.794118 + 0.794118i −0.982161 0.188043i \(-0.939786\pi\)
0.188043 + 0.982161i \(0.439786\pi\)
\(884\) 28.1793i 0.0318770i
\(885\) 0 0
\(886\) −325.756 −0.367671
\(887\) −713.261 713.261i −0.804128 0.804128i 0.179610 0.983738i \(-0.442516\pi\)
−0.983738 + 0.179610i \(0.942516\pi\)
\(888\) 0 0
\(889\) 95.6766i 0.107623i
\(890\) −108.615 28.3522i −0.122039 0.0318564i
\(891\) 0 0
\(892\) −552.166 552.166i −0.619020 0.619020i
\(893\) −288.922 + 288.922i −0.323541 + 0.323541i
\(894\) 0 0
\(895\) 689.251 403.901i 0.770113 0.451286i
\(896\) −331.448 −0.369920
\(897\) 0 0
\(898\) 186.251 186.251i 0.207407 0.207407i
\(899\) 527.692i 0.586977i
\(900\) 0 0
\(901\) −527.562 −0.585529
\(902\) −760.898 760.898i −0.843567 0.843567i
\(903\) 0 0
\(904\) 904.736i 1.00081i
\(905\) 518.018 + 883.989i 0.572396 + 0.976784i
\(906\) 0 0
\(907\) 10.7160 + 10.7160i 0.0118148 + 0.0118148i 0.712990 0.701175i \(-0.247341\pi\)
−0.701175 + 0.712990i \(0.747341\pi\)
\(908\) 576.160 576.160i 0.634537 0.634537i
\(909\) 0 0
\(910\) −2.83836 + 10.8735i −0.00311908 + 0.0119490i
\(911\) −952.181 −1.04520 −0.522602 0.852577i \(-0.675039\pi\)
−0.522602 + 0.852577i \(0.675039\pi\)
\(912\) 0 0
\(913\) 418.638 418.638i 0.458530 0.458530i
\(914\) 796.975i 0.871963i
\(915\) 0 0
\(916\) 407.069 0.444398
\(917\) 153.478 + 153.478i 0.167370 + 0.167370i
\(918\) 0 0
\(919\) 605.183i 0.658523i 0.944239 + 0.329262i \(0.106800\pi\)
−0.944239 + 0.329262i \(0.893200\pi\)
\(920\) −1053.07 + 617.099i −1.14464 + 0.670760i
\(921\) 0 0
\(922\) 345.738 + 345.738i 0.374987 + 0.374987i
\(923\) 43.3842 43.3842i 0.0470035 0.0470035i
\(924\) 0 0
\(925\) −186.408 + 52.5397i −0.201522 + 0.0567996i
\(926\) 176.673 0.190791
\(927\) 0 0
\(928\) −312.051 + 312.051i −0.336261 + 0.336261i
\(929\) 278.073i 0.299325i −0.988737 0.149663i \(-0.952181\pi\)
0.988737 0.149663i \(-0.0478188\pi\)
\(930\) 0 0
\(931\) −878.095 −0.943174
\(932\) 165.553 + 165.553i 0.177632 + 0.177632i
\(933\) 0 0
\(934\) 219.300i 0.234797i
\(935\) −216.612 + 829.825i −0.231671 + 0.887513i
\(936\) 0 0
\(937\) 896.938 + 896.938i 0.957244 + 0.957244i 0.999123 0.0418787i \(-0.0133343\pi\)
−0.0418787 + 0.999123i \(0.513334\pi\)
\(938\) −76.6024 + 76.6024i −0.0816657 + 0.0816657i
\(939\) 0 0
\(940\) −287.685 75.0956i −0.306048 0.0798889i
\(941\) 360.668 0.383282 0.191641 0.981465i \(-0.438619\pi\)
0.191641 + 0.981465i \(0.438619\pi\)
\(942\) 0 0
\(943\) 1755.24 1755.24i 1.86134 1.86134i
\(944\) 351.514i 0.372366i
\(945\) 0 0
\(946\) 1219.12 1.28871
\(947\) −934.038 934.038i −0.986313 0.986313i 0.0135946 0.999908i \(-0.495673\pi\)
−0.999908 + 0.0135946i \(0.995673\pi\)
\(948\) 0 0
\(949\) 28.6542i 0.0301941i
\(950\) 138.069 + 489.862i 0.145336 + 0.515644i
\(951\) 0 0
\(952\) 139.717 + 139.717i 0.146762 + 0.146762i
\(953\) −546.187 + 546.187i −0.573124 + 0.573124i −0.933000 0.359876i \(-0.882819\pi\)
0.359876 + 0.933000i \(0.382819\pi\)
\(954\) 0 0
\(955\) 144.679 + 246.892i 0.151496 + 0.258525i
\(956\) 318.202 0.332847
\(957\) 0 0
\(958\) −532.353 + 532.353i −0.555692 + 0.555692i
\(959\) 598.894i 0.624498i
\(960\) 0 0
\(961\) 576.097 0.599476
\(962\) 4.54867 + 4.54867i 0.00472834 + 0.00472834i
\(963\) 0 0
\(964\) 862.292i 0.894494i
\(965\) −644.998 168.366i −0.668391 0.174473i
\(966\) 0 0
\(967\) −760.948 760.948i −0.786916 0.786916i 0.194072 0.980987i \(-0.437831\pi\)
−0.980987 + 0.194072i \(0.937831\pi\)
\(968\) 658.280 658.280i 0.680041 0.680041i
\(969\) 0 0
\(970\) −573.636 + 336.151i −0.591377 + 0.346547i
\(971\) −892.281 −0.918930 −0.459465 0.888196i \(-0.651959\pi\)
−0.459465 + 0.888196i \(0.651959\pi\)
\(972\) 0 0
\(973\) 121.620 121.620i 0.124995 0.124995i
\(974\) 715.007i 0.734093i
\(975\) 0 0
\(976\) 381.062 0.390432
\(977\) −263.487 263.487i −0.269690 0.269690i 0.559285 0.828975i \(-0.311076\pi\)
−0.828975 + 0.559285i \(0.811076\pi\)
\(978\) 0 0
\(979\) 372.773i 0.380769i
\(980\) −323.053 551.284i −0.329645 0.562535i
\(981\) 0 0
\(982\) −109.746 109.746i −0.111758 0.111758i
\(983\) −917.630 + 917.630i −0.933499 + 0.933499i −0.997923 0.0644232i \(-0.979479\pi\)
0.0644232 + 0.997923i \(0.479479\pi\)
\(984\) 0 0
\(985\) 80.5263 308.490i 0.0817525 0.313188i
\(986\) 139.043 0.141017
\(987\) 0 0
\(988\) −39.2671 + 39.2671i −0.0397440 + 0.0397440i
\(989\) 2812.27i 2.84355i
\(990\) 0 0
\(991\) −1393.97 −1.40663 −0.703315 0.710878i \(-0.748298\pi\)
−0.703315 + 0.710878i \(0.748298\pi\)
\(992\) 908.961 + 908.961i 0.916292 + 0.916292i
\(993\) 0 0
\(994\) 186.690i 0.187817i
\(995\) 682.779 400.109i 0.686210 0.402119i
\(996\) 0 0
\(997\) −243.100 243.100i −0.243831 0.243831i 0.574602 0.818433i \(-0.305157\pi\)
−0.818433 + 0.574602i \(0.805157\pi\)
\(998\) 131.184 131.184i 0.131447 0.131447i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 135.3.g.b.82.5 yes 16
3.2 odd 2 inner 135.3.g.b.82.4 yes 16
5.2 odd 4 675.3.g.j.568.4 16
5.3 odd 4 inner 135.3.g.b.28.5 yes 16
5.4 even 2 675.3.g.j.82.4 16
9.2 odd 6 405.3.l.n.352.4 32
9.4 even 3 405.3.l.n.217.4 32
9.5 odd 6 405.3.l.n.217.5 32
9.7 even 3 405.3.l.n.352.5 32
15.2 even 4 675.3.g.j.568.5 16
15.8 even 4 inner 135.3.g.b.28.4 16
15.14 odd 2 675.3.g.j.82.5 16
45.13 odd 12 405.3.l.n.298.5 32
45.23 even 12 405.3.l.n.298.4 32
45.38 even 12 405.3.l.n.28.5 32
45.43 odd 12 405.3.l.n.28.4 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
135.3.g.b.28.4 16 15.8 even 4 inner
135.3.g.b.28.5 yes 16 5.3 odd 4 inner
135.3.g.b.82.4 yes 16 3.2 odd 2 inner
135.3.g.b.82.5 yes 16 1.1 even 1 trivial
405.3.l.n.28.4 32 45.43 odd 12
405.3.l.n.28.5 32 45.38 even 12
405.3.l.n.217.4 32 9.4 even 3
405.3.l.n.217.5 32 9.5 odd 6
405.3.l.n.298.4 32 45.23 even 12
405.3.l.n.298.5 32 45.13 odd 12
405.3.l.n.352.4 32 9.2 odd 6
405.3.l.n.352.5 32 9.7 even 3
675.3.g.j.82.4 16 5.4 even 2
675.3.g.j.82.5 16 15.14 odd 2
675.3.g.j.568.4 16 5.2 odd 4
675.3.g.j.568.5 16 15.2 even 4