Properties

Label 135.3.l.a.37.10
Level $135$
Weight $3$
Character 135.37
Analytic conductor $3.678$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [135,3,Mod(37,135)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(135, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([4, 3]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("135.37");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 135 = 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 135.l (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.67848356886\)
Analytic rank: \(0\)
Dimension: \(40\)
Relative dimension: \(10\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 37.10
Character \(\chi\) \(=\) 135.37
Dual form 135.3.l.a.73.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.930497 - 3.47266i) q^{2} +(-7.72947 - 4.46261i) q^{4} +(-4.99913 + 0.0933744i) q^{5} +(1.28323 - 4.78910i) q^{7} +(-12.5207 + 12.5207i) q^{8} +(-4.32742 + 17.4472i) q^{10} +(-1.37764 - 2.38615i) q^{11} +(2.45318 + 9.15539i) q^{13} +(-15.4369 - 8.91249i) q^{14} +(13.9793 + 24.2129i) q^{16} +(-9.17504 - 9.17504i) q^{17} -32.1912i q^{19} +(39.0573 + 21.5874i) q^{20} +(-9.56819 + 2.56379i) q^{22} +(-0.179412 - 0.669573i) q^{23} +(24.9826 - 0.933581i) q^{25} +34.0763 q^{26} +(-31.2906 + 31.2906i) q^{28} +(30.1349 - 17.3984i) q^{29} +(12.8482 - 22.2537i) q^{31} +(28.6765 - 7.68384i) q^{32} +(-40.3992 + 23.3245i) q^{34} +(-5.96788 + 24.0611i) q^{35} +(-13.0331 - 13.0331i) q^{37} +(-111.789 - 29.9538i) q^{38} +(61.4236 - 63.7618i) q^{40} +(-20.2139 + 35.0116i) q^{41} +(3.68527 + 0.987466i) q^{43} +24.5915i q^{44} -2.49214 q^{46} +(-0.993231 + 3.70679i) q^{47} +(21.1465 + 12.2089i) q^{49} +(20.0042 - 87.6247i) q^{50} +(21.8952 - 81.7139i) q^{52} +(31.2240 - 31.2240i) q^{53} +(7.10982 + 11.8000i) q^{55} +(43.8959 + 76.0300i) q^{56} +(-32.3783 - 120.837i) q^{58} +(36.8611 + 21.2818i) q^{59} +(-6.56994 - 11.3795i) q^{61} +(-65.3243 - 65.3243i) q^{62} +5.10100i q^{64} +(-13.1186 - 45.5399i) q^{65} +(-44.9977 + 12.0571i) q^{67} +(29.9735 + 111.863i) q^{68} +(78.0031 + 43.1133i) q^{70} +114.062 q^{71} +(-18.7982 + 18.7982i) q^{73} +(-57.3867 + 33.1322i) q^{74} +(-143.657 + 248.821i) q^{76} +(-13.1953 + 3.53568i) q^{77} +(-18.3057 + 10.5688i) q^{79} +(-72.1453 - 119.738i) q^{80} +(102.774 + 102.774i) q^{82} +(14.7688 + 3.95730i) q^{83} +(46.7239 + 45.0105i) q^{85} +(6.85828 - 11.8789i) q^{86} +(47.1254 + 12.6272i) q^{88} +92.4405i q^{89} +46.9941 q^{91} +(-1.60129 + 5.97609i) q^{92} +(11.9482 + 6.89832i) q^{94} +(3.00583 + 160.928i) q^{95} +(-40.7091 + 151.928i) q^{97} +(62.0742 - 62.0742i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q + 2 q^{2} + 2 q^{5} - 2 q^{7} + 24 q^{8} - 8 q^{10} - 8 q^{11} - 2 q^{13} + 28 q^{16} - 28 q^{17} + 114 q^{20} + 14 q^{22} - 82 q^{23} - 8 q^{25} + 112 q^{26} - 88 q^{28} - 4 q^{31} + 14 q^{32} - 352 q^{35}+ \cdots + 1876 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/135\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(82\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.930497 3.47266i 0.465249 1.73633i −0.190815 0.981626i \(-0.561113\pi\)
0.656063 0.754706i \(-0.272220\pi\)
\(3\) 0 0
\(4\) −7.72947 4.46261i −1.93237 1.11565i
\(5\) −4.99913 + 0.0933744i −0.999826 + 0.0186749i
\(6\) 0 0
\(7\) 1.28323 4.78910i 0.183319 0.684157i −0.811665 0.584123i \(-0.801438\pi\)
0.994984 0.100033i \(-0.0318950\pi\)
\(8\) −12.5207 + 12.5207i −1.56509 + 1.56509i
\(9\) 0 0
\(10\) −4.32742 + 17.4472i −0.432742 + 1.74472i
\(11\) −1.37764 2.38615i −0.125240 0.216923i 0.796587 0.604525i \(-0.206637\pi\)
−0.921827 + 0.387602i \(0.873304\pi\)
\(12\) 0 0
\(13\) 2.45318 + 9.15539i 0.188706 + 0.704261i 0.993807 + 0.111123i \(0.0354446\pi\)
−0.805101 + 0.593138i \(0.797889\pi\)
\(14\) −15.4369 8.91249i −1.10263 0.636606i
\(15\) 0 0
\(16\) 13.9793 + 24.2129i 0.873708 + 1.51331i
\(17\) −9.17504 9.17504i −0.539708 0.539708i 0.383735 0.923443i \(-0.374638\pi\)
−0.923443 + 0.383735i \(0.874638\pi\)
\(18\) 0 0
\(19\) 32.1912i 1.69427i −0.531375 0.847137i \(-0.678324\pi\)
0.531375 0.847137i \(-0.321676\pi\)
\(20\) 39.0573 + 21.5874i 1.95286 + 1.07937i
\(21\) 0 0
\(22\) −9.56819 + 2.56379i −0.434918 + 0.116536i
\(23\) −0.179412 0.669573i −0.00780050 0.0291119i 0.961916 0.273346i \(-0.0881303\pi\)
−0.969716 + 0.244234i \(0.921464\pi\)
\(24\) 0 0
\(25\) 24.9826 0.933581i 0.999302 0.0373432i
\(26\) 34.0763 1.31063
\(27\) 0 0
\(28\) −31.2906 + 31.2906i −1.11752 + 1.11752i
\(29\) 30.1349 17.3984i 1.03913 0.599944i 0.119546 0.992829i \(-0.461856\pi\)
0.919588 + 0.392884i \(0.128523\pi\)
\(30\) 0 0
\(31\) 12.8482 22.2537i 0.414457 0.717860i −0.580914 0.813965i \(-0.697305\pi\)
0.995371 + 0.0961042i \(0.0306382\pi\)
\(32\) 28.6765 7.68384i 0.896140 0.240120i
\(33\) 0 0
\(34\) −40.3992 + 23.3245i −1.18821 + 0.686014i
\(35\) −5.96788 + 24.0611i −0.170511 + 0.687461i
\(36\) 0 0
\(37\) −13.0331 13.0331i −0.352245 0.352245i 0.508699 0.860944i \(-0.330127\pi\)
−0.860944 + 0.508699i \(0.830127\pi\)
\(38\) −111.789 29.9538i −2.94182 0.788259i
\(39\) 0 0
\(40\) 61.4236 63.7618i 1.53559 1.59405i
\(41\) −20.2139 + 35.0116i −0.493023 + 0.853941i −0.999968 0.00803768i \(-0.997442\pi\)
0.506945 + 0.861979i \(0.330775\pi\)
\(42\) 0 0
\(43\) 3.68527 + 0.987466i 0.0857040 + 0.0229643i 0.301416 0.953493i \(-0.402541\pi\)
−0.215712 + 0.976457i \(0.569207\pi\)
\(44\) 24.5915i 0.558899i
\(45\) 0 0
\(46\) −2.49214 −0.0541770
\(47\) −0.993231 + 3.70679i −0.0211326 + 0.0788679i −0.975687 0.219169i \(-0.929665\pi\)
0.954554 + 0.298037i \(0.0963320\pi\)
\(48\) 0 0
\(49\) 21.1465 + 12.2089i 0.431561 + 0.249162i
\(50\) 20.0042 87.6247i 0.400084 1.75249i
\(51\) 0 0
\(52\) 21.8952 81.7139i 0.421061 1.57142i
\(53\) 31.2240 31.2240i 0.589132 0.589132i −0.348265 0.937396i \(-0.613229\pi\)
0.937396 + 0.348265i \(0.113229\pi\)
\(54\) 0 0
\(55\) 7.10982 + 11.8000i 0.129269 + 0.214546i
\(56\) 43.8959 + 76.0300i 0.783856 + 1.35768i
\(57\) 0 0
\(58\) −32.3783 120.837i −0.558247 2.08340i
\(59\) 36.8611 + 21.2818i 0.624765 + 0.360708i 0.778722 0.627369i \(-0.215868\pi\)
−0.153957 + 0.988078i \(0.549202\pi\)
\(60\) 0 0
\(61\) −6.56994 11.3795i −0.107704 0.186549i 0.807136 0.590366i \(-0.201017\pi\)
−0.914840 + 0.403817i \(0.867683\pi\)
\(62\) −65.3243 65.3243i −1.05362 1.05362i
\(63\) 0 0
\(64\) 5.10100i 0.0797032i
\(65\) −13.1186 45.5399i −0.201825 0.700614i
\(66\) 0 0
\(67\) −44.9977 + 12.0571i −0.671607 + 0.179957i −0.578479 0.815697i \(-0.696353\pi\)
−0.0931285 + 0.995654i \(0.529687\pi\)
\(68\) 29.9735 + 111.863i 0.440787 + 1.64504i
\(69\) 0 0
\(70\) 78.0031 + 43.1133i 1.11433 + 0.615904i
\(71\) 114.062 1.60651 0.803254 0.595637i \(-0.203100\pi\)
0.803254 + 0.595637i \(0.203100\pi\)
\(72\) 0 0
\(73\) −18.7982 + 18.7982i −0.257510 + 0.257510i −0.824041 0.566531i \(-0.808285\pi\)
0.566531 + 0.824041i \(0.308285\pi\)
\(74\) −57.3867 + 33.1322i −0.775496 + 0.447733i
\(75\) 0 0
\(76\) −143.657 + 248.821i −1.89022 + 3.27396i
\(77\) −13.1953 + 3.53568i −0.171368 + 0.0459179i
\(78\) 0 0
\(79\) −18.3057 + 10.5688i −0.231717 + 0.133782i −0.611364 0.791350i \(-0.709379\pi\)
0.379647 + 0.925132i \(0.376046\pi\)
\(80\) −72.1453 119.738i −0.901816 1.49673i
\(81\) 0 0
\(82\) 102.774 + 102.774i 1.25335 + 1.25335i
\(83\) 14.7688 + 3.95730i 0.177938 + 0.0476783i 0.346688 0.937981i \(-0.387306\pi\)
−0.168750 + 0.985659i \(0.553973\pi\)
\(84\) 0 0
\(85\) 46.7239 + 45.0105i 0.549693 + 0.529535i
\(86\) 6.85828 11.8789i 0.0797474 0.138127i
\(87\) 0 0
\(88\) 47.1254 + 12.6272i 0.535516 + 0.143491i
\(89\) 92.4405i 1.03866i 0.854575 + 0.519329i \(0.173818\pi\)
−0.854575 + 0.519329i \(0.826182\pi\)
\(90\) 0 0
\(91\) 46.9941 0.516418
\(92\) −1.60129 + 5.97609i −0.0174053 + 0.0649574i
\(93\) 0 0
\(94\) 11.9482 + 6.89832i 0.127109 + 0.0733864i
\(95\) 3.00583 + 160.928i 0.0316404 + 1.69398i
\(96\) 0 0
\(97\) −40.7091 + 151.928i −0.419681 + 1.56627i 0.355590 + 0.934642i \(0.384280\pi\)
−0.775271 + 0.631629i \(0.782387\pi\)
\(98\) 62.0742 62.0742i 0.633411 0.633411i
\(99\) 0 0
\(100\) −197.268 104.271i −1.97268 1.04271i
\(101\) −41.2983 71.5307i −0.408894 0.708225i 0.585872 0.810404i \(-0.300752\pi\)
−0.994766 + 0.102178i \(0.967419\pi\)
\(102\) 0 0
\(103\) −12.9609 48.3706i −0.125834 0.469617i 0.874034 0.485864i \(-0.161495\pi\)
−0.999868 + 0.0162466i \(0.994828\pi\)
\(104\) −145.348 83.9166i −1.39757 0.806890i
\(105\) 0 0
\(106\) −79.3765 137.484i −0.748835 1.29702i
\(107\) 57.4669 + 57.4669i 0.537074 + 0.537074i 0.922668 0.385595i \(-0.126004\pi\)
−0.385595 + 0.922668i \(0.626004\pi\)
\(108\) 0 0
\(109\) 145.852i 1.33809i −0.743220 0.669047i \(-0.766702\pi\)
0.743220 0.669047i \(-0.233298\pi\)
\(110\) 47.5932 13.7101i 0.432665 0.124638i
\(111\) 0 0
\(112\) 133.897 35.8775i 1.19551 0.320335i
\(113\) −14.0319 52.3679i −0.124176 0.463432i 0.875633 0.482978i \(-0.160445\pi\)
−0.999809 + 0.0195453i \(0.993778\pi\)
\(114\) 0 0
\(115\) 0.959422 + 3.33053i 0.00834280 + 0.0289611i
\(116\) −310.569 −2.67732
\(117\) 0 0
\(118\) 108.204 108.204i 0.916980 0.916980i
\(119\) −55.7139 + 32.1664i −0.468184 + 0.270306i
\(120\) 0 0
\(121\) 56.7042 98.2145i 0.468630 0.811690i
\(122\) −45.6304 + 12.2266i −0.374019 + 0.100218i
\(123\) 0 0
\(124\) −198.619 + 114.673i −1.60177 + 0.924780i
\(125\) −124.804 + 6.99982i −0.998431 + 0.0559986i
\(126\) 0 0
\(127\) 50.4054 + 50.4054i 0.396893 + 0.396893i 0.877136 0.480243i \(-0.159451\pi\)
−0.480243 + 0.877136i \(0.659451\pi\)
\(128\) 132.420 + 35.4818i 1.03453 + 0.277202i
\(129\) 0 0
\(130\) −170.352 + 3.18185i −1.31040 + 0.0244758i
\(131\) 89.6936 155.354i 0.684684 1.18591i −0.288852 0.957374i \(-0.593274\pi\)
0.973536 0.228534i \(-0.0733931\pi\)
\(132\) 0 0
\(133\) −154.167 41.3089i −1.15915 0.310593i
\(134\) 167.481i 1.24986i
\(135\) 0 0
\(136\) 229.756 1.68938
\(137\) 36.5154 136.277i 0.266536 0.994725i −0.694768 0.719234i \(-0.744493\pi\)
0.961304 0.275491i \(-0.0888404\pi\)
\(138\) 0 0
\(139\) 236.063 + 136.291i 1.69829 + 0.980510i 0.947381 + 0.320108i \(0.103719\pi\)
0.750912 + 0.660402i \(0.229614\pi\)
\(140\) 153.504 159.347i 1.09646 1.13820i
\(141\) 0 0
\(142\) 106.134 396.099i 0.747426 2.78943i
\(143\) 18.4665 18.4665i 0.129137 0.129137i
\(144\) 0 0
\(145\) −149.024 + 89.7906i −1.02775 + 0.619245i
\(146\) 47.7882 + 82.7716i 0.327317 + 0.566929i
\(147\) 0 0
\(148\) 42.5772 + 158.900i 0.287684 + 1.07365i
\(149\) −174.004 100.461i −1.16781 0.674235i −0.214646 0.976692i \(-0.568860\pi\)
−0.953163 + 0.302457i \(0.902193\pi\)
\(150\) 0 0
\(151\) 58.6560 + 101.595i 0.388450 + 0.672816i 0.992241 0.124327i \(-0.0396771\pi\)
−0.603791 + 0.797143i \(0.706344\pi\)
\(152\) 403.057 + 403.057i 2.65169 + 2.65169i
\(153\) 0 0
\(154\) 49.1129i 0.318915i
\(155\) −62.1517 + 112.449i −0.400979 + 0.725475i
\(156\) 0 0
\(157\) −205.058 + 54.9450i −1.30610 + 0.349968i −0.843753 0.536731i \(-0.819659\pi\)
−0.462346 + 0.886700i \(0.652992\pi\)
\(158\) 19.6684 + 73.4036i 0.124484 + 0.464580i
\(159\) 0 0
\(160\) −142.640 + 41.0902i −0.891500 + 0.256814i
\(161\) −3.43688 −0.0213471
\(162\) 0 0
\(163\) 61.1545 61.1545i 0.375181 0.375181i −0.494179 0.869360i \(-0.664531\pi\)
0.869360 + 0.494179i \(0.164531\pi\)
\(164\) 312.486 180.414i 1.90540 1.10008i
\(165\) 0 0
\(166\) 27.4847 47.6049i 0.165571 0.286777i
\(167\) −234.945 + 62.9533i −1.40686 + 0.376966i −0.880802 0.473486i \(-0.842996\pi\)
−0.526054 + 0.850451i \(0.676329\pi\)
\(168\) 0 0
\(169\) 68.5552 39.5803i 0.405652 0.234203i
\(170\) 199.783 120.374i 1.17519 0.708084i
\(171\) 0 0
\(172\) −24.0785 24.0785i −0.139991 0.139991i
\(173\) 16.3284 + 4.37517i 0.0943835 + 0.0252900i 0.305702 0.952127i \(-0.401109\pi\)
−0.211318 + 0.977417i \(0.567776\pi\)
\(174\) 0 0
\(175\) 27.5875 120.842i 0.157643 0.690525i
\(176\) 38.5171 66.7135i 0.218847 0.379054i
\(177\) 0 0
\(178\) 321.015 + 86.0157i 1.80345 + 0.483234i
\(179\) 274.512i 1.53359i −0.641895 0.766793i \(-0.721851\pi\)
0.641895 0.766793i \(-0.278149\pi\)
\(180\) 0 0
\(181\) −261.649 −1.44557 −0.722787 0.691070i \(-0.757139\pi\)
−0.722787 + 0.691070i \(0.757139\pi\)
\(182\) 43.7279 163.195i 0.240263 0.896674i
\(183\) 0 0
\(184\) 10.6299 + 6.13718i 0.0577712 + 0.0333542i
\(185\) 66.3709 + 63.9370i 0.358762 + 0.345606i
\(186\) 0 0
\(187\) −9.25307 + 34.5329i −0.0494817 + 0.184668i
\(188\) 24.2191 24.2191i 0.128825 0.128825i
\(189\) 0 0
\(190\) 561.646 + 139.305i 2.95603 + 0.733183i
\(191\) 89.7939 + 155.528i 0.470125 + 0.814280i 0.999416 0.0341597i \(-0.0108755\pi\)
−0.529291 + 0.848440i \(0.677542\pi\)
\(192\) 0 0
\(193\) 6.95596 + 25.9600i 0.0360412 + 0.134508i 0.981602 0.190937i \(-0.0611526\pi\)
−0.945561 + 0.325445i \(0.894486\pi\)
\(194\) 489.716 + 282.738i 2.52431 + 1.45741i
\(195\) 0 0
\(196\) −108.967 188.737i −0.555956 0.962944i
\(197\) −118.588 118.588i −0.601967 0.601967i 0.338867 0.940834i \(-0.389956\pi\)
−0.940834 + 0.338867i \(0.889956\pi\)
\(198\) 0 0
\(199\) 23.9129i 0.120166i −0.998193 0.0600828i \(-0.980864\pi\)
0.998193 0.0600828i \(-0.0191365\pi\)
\(200\) −301.111 + 324.489i −1.50555 + 1.62244i
\(201\) 0 0
\(202\) −286.830 + 76.8559i −1.41995 + 0.380475i
\(203\) −44.6524 166.645i −0.219963 0.820912i
\(204\) 0 0
\(205\) 97.7829 176.915i 0.476990 0.862999i
\(206\) −180.035 −0.873956
\(207\) 0 0
\(208\) −187.385 + 187.385i −0.900889 + 0.900889i
\(209\) −76.8130 + 44.3480i −0.367526 + 0.212191i
\(210\) 0 0
\(211\) 68.1081 117.967i 0.322787 0.559084i −0.658275 0.752778i \(-0.728713\pi\)
0.981062 + 0.193694i \(0.0620468\pi\)
\(212\) −380.685 + 102.004i −1.79568 + 0.481152i
\(213\) 0 0
\(214\) 253.036 146.090i 1.18241 0.682665i
\(215\) −18.5154 4.59236i −0.0861180 0.0213598i
\(216\) 0 0
\(217\) −90.0878 90.0878i −0.415151 0.415151i
\(218\) −506.496 135.715i −2.32338 0.622547i
\(219\) 0 0
\(220\) −2.29622 122.936i −0.0104374 0.558801i
\(221\) 61.4931 106.509i 0.278249 0.481942i
\(222\) 0 0
\(223\) −387.566 103.848i −1.73796 0.465686i −0.755970 0.654606i \(-0.772834\pi\)
−0.981992 + 0.188921i \(0.939501\pi\)
\(224\) 147.195i 0.657119i
\(225\) 0 0
\(226\) −194.913 −0.862445
\(227\) −48.9929 + 182.844i −0.215828 + 0.805480i 0.770046 + 0.637988i \(0.220233\pi\)
−0.985874 + 0.167491i \(0.946433\pi\)
\(228\) 0 0
\(229\) −128.197 74.0143i −0.559810 0.323207i 0.193259 0.981148i \(-0.438094\pi\)
−0.753069 + 0.657941i \(0.771428\pi\)
\(230\) 12.4585 0.232702i 0.0541676 0.00101175i
\(231\) 0 0
\(232\) −159.470 + 595.151i −0.687372 + 2.56531i
\(233\) −191.869 + 191.869i −0.823473 + 0.823473i −0.986604 0.163131i \(-0.947841\pi\)
0.163131 + 0.986604i \(0.447841\pi\)
\(234\) 0 0
\(235\) 4.61917 18.6235i 0.0196561 0.0792488i
\(236\) −189.945 328.994i −0.804850 1.39404i
\(237\) 0 0
\(238\) 59.8616 + 223.406i 0.251519 + 0.938682i
\(239\) 113.709 + 65.6499i 0.475770 + 0.274686i 0.718652 0.695370i \(-0.244760\pi\)
−0.242882 + 0.970056i \(0.578093\pi\)
\(240\) 0 0
\(241\) 106.787 + 184.961i 0.443101 + 0.767473i 0.997918 0.0644993i \(-0.0205450\pi\)
−0.554817 + 0.831972i \(0.687212\pi\)
\(242\) −288.303 288.303i −1.19133 1.19133i
\(243\) 0 0
\(244\) 117.276i 0.480640i
\(245\) −106.854 59.0594i −0.436139 0.241059i
\(246\) 0 0
\(247\) 294.723 78.9708i 1.19321 0.319720i
\(248\) 117.764 + 439.501i 0.474854 + 1.77218i
\(249\) 0 0
\(250\) −91.8216 + 439.915i −0.367287 + 1.75966i
\(251\) −48.4611 −0.193072 −0.0965360 0.995329i \(-0.530776\pi\)
−0.0965360 + 0.995329i \(0.530776\pi\)
\(252\) 0 0
\(253\) −1.35054 + 1.35054i −0.00533809 + 0.00533809i
\(254\) 221.943 128.139i 0.873792 0.504484i
\(255\) 0 0
\(256\) 236.231 409.164i 0.922777 1.59830i
\(257\) 450.204 120.632i 1.75177 0.469385i 0.766766 0.641927i \(-0.221865\pi\)
0.985002 + 0.172542i \(0.0551979\pi\)
\(258\) 0 0
\(259\) −79.1411 + 45.6921i −0.305564 + 0.176418i
\(260\) −101.827 + 410.543i −0.391641 + 1.57901i
\(261\) 0 0
\(262\) −456.032 456.032i −1.74058 1.74058i
\(263\) 104.698 + 28.0536i 0.398090 + 0.106668i 0.452309 0.891861i \(-0.350600\pi\)
−0.0542194 + 0.998529i \(0.517267\pi\)
\(264\) 0 0
\(265\) −153.177 + 159.008i −0.578027 + 0.600031i
\(266\) −286.904 + 496.932i −1.07859 + 1.86816i
\(267\) 0 0
\(268\) 401.614 + 107.612i 1.49856 + 0.401538i
\(269\) 271.965i 1.01102i −0.862821 0.505510i \(-0.831304\pi\)
0.862821 0.505510i \(-0.168696\pi\)
\(270\) 0 0
\(271\) 283.330 1.04550 0.522749 0.852487i \(-0.324907\pi\)
0.522749 + 0.852487i \(0.324907\pi\)
\(272\) 93.8935 350.415i 0.345197 1.28829i
\(273\) 0 0
\(274\) −439.268 253.611i −1.60317 0.925589i
\(275\) −36.6447 58.3260i −0.133254 0.212094i
\(276\) 0 0
\(277\) −38.5154 + 143.741i −0.139045 + 0.518922i 0.860904 + 0.508768i \(0.169899\pi\)
−0.999948 + 0.0101539i \(0.996768\pi\)
\(278\) 692.948 692.948i 2.49262 2.49262i
\(279\) 0 0
\(280\) −226.541 375.985i −0.809074 1.34280i
\(281\) 126.241 + 218.657i 0.449258 + 0.778137i 0.998338 0.0576326i \(-0.0183552\pi\)
−0.549080 + 0.835770i \(0.685022\pi\)
\(282\) 0 0
\(283\) 124.137 + 463.286i 0.438647 + 1.63705i 0.732184 + 0.681107i \(0.238501\pi\)
−0.293537 + 0.955948i \(0.594832\pi\)
\(284\) −881.639 509.015i −3.10436 1.79230i
\(285\) 0 0
\(286\) −46.9450 81.3111i −0.164143 0.284304i
\(287\) 141.735 + 141.735i 0.493849 + 0.493849i
\(288\) 0 0
\(289\) 120.637i 0.417430i
\(290\) 173.146 + 601.059i 0.597056 + 2.07262i
\(291\) 0 0
\(292\) 229.189 61.4111i 0.784895 0.210312i
\(293\) 52.5299 + 196.044i 0.179283 + 0.669093i 0.995782 + 0.0917468i \(0.0292450\pi\)
−0.816499 + 0.577346i \(0.804088\pi\)
\(294\) 0 0
\(295\) −186.261 102.948i −0.631392 0.348978i
\(296\) 326.367 1.10259
\(297\) 0 0
\(298\) −510.777 + 510.777i −1.71402 + 1.71402i
\(299\) 5.69008 3.28517i 0.0190304 0.0109872i
\(300\) 0 0
\(301\) 9.45814 16.3820i 0.0314224 0.0544252i
\(302\) 407.385 109.159i 1.34896 0.361452i
\(303\) 0 0
\(304\) 779.443 450.011i 2.56396 1.48030i
\(305\) 33.9065 + 56.2739i 0.111169 + 0.184505i
\(306\) 0 0
\(307\) 364.680 + 364.680i 1.18788 + 1.18788i 0.977652 + 0.210232i \(0.0674220\pi\)
0.210232 + 0.977652i \(0.432578\pi\)
\(308\) 117.771 + 31.5567i 0.382374 + 0.102457i
\(309\) 0 0
\(310\) 332.664 + 320.465i 1.07311 + 1.03376i
\(311\) 102.480 177.501i 0.329518 0.570743i −0.652898 0.757446i \(-0.726447\pi\)
0.982416 + 0.186703i \(0.0597803\pi\)
\(312\) 0 0
\(313\) 343.429 + 92.0214i 1.09722 + 0.293998i 0.761631 0.648011i \(-0.224399\pi\)
0.335586 + 0.942010i \(0.391066\pi\)
\(314\) 763.222i 2.43064i
\(315\) 0 0
\(316\) 188.657 0.597017
\(317\) 6.68768 24.9588i 0.0210968 0.0787343i −0.954575 0.297971i \(-0.903690\pi\)
0.975672 + 0.219237i \(0.0703567\pi\)
\(318\) 0 0
\(319\) −83.0303 47.9375i −0.260283 0.150274i
\(320\) −0.476303 25.5006i −0.00148845 0.0796893i
\(321\) 0 0
\(322\) −3.19801 + 11.9351i −0.00993169 + 0.0370656i
\(323\) −295.356 + 295.356i −0.914414 + 0.914414i
\(324\) 0 0
\(325\) 69.8340 + 226.435i 0.214874 + 0.696723i
\(326\) −155.465 269.273i −0.476886 0.825992i
\(327\) 0 0
\(328\) −185.277 691.464i −0.564869 2.10812i
\(329\) 16.4776 + 9.51337i 0.0500840 + 0.0289160i
\(330\) 0 0
\(331\) 96.8582 + 167.763i 0.292623 + 0.506838i 0.974429 0.224695i \(-0.0721386\pi\)
−0.681806 + 0.731533i \(0.738805\pi\)
\(332\) −96.4953 96.4953i −0.290649 0.290649i
\(333\) 0 0
\(334\) 874.462i 2.61815i
\(335\) 223.823 64.4766i 0.668129 0.192467i
\(336\) 0 0
\(337\) 88.6729 23.7598i 0.263124 0.0705039i −0.124845 0.992176i \(-0.539843\pi\)
0.387969 + 0.921672i \(0.373177\pi\)
\(338\) −73.6588 274.898i −0.217925 0.813309i
\(339\) 0 0
\(340\) −160.287 556.418i −0.471431 1.63652i
\(341\) −70.8008 −0.207627
\(342\) 0 0
\(343\) 257.393 257.393i 0.750417 0.750417i
\(344\) −58.5061 + 33.7785i −0.170076 + 0.0981933i
\(345\) 0 0
\(346\) 30.3870 52.6318i 0.0878236 0.152115i
\(347\) −5.84253 + 1.56550i −0.0168372 + 0.00451153i −0.267228 0.963633i \(-0.586108\pi\)
0.250391 + 0.968145i \(0.419441\pi\)
\(348\) 0 0
\(349\) 67.8704 39.1850i 0.194471 0.112278i −0.399603 0.916688i \(-0.630852\pi\)
0.594074 + 0.804410i \(0.297519\pi\)
\(350\) −393.973 208.245i −1.12564 0.594986i
\(351\) 0 0
\(352\) −57.8408 57.8408i −0.164320 0.164320i
\(353\) −38.2322 10.2443i −0.108307 0.0290207i 0.204259 0.978917i \(-0.434522\pi\)
−0.312565 + 0.949896i \(0.601188\pi\)
\(354\) 0 0
\(355\) −570.211 + 10.6505i −1.60623 + 0.0300013i
\(356\) 412.526 714.516i 1.15878 2.00707i
\(357\) 0 0
\(358\) −953.287 255.433i −2.66281 0.713499i
\(359\) 116.601i 0.324795i 0.986725 + 0.162398i \(0.0519227\pi\)
−0.986725 + 0.162398i \(0.948077\pi\)
\(360\) 0 0
\(361\) −675.274 −1.87056
\(362\) −243.464 + 908.619i −0.672552 + 2.51000i
\(363\) 0 0
\(364\) −363.239 209.716i −0.997910 0.576144i
\(365\) 92.2195 95.7300i 0.252656 0.262274i
\(366\) 0 0
\(367\) 112.479 419.779i 0.306483 1.14381i −0.625177 0.780483i \(-0.714973\pi\)
0.931661 0.363329i \(-0.118360\pi\)
\(368\) 13.7043 13.7043i 0.0372398 0.0372398i
\(369\) 0 0
\(370\) 283.790 170.991i 0.766999 0.462137i
\(371\) −109.467 189.602i −0.295059 0.511058i
\(372\) 0 0
\(373\) −167.428 624.849i −0.448868 1.67520i −0.705516 0.708694i \(-0.749285\pi\)
0.256647 0.966505i \(-0.417382\pi\)
\(374\) 111.311 + 64.2656i 0.297624 + 0.171833i
\(375\) 0 0
\(376\) −33.9757 58.8477i −0.0903610 0.156510i
\(377\) 233.215 + 233.215i 0.618608 + 0.618608i
\(378\) 0 0
\(379\) 297.836i 0.785846i −0.919571 0.392923i \(-0.871464\pi\)
0.919571 0.392923i \(-0.128536\pi\)
\(380\) 694.925 1257.30i 1.82875 3.30869i
\(381\) 0 0
\(382\) 623.648 167.106i 1.63259 0.437450i
\(383\) 111.047 + 414.434i 0.289941 + 1.08207i 0.945153 + 0.326629i \(0.105913\pi\)
−0.655212 + 0.755445i \(0.727421\pi\)
\(384\) 0 0
\(385\) 65.6351 18.9074i 0.170481 0.0491102i
\(386\) 96.6228 0.250318
\(387\) 0 0
\(388\) 992.656 992.656i 2.55839 2.55839i
\(389\) 197.682 114.132i 0.508181 0.293398i −0.223905 0.974611i \(-0.571880\pi\)
0.732086 + 0.681213i \(0.238547\pi\)
\(390\) 0 0
\(391\) −4.49725 + 7.78947i −0.0115019 + 0.0199219i
\(392\) −417.634 + 111.905i −1.06539 + 0.285471i
\(393\) 0 0
\(394\) −522.160 + 301.469i −1.32528 + 0.765151i
\(395\) 90.5255 54.5440i 0.229178 0.138086i
\(396\) 0 0
\(397\) 120.533 + 120.533i 0.303609 + 0.303609i 0.842424 0.538815i \(-0.181128\pi\)
−0.538815 + 0.842424i \(0.681128\pi\)
\(398\) −83.0416 22.2509i −0.208647 0.0559069i
\(399\) 0 0
\(400\) 371.844 + 591.850i 0.929610 + 1.47962i
\(401\) −226.669 + 392.602i −0.565259 + 0.979057i 0.431766 + 0.901985i \(0.357890\pi\)
−0.997026 + 0.0770720i \(0.975443\pi\)
\(402\) 0 0
\(403\) 235.260 + 63.0377i 0.583772 + 0.156421i
\(404\) 737.193i 1.82473i
\(405\) 0 0
\(406\) −620.251 −1.52771
\(407\) −13.1439 + 49.0538i −0.0322946 + 0.120525i
\(408\) 0 0
\(409\) 427.158 + 246.620i 1.04440 + 0.602982i 0.921075 0.389385i \(-0.127312\pi\)
0.123320 + 0.992367i \(0.460646\pi\)
\(410\) −523.379 504.186i −1.27653 1.22972i
\(411\) 0 0
\(412\) −115.679 + 431.718i −0.280773 + 1.04786i
\(413\) 149.222 149.222i 0.361312 0.361312i
\(414\) 0 0
\(415\) −74.2008 18.4040i −0.178797 0.0443470i
\(416\) 140.697 + 243.695i 0.338214 + 0.585805i
\(417\) 0 0
\(418\) 82.5314 + 308.011i 0.197444 + 0.736870i
\(419\) 22.7963 + 13.1615i 0.0544066 + 0.0314116i 0.526957 0.849892i \(-0.323333\pi\)
−0.472550 + 0.881304i \(0.656666\pi\)
\(420\) 0 0
\(421\) 243.419 + 421.613i 0.578192 + 1.00146i 0.995687 + 0.0927780i \(0.0295747\pi\)
−0.417495 + 0.908679i \(0.637092\pi\)
\(422\) −346.284 346.284i −0.820579 0.820579i
\(423\) 0 0
\(424\) 781.894i 1.84409i
\(425\) −237.782 220.650i −0.559486 0.519177i
\(426\) 0 0
\(427\) −62.9281 + 16.8615i −0.147373 + 0.0394884i
\(428\) −187.736 700.641i −0.438636 1.63701i
\(429\) 0 0
\(430\) −33.1762 + 60.0244i −0.0771540 + 0.139592i
\(431\) −73.2818 −0.170027 −0.0850137 0.996380i \(-0.527093\pi\)
−0.0850137 + 0.996380i \(0.527093\pi\)
\(432\) 0 0
\(433\) 79.7731 79.7731i 0.184234 0.184234i −0.608964 0.793198i \(-0.708415\pi\)
0.793198 + 0.608964i \(0.208415\pi\)
\(434\) −396.671 + 229.018i −0.913989 + 0.527692i
\(435\) 0 0
\(436\) −650.882 + 1127.36i −1.49285 + 2.58569i
\(437\) −21.5544 + 5.77547i −0.0493235 + 0.0132162i
\(438\) 0 0
\(439\) −97.4363 + 56.2549i −0.221951 + 0.128143i −0.606853 0.794814i \(-0.707568\pi\)
0.384903 + 0.922957i \(0.374235\pi\)
\(440\) −236.765 58.7248i −0.538102 0.133465i
\(441\) 0 0
\(442\) −312.651 312.651i −0.707356 0.707356i
\(443\) 154.045 + 41.2762i 0.347731 + 0.0931742i 0.428457 0.903562i \(-0.359057\pi\)
−0.0807263 + 0.996736i \(0.525724\pi\)
\(444\) 0 0
\(445\) −8.63158 462.122i −0.0193968 1.03848i
\(446\) −721.258 + 1249.25i −1.61717 + 2.80102i
\(447\) 0 0
\(448\) 24.4292 + 6.54578i 0.0545295 + 0.0146111i
\(449\) 291.806i 0.649901i −0.945731 0.324951i \(-0.894652\pi\)
0.945731 0.324951i \(-0.105348\pi\)
\(450\) 0 0
\(451\) 111.390 0.246985
\(452\) −125.238 + 467.395i −0.277075 + 1.03406i
\(453\) 0 0
\(454\) 589.367 + 340.271i 1.29817 + 0.749497i
\(455\) −234.929 + 4.38804i −0.516328 + 0.00964405i
\(456\) 0 0
\(457\) 121.316 452.757i 0.265462 0.990716i −0.696506 0.717551i \(-0.745263\pi\)
0.961967 0.273165i \(-0.0880705\pi\)
\(458\) −376.313 + 376.313i −0.821645 + 0.821645i
\(459\) 0 0
\(460\) 7.44703 30.0247i 0.0161892 0.0652712i
\(461\) 248.770 + 430.882i 0.539631 + 0.934668i 0.998924 + 0.0463832i \(0.0147695\pi\)
−0.459293 + 0.888285i \(0.651897\pi\)
\(462\) 0 0
\(463\) 235.850 + 880.204i 0.509395 + 1.90109i 0.426391 + 0.904539i \(0.359785\pi\)
0.0830044 + 0.996549i \(0.473548\pi\)
\(464\) 842.531 + 486.435i 1.81580 + 1.04835i
\(465\) 0 0
\(466\) 487.764 + 844.831i 1.04670 + 1.81294i
\(467\) 204.884 + 204.884i 0.438724 + 0.438724i 0.891582 0.452859i \(-0.149596\pi\)
−0.452859 + 0.891582i \(0.649596\pi\)
\(468\) 0 0
\(469\) 230.970i 0.492474i
\(470\) −60.3749 33.3699i −0.128457 0.0709998i
\(471\) 0 0
\(472\) −727.991 + 195.065i −1.54235 + 0.413273i
\(473\) −2.72075 10.1540i −0.00575212 0.0214672i
\(474\) 0 0
\(475\) −30.0531 804.219i −0.0632697 1.69309i
\(476\) 574.185 1.20627
\(477\) 0 0
\(478\) 333.786 333.786i 0.698297 0.698297i
\(479\) 177.082 102.238i 0.369691 0.213441i −0.303632 0.952789i \(-0.598199\pi\)
0.673324 + 0.739348i \(0.264866\pi\)
\(480\) 0 0
\(481\) 87.3504 151.295i 0.181602 0.314543i
\(482\) 741.673 198.731i 1.53874 0.412304i
\(483\) 0 0
\(484\) −876.586 + 506.097i −1.81113 + 1.04566i
\(485\) 189.324 763.310i 0.390358 1.57384i
\(486\) 0 0
\(487\) −506.650 506.650i −1.04035 1.04035i −0.999151 0.0411985i \(-0.986882\pi\)
−0.0411985 0.999151i \(-0.513118\pi\)
\(488\) 224.740 + 60.2188i 0.460532 + 0.123399i
\(489\) 0 0
\(490\) −304.521 + 316.113i −0.621471 + 0.645129i
\(491\) 104.633 181.229i 0.213101 0.369102i −0.739582 0.673066i \(-0.764977\pi\)
0.952684 + 0.303964i \(0.0983102\pi\)
\(492\) 0 0
\(493\) −436.120 116.858i −0.884624 0.237034i
\(494\) 1096.96i 2.22056i
\(495\) 0 0
\(496\) 718.435 1.44846
\(497\) 146.368 546.254i 0.294504 1.09910i
\(498\) 0 0
\(499\) −287.007 165.704i −0.575165 0.332072i 0.184044 0.982918i \(-0.441081\pi\)
−0.759210 + 0.650846i \(0.774414\pi\)
\(500\) 995.905 + 502.846i 1.99181 + 1.00569i
\(501\) 0 0
\(502\) −45.0929 + 168.289i −0.0898265 + 0.335237i
\(503\) 278.209 278.209i 0.553100 0.553100i −0.374234 0.927334i \(-0.622094\pi\)
0.927334 + 0.374234i \(0.122094\pi\)
\(504\) 0 0
\(505\) 213.135 + 353.735i 0.422049 + 0.700466i
\(506\) 3.43329 + 5.94663i 0.00678515 + 0.0117522i
\(507\) 0 0
\(508\) −164.667 614.546i −0.324148 1.20974i
\(509\) −679.279 392.182i −1.33454 0.770495i −0.348546 0.937292i \(-0.613324\pi\)
−0.985991 + 0.166797i \(0.946658\pi\)
\(510\) 0 0
\(511\) 65.9040 + 114.149i 0.128971 + 0.223384i
\(512\) −813.324 813.324i −1.58852 1.58852i
\(513\) 0 0
\(514\) 1675.66i 3.26003i
\(515\) 69.3096 + 240.601i 0.134582 + 0.467186i
\(516\) 0 0
\(517\) 10.2133 2.73664i 0.0197549 0.00529330i
\(518\) 85.0329 + 317.347i 0.164156 + 0.612639i
\(519\) 0 0
\(520\) 734.448 + 405.938i 1.41240 + 0.780650i
\(521\) −763.749 −1.46593 −0.732964 0.680267i \(-0.761864\pi\)
−0.732964 + 0.680267i \(0.761864\pi\)
\(522\) 0 0
\(523\) −284.699 + 284.699i −0.544358 + 0.544358i −0.924803 0.380445i \(-0.875771\pi\)
0.380445 + 0.924803i \(0.375771\pi\)
\(524\) −1386.57 + 800.535i −2.64612 + 1.52774i
\(525\) 0 0
\(526\) 194.842 337.476i 0.370421 0.641589i
\(527\) −322.061 + 86.2959i −0.611121 + 0.163749i
\(528\) 0 0
\(529\) 457.711 264.260i 0.865239 0.499546i
\(530\) 409.651 + 679.889i 0.772926 + 1.28281i
\(531\) 0 0
\(532\) 1007.28 + 1007.28i 1.89339 + 1.89339i
\(533\) −370.133 99.1769i −0.694434 0.186073i
\(534\) 0 0
\(535\) −292.650 281.918i −0.547010 0.526950i
\(536\) 412.440 714.367i 0.769478 1.33277i
\(537\) 0 0
\(538\) −944.442 253.062i −1.75547 0.470376i
\(539\) 67.2782i 0.124820i
\(540\) 0 0
\(541\) 120.576 0.222876 0.111438 0.993771i \(-0.464454\pi\)
0.111438 + 0.993771i \(0.464454\pi\)
\(542\) 263.638 983.909i 0.486416 1.81533i
\(543\) 0 0
\(544\) −333.608 192.608i −0.613249 0.354060i
\(545\) 13.6189 + 729.134i 0.0249887 + 1.33786i
\(546\) 0 0
\(547\) 59.6213 222.510i 0.108997 0.406782i −0.889771 0.456407i \(-0.849136\pi\)
0.998768 + 0.0496252i \(0.0158027\pi\)
\(548\) −890.397 + 890.397i −1.62481 + 1.62481i
\(549\) 0 0
\(550\) −236.644 + 72.9827i −0.430262 + 0.132696i
\(551\) −560.075 970.078i −1.01647 1.76058i
\(552\) 0 0
\(553\) 27.1244 + 101.230i 0.0490496 + 0.183056i
\(554\) 463.327 + 267.502i 0.836330 + 0.482855i
\(555\) 0 0
\(556\) −1216.43 2106.91i −2.18782 3.78941i
\(557\) 664.417 + 664.417i 1.19285 + 1.19285i 0.976264 + 0.216586i \(0.0694922\pi\)
0.216586 + 0.976264i \(0.430508\pi\)
\(558\) 0 0
\(559\) 36.1626i 0.0646915i
\(560\) −666.017 + 191.859i −1.18932 + 0.342605i
\(561\) 0 0
\(562\) 876.788 234.935i 1.56012 0.418033i
\(563\) −71.6752 267.496i −0.127309 0.475125i 0.872602 0.488432i \(-0.162431\pi\)
−0.999911 + 0.0133066i \(0.995764\pi\)
\(564\) 0 0
\(565\) 75.0372 + 260.483i 0.132809 + 0.461033i
\(566\) 1724.35 3.04655
\(567\) 0 0
\(568\) −1428.14 + 1428.14i −2.51433 + 2.51433i
\(569\) −830.591 + 479.542i −1.45974 + 0.842780i −0.998998 0.0447548i \(-0.985749\pi\)
−0.460740 + 0.887535i \(0.652416\pi\)
\(570\) 0 0
\(571\) −222.371 + 385.158i −0.389442 + 0.674533i −0.992375 0.123259i \(-0.960665\pi\)
0.602933 + 0.797792i \(0.293999\pi\)
\(572\) −225.145 + 60.3275i −0.393611 + 0.105468i
\(573\) 0 0
\(574\) 624.080 360.313i 1.08725 0.627723i
\(575\) −5.10726 16.5602i −0.00888219 0.0288003i
\(576\) 0 0
\(577\) 670.378 + 670.378i 1.16183 + 1.16183i 0.984074 + 0.177761i \(0.0568852\pi\)
0.177761 + 0.984074i \(0.443115\pi\)
\(578\) −418.933 112.253i −0.724797 0.194209i
\(579\) 0 0
\(580\) 1552.57 28.9992i 2.67685 0.0499986i
\(581\) 37.9038 65.6513i 0.0652388 0.112997i
\(582\) 0 0
\(583\) −117.521 31.4895i −0.201579 0.0540129i
\(584\) 470.735i 0.806053i
\(585\) 0 0
\(586\) 729.675 1.24518
\(587\) 116.613 435.207i 0.198660 0.741410i −0.792629 0.609704i \(-0.791288\pi\)
0.991289 0.131705i \(-0.0420452\pi\)
\(588\) 0 0
\(589\) −716.373 413.598i −1.21625 0.702204i
\(590\) −530.820 + 551.027i −0.899696 + 0.933945i
\(591\) 0 0
\(592\) 133.375 497.762i 0.225295 0.840814i
\(593\) −292.884 + 292.884i −0.493902 + 0.493902i −0.909533 0.415631i \(-0.863561\pi\)
0.415631 + 0.909533i \(0.363561\pi\)
\(594\) 0 0
\(595\) 275.517 166.006i 0.463054 0.279002i
\(596\) 896.636 + 1553.02i 1.50442 + 2.60574i
\(597\) 0 0
\(598\) −6.11368 22.8166i −0.0102235 0.0381548i
\(599\) 434.899 + 251.089i 0.726042 + 0.419180i 0.816972 0.576677i \(-0.195651\pi\)
−0.0909308 + 0.995857i \(0.528984\pi\)
\(600\) 0 0
\(601\) −99.8075 172.872i −0.166069 0.287640i 0.770965 0.636877i \(-0.219774\pi\)
−0.937034 + 0.349237i \(0.886441\pi\)
\(602\) −48.0883 48.0883i −0.0798810 0.0798810i
\(603\) 0 0
\(604\) 1047.04i 1.73350i
\(605\) −274.301 + 496.282i −0.453390 + 0.820301i
\(606\) 0 0
\(607\) −837.927 + 224.522i −1.38044 + 0.369888i −0.871281 0.490785i \(-0.836710\pi\)
−0.509159 + 0.860672i \(0.670043\pi\)
\(608\) −247.352 923.131i −0.406829 1.51831i
\(609\) 0 0
\(610\) 226.970 65.3831i 0.372083 0.107185i
\(611\) −36.3737 −0.0595314
\(612\) 0 0
\(613\) −31.6781 + 31.6781i −0.0516771 + 0.0516771i −0.732473 0.680796i \(-0.761634\pi\)
0.680796 + 0.732473i \(0.261634\pi\)
\(614\) 1605.75 927.078i 2.61522 1.50990i
\(615\) 0 0
\(616\) 120.946 209.485i 0.196341 0.340072i
\(617\) −253.302 + 67.8722i −0.410539 + 0.110004i −0.458177 0.888861i \(-0.651497\pi\)
0.0476380 + 0.998865i \(0.484831\pi\)
\(618\) 0 0
\(619\) −422.528 + 243.947i −0.682598 + 0.394098i −0.800833 0.598887i \(-0.795610\pi\)
0.118235 + 0.992986i \(0.462276\pi\)
\(620\) 982.214 591.809i 1.58422 0.954531i
\(621\) 0 0
\(622\) −521.044 521.044i −0.837691 0.837691i
\(623\) 442.707 + 118.623i 0.710605 + 0.190406i
\(624\) 0 0
\(625\) 623.257 46.6465i 0.997211 0.0746344i
\(626\) 639.119 1106.99i 1.02096 1.76835i
\(627\) 0 0
\(628\) 1830.18 + 490.396i 2.91431 + 0.780886i
\(629\) 239.158i 0.380219i
\(630\) 0 0
\(631\) 263.490 0.417576 0.208788 0.977961i \(-0.433048\pi\)
0.208788 + 0.977961i \(0.433048\pi\)
\(632\) 96.8714 361.529i 0.153277 0.572039i
\(633\) 0 0
\(634\) −80.4505 46.4481i −0.126894 0.0732620i
\(635\) −256.690 247.276i −0.404236 0.389412i
\(636\) 0 0
\(637\) −59.9014 + 223.555i −0.0940367 + 0.350950i
\(638\) −243.730 + 243.730i −0.382023 + 0.382023i
\(639\) 0 0
\(640\) −665.298 165.014i −1.03953 0.257834i
\(641\) 459.262 + 795.464i 0.716477 + 1.24097i 0.962387 + 0.271682i \(0.0875797\pi\)
−0.245911 + 0.969293i \(0.579087\pi\)
\(642\) 0 0
\(643\) 10.9456 + 40.8497i 0.0170228 + 0.0635298i 0.973915 0.226914i \(-0.0728637\pi\)
−0.956892 + 0.290444i \(0.906197\pi\)
\(644\) 26.5652 + 15.3374i 0.0412504 + 0.0238159i
\(645\) 0 0
\(646\) 750.843 + 1300.50i 1.16230 + 2.01316i
\(647\) 12.5734 + 12.5734i 0.0194334 + 0.0194334i 0.716757 0.697323i \(-0.245626\pi\)
−0.697323 + 0.716757i \(0.745626\pi\)
\(648\) 0 0
\(649\) 117.275i 0.180701i
\(650\) 851.313 31.8130i 1.30971 0.0489430i
\(651\) 0 0
\(652\) −745.601 + 199.783i −1.14356 + 0.306416i
\(653\) −137.591 513.495i −0.210705 0.786363i −0.987634 0.156775i \(-0.949890\pi\)
0.776929 0.629588i \(-0.216776\pi\)
\(654\) 0 0
\(655\) −433.884 + 785.009i −0.662418 + 1.19849i
\(656\) −1130.31 −1.72303
\(657\) 0 0
\(658\) 48.3691 48.3691i 0.0735093 0.0735093i
\(659\) 64.8393 37.4350i 0.0983905 0.0568058i −0.449997 0.893030i \(-0.648575\pi\)
0.548388 + 0.836224i \(0.315242\pi\)
\(660\) 0 0
\(661\) 11.3687 19.6912i 0.0171993 0.0297900i −0.857298 0.514821i \(-0.827858\pi\)
0.874497 + 0.485031i \(0.161192\pi\)
\(662\) 672.712 180.253i 1.01618 0.272285i
\(663\) 0 0
\(664\) −234.465 + 135.368i −0.353110 + 0.203868i
\(665\) 774.557 + 192.113i 1.16475 + 0.288892i
\(666\) 0 0
\(667\) −17.0560 17.0560i −0.0255713 0.0255713i
\(668\) 2096.93 + 561.872i 3.13912 + 0.841125i
\(669\) 0 0
\(670\) −15.6384 837.259i −0.0233409 1.24964i
\(671\) −18.1021 + 31.3537i −0.0269777 + 0.0467268i
\(672\) 0 0
\(673\) 619.582 + 166.017i 0.920628 + 0.246681i 0.687854 0.725849i \(-0.258553\pi\)
0.232774 + 0.972531i \(0.425220\pi\)
\(674\) 330.040i 0.489673i
\(675\) 0 0
\(676\) −706.526 −1.04516
\(677\) 150.613 562.095i 0.222471 0.830273i −0.760931 0.648833i \(-0.775258\pi\)
0.983402 0.181440i \(-0.0580758\pi\)
\(678\) 0 0
\(679\) 675.360 + 389.919i 0.994639 + 0.574255i
\(680\) −1148.58 + 21.4534i −1.68909 + 0.0315490i
\(681\) 0 0
\(682\) −65.8799 + 245.867i −0.0965982 + 0.360509i
\(683\) −599.384 + 599.384i −0.877576 + 0.877576i −0.993283 0.115708i \(-0.963086\pi\)
0.115708 + 0.993283i \(0.463086\pi\)
\(684\) 0 0
\(685\) −169.820 + 684.677i −0.247913 + 0.999529i
\(686\) −654.336 1133.34i −0.953842 1.65210i
\(687\) 0 0
\(688\) 27.6082 + 103.035i 0.0401282 + 0.149761i
\(689\) 362.466 + 209.270i 0.526075 + 0.303730i
\(690\) 0 0
\(691\) −348.543 603.695i −0.504404 0.873654i −0.999987 0.00509303i \(-0.998379\pi\)
0.495583 0.868561i \(-0.334955\pi\)
\(692\) −106.685 106.685i −0.154169 0.154169i
\(693\) 0 0
\(694\) 21.7458i 0.0313340i
\(695\) −1192.83 659.293i −1.71631 0.948624i
\(696\) 0 0
\(697\) 506.696 135.769i 0.726967 0.194790i
\(698\) −72.9231 272.153i −0.104474 0.389904i
\(699\) 0 0
\(700\) −752.507 + 810.932i −1.07501 + 1.15847i
\(701\) 643.602 0.918119 0.459060 0.888405i \(-0.348186\pi\)
0.459060 + 0.888405i \(0.348186\pi\)
\(702\) 0 0
\(703\) −419.550 + 419.550i −0.596800 + 0.596800i
\(704\) 12.1718 7.02736i 0.0172894 0.00998205i
\(705\) 0 0
\(706\) −71.1500 + 123.235i −0.100779 + 0.174554i
\(707\) −395.563 + 105.991i −0.559495 + 0.149916i
\(708\) 0 0
\(709\) −1069.69 + 617.583i −1.50872 + 0.871062i −0.508775 + 0.860899i \(0.669902\pi\)
−0.999948 + 0.0101629i \(0.996765\pi\)
\(710\) −493.594 + 1990.06i −0.695203 + 2.80290i
\(711\) 0 0
\(712\) −1157.42 1157.42i −1.62559 1.62559i
\(713\) −17.2056 4.61022i −0.0241312 0.00646594i
\(714\) 0 0
\(715\) −90.5922 + 94.0408i −0.126702 + 0.131526i
\(716\) −1225.04 + 2121.83i −1.71095 + 2.96345i
\(717\) 0 0
\(718\) 404.918 + 108.497i 0.563952 + 0.151110i
\(719\) 219.618i 0.305449i 0.988269 + 0.152724i \(0.0488047\pi\)
−0.988269 + 0.152724i \(0.951195\pi\)
\(720\) 0 0
\(721\) −248.283 −0.344360
\(722\) −628.340 + 2345.00i −0.870278 + 3.24792i
\(723\) 0 0
\(724\) 2022.41 + 1167.64i 2.79338 + 1.61276i
\(725\) 736.604 462.789i 1.01601 0.638330i
\(726\) 0 0
\(727\) 73.8261 275.523i 0.101549 0.378986i −0.896382 0.443283i \(-0.853814\pi\)
0.997931 + 0.0642969i \(0.0204805\pi\)
\(728\) −588.400 + 588.400i −0.808242 + 0.808242i
\(729\) 0 0
\(730\) −246.628 409.324i −0.337847 0.560718i
\(731\) −24.7525 42.8726i −0.0338611 0.0586492i
\(732\) 0 0
\(733\) −181.709 678.149i −0.247898 0.925169i −0.971905 0.235375i \(-0.924368\pi\)
0.724006 0.689793i \(-0.242299\pi\)
\(734\) −1353.09 781.206i −1.84345 1.06431i
\(735\) 0 0
\(736\) −10.2898 17.8224i −0.0139807 0.0242153i
\(737\) 90.7608 + 90.7608i 0.123149 + 0.123149i
\(738\) 0 0
\(739\) 1147.21i 1.55238i 0.630497 + 0.776192i \(0.282851\pi\)
−0.630497 + 0.776192i \(0.717149\pi\)
\(740\) −227.686 790.387i −0.307684 1.06809i
\(741\) 0 0
\(742\) −760.284 + 203.717i −1.02464 + 0.274552i
\(743\) −226.953 847.001i −0.305455 1.13997i −0.932553 0.361034i \(-0.882424\pi\)
0.627098 0.778941i \(-0.284243\pi\)
\(744\) 0 0
\(745\) 879.246 + 485.970i 1.18020 + 0.652308i
\(746\) −2325.68 −3.11754
\(747\) 0 0
\(748\) 225.628 225.628i 0.301642 0.301642i
\(749\) 348.958 201.471i 0.465899 0.268987i
\(750\) 0 0
\(751\) 147.537 255.542i 0.196455 0.340269i −0.750922 0.660391i \(-0.770391\pi\)
0.947376 + 0.320122i \(0.103724\pi\)
\(752\) −103.637 + 27.7694i −0.137815 + 0.0369274i
\(753\) 0 0
\(754\) 1026.88 592.872i 1.36192 0.786303i
\(755\) −302.715 502.410i −0.400947 0.665444i
\(756\) 0 0
\(757\) 89.6510 + 89.6510i 0.118429 + 0.118429i 0.763838 0.645408i \(-0.223313\pi\)
−0.645408 + 0.763838i \(0.723313\pi\)
\(758\) −1034.28 277.135i −1.36449 0.365614i
\(759\) 0 0
\(760\) −2052.57 1977.30i −2.70075 2.60171i
\(761\) −80.6635 + 139.713i −0.105997 + 0.183592i −0.914145 0.405387i \(-0.867137\pi\)
0.808148 + 0.588979i \(0.200470\pi\)
\(762\) 0 0
\(763\) −698.501 187.163i −0.915466 0.245298i
\(764\) 1602.86i 2.09798i
\(765\) 0 0
\(766\) 1542.52 2.01373
\(767\) −104.416 + 389.686i −0.136136 + 0.508065i
\(768\) 0 0
\(769\) −129.486 74.7588i −0.168382 0.0972156i 0.413440 0.910531i \(-0.364327\pi\)
−0.581823 + 0.813316i \(0.697660\pi\)
\(770\) −4.58589 245.522i −0.00595570 0.318859i
\(771\) 0 0
\(772\) 62.0835 231.699i 0.0804190 0.300128i
\(773\) 994.453 994.453i 1.28649 1.28649i 0.349578 0.936907i \(-0.386325\pi\)
0.936907 0.349578i \(-0.113675\pi\)
\(774\) 0 0
\(775\) 300.204 567.949i 0.387361 0.732837i
\(776\) −1392.55 2411.96i −1.79452 3.10819i
\(777\) 0 0
\(778\) −212.399 792.684i −0.273006 1.01887i
\(779\) 1127.06 + 650.711i 1.44681 + 0.835316i
\(780\) 0 0
\(781\) −157.137 272.169i −0.201200 0.348488i
\(782\) 22.8655 + 22.8655i 0.0292398 + 0.0292398i
\(783\) 0 0
\(784\) 682.690i 0.870778i
\(785\) 1019.98 293.824i 1.29934 0.374298i
\(786\) 0 0
\(787\) −887.757 + 237.874i −1.12803 + 0.302254i −0.774128 0.633030i \(-0.781811\pi\)
−0.353899 + 0.935284i \(0.615144\pi\)
\(788\) 387.409 + 1445.83i 0.491635 + 1.83481i
\(789\) 0 0
\(790\) −105.179 365.118i −0.133138 0.462174i
\(791\) −268.801 −0.339824
\(792\) 0 0
\(793\) 88.0662 88.0662i 0.111055 0.111055i
\(794\) 530.725 306.414i 0.668420 0.385912i
\(795\) 0 0
\(796\) −106.714 + 184.834i −0.134063 + 0.232204i
\(797\) −860.450 + 230.557i −1.07961 + 0.289281i −0.754437 0.656373i \(-0.772090\pi\)
−0.325175 + 0.945654i \(0.605423\pi\)
\(798\) 0 0
\(799\) 43.1229 24.8970i 0.0539711 0.0311602i
\(800\) 709.239 218.734i 0.886549 0.273417i
\(801\) 0 0
\(802\) 1152.46 + 1152.46i 1.43698 + 1.43698i
\(803\) 70.7526 + 18.9581i 0.0881104 + 0.0236091i
\(804\) 0 0
\(805\) 17.1814 0.320916i 0.0213433 0.000398654i
\(806\) 437.818 758.323i 0.543198 0.940847i
\(807\) 0 0
\(808\) 1412.70 + 378.532i 1.74839 + 0.468480i
\(809\) 1398.60i 1.72880i 0.502802 + 0.864402i \(0.332302\pi\)
−0.502802 + 0.864402i \(0.667698\pi\)
\(810\) 0 0
\(811\) −347.451 −0.428423 −0.214211 0.976787i \(-0.568718\pi\)
−0.214211 + 0.976787i \(0.568718\pi\)
\(812\) −398.533 + 1487.34i −0.490804 + 1.83170i
\(813\) 0 0
\(814\) 158.117 + 91.2888i 0.194247 + 0.112148i
\(815\) −300.009 + 311.430i −0.368109 + 0.382122i
\(816\) 0 0
\(817\) 31.7877 118.633i 0.0389079 0.145206i
\(818\) 1253.90 1253.90i 1.53288 1.53288i
\(819\) 0 0
\(820\) −1545.31 + 931.090i −1.88453 + 1.13548i
\(821\) 493.294 + 854.410i 0.600845 + 1.04069i 0.992693 + 0.120665i \(0.0385026\pi\)
−0.391848 + 0.920030i \(0.628164\pi\)
\(822\) 0 0
\(823\) 65.3381 + 243.845i 0.0793902 + 0.296288i 0.994193 0.107613i \(-0.0343207\pi\)
−0.914803 + 0.403901i \(0.867654\pi\)
\(824\) 767.914 + 443.356i 0.931935 + 0.538053i
\(825\) 0 0
\(826\) −379.347 657.049i −0.459258 0.795458i
\(827\) −1054.44 1054.44i −1.27502 1.27502i −0.943419 0.331604i \(-0.892410\pi\)
−0.331604 0.943419i \(-0.607590\pi\)
\(828\) 0 0
\(829\) 819.644i 0.988714i −0.869259 0.494357i \(-0.835404\pi\)
0.869259 0.494357i \(-0.164596\pi\)
\(830\) −132.955 + 240.550i −0.160186 + 0.289819i
\(831\) 0 0
\(832\) −46.7017 + 12.5137i −0.0561318 + 0.0150405i
\(833\) −82.0024 306.037i −0.0984423 0.367392i
\(834\) 0 0
\(835\) 1168.64 336.649i 1.39957 0.403173i
\(836\) 791.631 0.946928
\(837\) 0 0
\(838\) 66.9173 66.9173i 0.0798536 0.0798536i
\(839\) −425.345 + 245.573i −0.506966 + 0.292697i −0.731586 0.681749i \(-0.761219\pi\)
0.224619 + 0.974447i \(0.427886\pi\)
\(840\) 0 0
\(841\) 184.907 320.269i 0.219866 0.380819i
\(842\) 1690.62 453.001i 2.00786 0.538006i
\(843\) 0 0
\(844\) −1052.88 + 607.880i −1.24749 + 0.720237i
\(845\) −339.020 + 204.268i −0.401207 + 0.241738i
\(846\) 0 0
\(847\) −397.594 397.594i −0.469415 0.469415i
\(848\) 1192.51 + 319.533i 1.40627 + 0.376808i
\(849\) 0 0
\(850\) −987.500 + 620.421i −1.16176 + 0.729907i
\(851\) −6.38831 + 11.0649i −0.00750682 + 0.0130022i
\(852\) 0 0
\(853\) 336.484 + 90.1607i 0.394472 + 0.105698i 0.450602 0.892725i \(-0.351209\pi\)
−0.0561301 + 0.998423i \(0.517876\pi\)
\(854\) 234.218i 0.274260i
\(855\) 0 0
\(856\) −1439.05 −1.68114
\(857\) −210.885 + 787.034i −0.246074 + 0.918359i 0.726767 + 0.686884i \(0.241022\pi\)
−0.972841 + 0.231475i \(0.925645\pi\)
\(858\) 0 0
\(859\) 101.706 + 58.7201i 0.118401 + 0.0683587i 0.558031 0.829820i \(-0.311557\pi\)
−0.439630 + 0.898179i \(0.644890\pi\)
\(860\) 122.620 + 118.123i 0.142581 + 0.137353i
\(861\) 0 0
\(862\) −68.1886 + 254.483i −0.0791051 + 0.295224i
\(863\) 148.570 148.570i 0.172155 0.172155i −0.615770 0.787926i \(-0.711155\pi\)
0.787926 + 0.615770i \(0.211155\pi\)
\(864\) 0 0
\(865\) −82.0360 20.3474i −0.0948394 0.0235230i
\(866\) −202.797 351.254i −0.234176 0.405605i
\(867\) 0 0
\(868\) 294.304 + 1098.36i 0.339060 + 1.26539i
\(869\) 50.4374 + 29.1200i 0.0580407 + 0.0335098i
\(870\) 0 0
\(871\) −220.775 382.393i −0.253473 0.439028i
\(872\) 1826.18 + 1826.18i 2.09424 + 2.09424i
\(873\) 0 0
\(874\) 80.2251i 0.0917907i
\(875\) −126.630 + 606.680i −0.144720 + 0.693349i
\(876\) 0 0
\(877\) 480.790 128.827i 0.548221 0.146895i 0.0259318 0.999664i \(-0.491745\pi\)
0.522289 + 0.852768i \(0.325078\pi\)
\(878\) 104.690 + 390.709i 0.119237 + 0.444998i
\(879\) 0 0
\(880\) −186.322 + 337.106i −0.211730 + 0.383075i
\(881\) −306.447 −0.347840 −0.173920 0.984760i \(-0.555643\pi\)
−0.173920 + 0.984760i \(0.555643\pi\)
\(882\) 0 0
\(883\) 930.058 930.058i 1.05329 1.05329i 0.0547963 0.998498i \(-0.482549\pi\)
0.998498 0.0547963i \(-0.0174509\pi\)
\(884\) −950.617 + 548.839i −1.07536 + 0.620859i
\(885\) 0 0
\(886\) 286.676 496.538i 0.323563 0.560427i
\(887\) 130.986 35.0975i 0.147673 0.0395688i −0.184225 0.982884i \(-0.558978\pi\)
0.331898 + 0.943315i \(0.392311\pi\)
\(888\) 0 0
\(889\) 306.078 176.714i 0.344295 0.198779i
\(890\) −1612.83 400.029i −1.81216 0.449471i
\(891\) 0 0
\(892\) 2532.24 + 2532.24i 2.83884 + 2.83884i
\(893\) 119.326 + 31.9733i 0.133624 + 0.0358044i
\(894\) 0 0
\(895\) 25.6324 + 1372.32i 0.0286395 + 1.53332i
\(896\) 339.852 588.641i 0.379299 0.656965i
\(897\) 0 0
\(898\) −1013.34 271.524i −1.12844 0.302366i
\(899\) 894.149i 0.994604i
\(900\) 0 0
\(901\) −572.962 −0.635918
\(902\) 103.649 386.822i 0.114910 0.428849i
\(903\) 0 0
\(904\) 831.374 + 479.994i 0.919661 + 0.530967i
\(905\) 1308.02 24.4313i 1.44532 0.0269959i
\(906\) 0 0
\(907\) 35.1572 131.208i 0.0387621 0.144662i −0.943833 0.330423i \(-0.892808\pi\)
0.982595 + 0.185761i \(0.0594751\pi\)
\(908\) 1194.65 1194.65i 1.31569 1.31569i
\(909\) 0 0
\(910\) −203.363 + 819.914i −0.223476 + 0.901004i
\(911\) −545.263 944.423i −0.598532 1.03669i −0.993038 0.117795i \(-0.962417\pi\)
0.394506 0.918894i \(-0.370916\pi\)
\(912\) 0 0
\(913\) −10.9035 40.6924i −0.0119425 0.0445700i
\(914\) −1459.39 842.579i −1.59671 0.921859i
\(915\) 0 0
\(916\) 660.594 + 1144.18i 0.721173 + 1.24911i
\(917\) −628.907 628.907i −0.685831 0.685831i
\(918\) 0 0
\(919\) 367.996i 0.400431i −0.979752 0.200215i \(-0.935836\pi\)
0.979752 0.200215i \(-0.0641642\pi\)
\(920\) −53.7133 29.6880i −0.0583840 0.0322695i
\(921\) 0 0
\(922\) 1727.79 462.959i 1.87396 0.502125i
\(923\) 279.815 + 1044.28i 0.303158 + 1.13140i
\(924\) 0 0
\(925\) −337.767 313.432i −0.365153 0.338845i
\(926\) 3276.11 3.53792
\(927\) 0 0
\(928\) 730.476 730.476i 0.787151 0.787151i
\(929\) −62.7337 + 36.2193i −0.0675282 + 0.0389874i −0.533384 0.845873i \(-0.679080\pi\)
0.465856 + 0.884861i \(0.345747\pi\)
\(930\) 0 0
\(931\) 393.020 680.731i 0.422148 0.731182i
\(932\) 2339.28 626.810i 2.50996 0.672542i
\(933\) 0 0
\(934\) 902.137 520.849i 0.965886 0.557655i
\(935\) 43.0328 173.499i 0.0460244 0.185560i
\(936\) 0 0
\(937\) −887.903 887.903i −0.947602 0.947602i 0.0510921 0.998694i \(-0.483730\pi\)
−0.998694 + 0.0510921i \(0.983730\pi\)
\(938\) 802.082 + 214.917i 0.855099 + 0.229123i
\(939\) 0 0
\(940\) −118.813 + 123.336i −0.126397 + 0.131208i
\(941\) −190.349 + 329.694i −0.202284 + 0.350366i −0.949264 0.314480i \(-0.898170\pi\)
0.746980 + 0.664846i \(0.231503\pi\)
\(942\) 0 0
\(943\) 27.0694 + 7.25323i 0.0287056 + 0.00769165i
\(944\) 1190.02i 1.26061i
\(945\) 0 0
\(946\) −37.7930 −0.0399504
\(947\) 139.605 521.012i 0.147418 0.550172i −0.852218 0.523187i \(-0.824743\pi\)
0.999636 0.0269844i \(-0.00859046\pi\)
\(948\) 0 0
\(949\) −218.221 125.990i −0.229948 0.132761i
\(950\) −2820.75 643.959i −2.96921 0.677852i
\(951\) 0 0
\(952\) 294.831 1100.33i 0.309697 1.15580i
\(953\) 52.0743 52.0743i 0.0546425 0.0546425i −0.679258 0.733900i \(-0.737698\pi\)
0.733900 + 0.679258i \(0.237698\pi\)
\(954\) 0 0
\(955\) −463.413 769.118i −0.485250 0.805359i
\(956\) −585.940 1014.88i −0.612908 1.06159i
\(957\) 0 0
\(958\) −190.265 710.080i −0.198607 0.741210i
\(959\) −605.788 349.752i −0.631687 0.364705i
\(960\) 0 0
\(961\) 150.349 + 260.413i 0.156451 + 0.270981i
\(962\) −444.118 444.118i −0.461662 0.461662i
\(963\) 0 0
\(964\) 1906.20i 1.97739i
\(965\) −37.1977 129.128i −0.0385469 0.133811i
\(966\) 0 0
\(967\) 278.265 74.5608i 0.287761 0.0771053i −0.112051 0.993702i \(-0.535742\pi\)
0.399812 + 0.916597i \(0.369075\pi\)
\(968\) 519.740 + 1939.70i 0.536921 + 2.00382i
\(969\) 0 0
\(970\) −2474.55 1367.72i −2.55109 1.41002i
\(971\) 227.938 0.234745 0.117373 0.993088i \(-0.462553\pi\)
0.117373 + 0.993088i \(0.462553\pi\)
\(972\) 0 0
\(973\) 955.634 955.634i 0.982152 0.982152i
\(974\) −2230.86 + 1287.99i −2.29041 + 1.32237i
\(975\) 0 0
\(976\) 183.687 318.155i 0.188203 0.325978i
\(977\) −613.083 + 164.275i −0.627516 + 0.168142i −0.558542 0.829476i \(-0.688639\pi\)
−0.0689735 + 0.997618i \(0.521972\pi\)
\(978\) 0 0
\(979\) 220.577 127.350i 0.225308 0.130082i
\(980\) 562.365 + 933.345i 0.573842 + 0.952393i
\(981\) 0 0
\(982\) −531.988 531.988i −0.541739 0.541739i
\(983\) 1316.59 + 352.779i 1.33936 + 0.358880i 0.856196 0.516651i \(-0.172821\pi\)
0.483163 + 0.875531i \(0.339488\pi\)
\(984\) 0 0
\(985\) 603.908 + 581.761i 0.613104 + 0.590621i
\(986\) −811.616 + 1405.76i −0.823140 + 1.42572i
\(987\) 0 0
\(988\) −2630.47 704.832i −2.66242 0.713393i
\(989\) 2.64472i 0.00267414i
\(990\) 0 0
\(991\) 1111.32 1.12141 0.560705 0.828016i \(-0.310530\pi\)
0.560705 + 0.828016i \(0.310530\pi\)
\(992\) 197.447 736.881i 0.199039 0.742823i
\(993\) 0 0
\(994\) −1760.76 1016.58i −1.77139 1.02271i
\(995\) 2.23286 + 119.544i 0.00224408 + 0.120145i
\(996\) 0 0
\(997\) −164.802 + 615.048i −0.165297 + 0.616898i 0.832705 + 0.553717i \(0.186791\pi\)
−0.998002 + 0.0631810i \(0.979875\pi\)
\(998\) −842.493 + 842.493i −0.844182 + 0.844182i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 135.3.l.a.37.10 40
3.2 odd 2 45.3.k.a.22.1 yes 40
5.3 odd 4 inner 135.3.l.a.118.1 40
9.2 odd 6 45.3.k.a.7.10 40
9.4 even 3 405.3.g.g.82.10 20
9.5 odd 6 405.3.g.h.82.1 20
9.7 even 3 inner 135.3.l.a.127.1 40
15.2 even 4 225.3.o.b.193.1 40
15.8 even 4 45.3.k.a.13.10 yes 40
15.14 odd 2 225.3.o.b.157.10 40
45.2 even 12 225.3.o.b.43.10 40
45.13 odd 12 405.3.g.g.163.10 20
45.23 even 12 405.3.g.h.163.1 20
45.29 odd 6 225.3.o.b.7.1 40
45.38 even 12 45.3.k.a.43.1 yes 40
45.43 odd 12 inner 135.3.l.a.73.10 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.3.k.a.7.10 40 9.2 odd 6
45.3.k.a.13.10 yes 40 15.8 even 4
45.3.k.a.22.1 yes 40 3.2 odd 2
45.3.k.a.43.1 yes 40 45.38 even 12
135.3.l.a.37.10 40 1.1 even 1 trivial
135.3.l.a.73.10 40 45.43 odd 12 inner
135.3.l.a.118.1 40 5.3 odd 4 inner
135.3.l.a.127.1 40 9.7 even 3 inner
225.3.o.b.7.1 40 45.29 odd 6
225.3.o.b.43.10 40 45.2 even 12
225.3.o.b.157.10 40 15.14 odd 2
225.3.o.b.193.1 40 15.2 even 4
405.3.g.g.82.10 20 9.4 even 3
405.3.g.g.163.10 20 45.13 odd 12
405.3.g.h.82.1 20 9.5 odd 6
405.3.g.h.163.1 20 45.23 even 12