Properties

Label 135.5.h.a.89.14
Level $135$
Weight $5$
Character 135.89
Analytic conductor $13.955$
Analytic rank $0$
Dimension $44$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [135,5,Mod(44,135)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(135, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([5, 3]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("135.44");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 135 = 3^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 135.h (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(13.9549450163\)
Analytic rank: \(0\)
Dimension: \(44\)
Relative dimension: \(22\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 45)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 89.14
Character \(\chi\) \(=\) 135.89
Dual form 135.5.h.a.44.14

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.02189 - 1.76997i) q^{2} +(5.91148 + 10.2390i) q^{4} +(-15.4498 + 19.6546i) q^{5} +(-2.09732 - 1.21089i) q^{7} +56.8640 q^{8} +(19.0000 + 47.4305i) q^{10} +(-117.697 - 67.9523i) q^{11} +(-136.503 + 78.8098i) q^{13} +(-4.28647 + 2.47479i) q^{14} +(-36.4748 + 63.1763i) q^{16} -258.165 q^{17} -363.338 q^{19} +(-292.574 - 42.0027i) q^{20} +(-240.547 + 138.880i) q^{22} +(392.923 + 680.562i) q^{23} +(-147.606 - 607.320i) q^{25} +322.140i q^{26} -28.6326i q^{28} +(629.935 + 363.693i) q^{29} +(-463.170 - 802.234i) q^{31} +(529.459 + 917.050i) q^{32} +(-263.817 + 456.944i) q^{34} +(56.2028 - 22.5140i) q^{35} +1997.88i q^{37} +(-371.292 + 643.096i) q^{38} +(-878.539 + 1117.64i) q^{40} +(-1250.71 + 722.098i) q^{41} +(542.092 + 312.977i) q^{43} -1606.79i q^{44} +1606.10 q^{46} +(-188.637 + 326.730i) q^{47} +(-1197.57 - 2074.25i) q^{49} +(-1225.77 - 359.356i) q^{50} +(-1613.86 - 931.765i) q^{52} +694.739 q^{53} +(3153.97 - 1263.43i) q^{55} +(-119.262 - 68.8560i) q^{56} +(1287.45 - 743.309i) q^{58} +(2222.20 - 1282.99i) q^{59} +(-2577.00 + 4463.50i) q^{61} -1893.24 q^{62} +997.001 q^{64} +(559.965 - 3900.50i) q^{65} +(5671.56 - 3274.48i) q^{67} +(-1526.14 - 2643.35i) q^{68} +(17.5841 - 122.484i) q^{70} +3331.47i q^{71} -1735.66i q^{73} +(3536.18 + 2041.61i) q^{74} +(-2147.86 - 3720.21i) q^{76} +(164.565 + 285.036i) q^{77} +(-3695.54 + 6400.86i) q^{79} +(-678.175 - 1692.96i) q^{80} +2951.62i q^{82} +(5465.06 - 9465.75i) q^{83} +(3988.60 - 5074.13i) q^{85} +(1107.92 - 639.657i) q^{86} +(-6692.72 - 3864.04i) q^{88} -2325.29i q^{89} +381.719 q^{91} +(-4645.51 + 8046.26i) q^{92} +(385.534 + 667.764i) q^{94} +(5613.50 - 7141.26i) q^{95} +(14265.5 + 8236.22i) q^{97} -4895.13 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q - 162 q^{4} - 6 q^{5} + 28 q^{10} - 228 q^{11} - 282 q^{14} - 1058 q^{16} - 8 q^{19} + 2196 q^{20} - 148 q^{25} - 2370 q^{29} - 1112 q^{31} - 436 q^{34} - 850 q^{40} - 1830 q^{41} - 5668 q^{46} + 5396 q^{49}+ \cdots - 58746 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/135\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(82\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.02189 1.76997i 0.255473 0.442492i −0.709551 0.704654i \(-0.751102\pi\)
0.965024 + 0.262162i \(0.0844356\pi\)
\(3\) 0 0
\(4\) 5.91148 + 10.2390i 0.369467 + 0.639936i
\(5\) −15.4498 + 19.6546i −0.617993 + 0.786184i
\(6\) 0 0
\(7\) −2.09732 1.21089i −0.0428025 0.0247120i 0.478446 0.878117i \(-0.341200\pi\)
−0.521249 + 0.853405i \(0.674534\pi\)
\(8\) 56.8640 0.888501
\(9\) 0 0
\(10\) 19.0000 + 47.4305i 0.190000 + 0.474305i
\(11\) −117.697 67.9523i −0.972701 0.561589i −0.0726425 0.997358i \(-0.523143\pi\)
−0.900059 + 0.435769i \(0.856477\pi\)
\(12\) 0 0
\(13\) −136.503 + 78.8098i −0.807707 + 0.466330i −0.846159 0.532930i \(-0.821091\pi\)
0.0384518 + 0.999260i \(0.487757\pi\)
\(14\) −4.28647 + 2.47479i −0.0218697 + 0.0126265i
\(15\) 0 0
\(16\) −36.4748 + 63.1763i −0.142480 + 0.246782i
\(17\) −258.165 −0.893305 −0.446652 0.894708i \(-0.647384\pi\)
−0.446652 + 0.894708i \(0.647384\pi\)
\(18\) 0 0
\(19\) −363.338 −1.00648 −0.503238 0.864148i \(-0.667858\pi\)
−0.503238 + 0.864148i \(0.667858\pi\)
\(20\) −292.574 42.0027i −0.731436 0.105007i
\(21\) 0 0
\(22\) −240.547 + 138.880i −0.496997 + 0.286941i
\(23\) 392.923 + 680.562i 0.742765 + 1.28651i 0.951232 + 0.308477i \(0.0998194\pi\)
−0.208467 + 0.978029i \(0.566847\pi\)
\(24\) 0 0
\(25\) −147.606 607.320i −0.236170 0.971712i
\(26\) 322.140i 0.476538i
\(27\) 0 0
\(28\) 28.6326i 0.0365211i
\(29\) 629.935 + 363.693i 0.749031 + 0.432453i 0.825344 0.564631i \(-0.190981\pi\)
−0.0763129 + 0.997084i \(0.524315\pi\)
\(30\) 0 0
\(31\) −463.170 802.234i −0.481967 0.834790i 0.517819 0.855490i \(-0.326744\pi\)
−0.999786 + 0.0206996i \(0.993411\pi\)
\(32\) 529.459 + 917.050i 0.517050 + 0.895556i
\(33\) 0 0
\(34\) −263.817 + 456.944i −0.228215 + 0.395280i
\(35\) 56.2028 22.5140i 0.0458798 0.0183788i
\(36\) 0 0
\(37\) 1997.88i 1.45937i 0.683783 + 0.729685i \(0.260333\pi\)
−0.683783 + 0.729685i \(0.739667\pi\)
\(38\) −371.292 + 643.096i −0.257127 + 0.445357i
\(39\) 0 0
\(40\) −878.539 + 1117.64i −0.549087 + 0.698525i
\(41\) −1250.71 + 722.098i −0.744027 + 0.429564i −0.823532 0.567270i \(-0.808000\pi\)
0.0795044 + 0.996835i \(0.474666\pi\)
\(42\) 0 0
\(43\) 542.092 + 312.977i 0.293181 + 0.169268i 0.639376 0.768895i \(-0.279193\pi\)
−0.346194 + 0.938163i \(0.612526\pi\)
\(44\) 1606.79i 0.829956i
\(45\) 0 0
\(46\) 1606.10 0.759025
\(47\) −188.637 + 326.730i −0.0853950 + 0.147908i −0.905559 0.424219i \(-0.860549\pi\)
0.820164 + 0.572128i \(0.193882\pi\)
\(48\) 0 0
\(49\) −1197.57 2074.25i −0.498779 0.863910i
\(50\) −1225.77 359.356i −0.490309 0.143742i
\(51\) 0 0
\(52\) −1613.86 931.765i −0.596843 0.344588i
\(53\) 694.739 0.247326 0.123663 0.992324i \(-0.460536\pi\)
0.123663 + 0.992324i \(0.460536\pi\)
\(54\) 0 0
\(55\) 3153.97 1263.43i 1.04263 0.417664i
\(56\) −119.262 68.8560i −0.0380300 0.0219566i
\(57\) 0 0
\(58\) 1287.45 743.309i 0.382714 0.220960i
\(59\) 2222.20 1282.99i 0.638381 0.368569i −0.145610 0.989342i \(-0.546514\pi\)
0.783991 + 0.620773i \(0.213181\pi\)
\(60\) 0 0
\(61\) −2577.00 + 4463.50i −0.692556 + 1.19954i 0.278441 + 0.960453i \(0.410182\pi\)
−0.970998 + 0.239089i \(0.923151\pi\)
\(62\) −1893.24 −0.492517
\(63\) 0 0
\(64\) 997.001 0.243408
\(65\) 559.965 3900.50i 0.132536 0.923195i
\(66\) 0 0
\(67\) 5671.56 3274.48i 1.26344 0.729445i 0.289698 0.957118i \(-0.406445\pi\)
0.973738 + 0.227673i \(0.0731117\pi\)
\(68\) −1526.14 2643.35i −0.330047 0.571658i
\(69\) 0 0
\(70\) 17.5841 122.484i 0.00358858 0.0249967i
\(71\) 3331.47i 0.660875i 0.943828 + 0.330438i \(0.107196\pi\)
−0.943828 + 0.330438i \(0.892804\pi\)
\(72\) 0 0
\(73\) 1735.66i 0.325701i −0.986651 0.162850i \(-0.947931\pi\)
0.986651 0.162850i \(-0.0520688\pi\)
\(74\) 3536.18 + 2041.61i 0.645759 + 0.372829i
\(75\) 0 0
\(76\) −2147.86 3720.21i −0.371860 0.644081i
\(77\) 164.565 + 285.036i 0.0277560 + 0.0480748i
\(78\) 0 0
\(79\) −3695.54 + 6400.86i −0.592139 + 1.02561i 0.401805 + 0.915725i \(0.368383\pi\)
−0.993944 + 0.109889i \(0.964950\pi\)
\(80\) −678.175 1692.96i −0.105965 0.264525i
\(81\) 0 0
\(82\) 2951.62i 0.438968i
\(83\) 5465.06 9465.75i 0.793302 1.37404i −0.130610 0.991434i \(-0.541694\pi\)
0.923912 0.382605i \(-0.124973\pi\)
\(84\) 0 0
\(85\) 3988.60 5074.13i 0.552056 0.702302i
\(86\) 1107.92 639.657i 0.149800 0.0864868i
\(87\) 0 0
\(88\) −6692.72 3864.04i −0.864245 0.498972i
\(89\) 2325.29i 0.293560i −0.989169 0.146780i \(-0.953109\pi\)
0.989169 0.146780i \(-0.0468909\pi\)
\(90\) 0 0
\(91\) 381.719 0.0460958
\(92\) −4645.51 + 8046.26i −0.548855 + 0.950645i
\(93\) 0 0
\(94\) 385.534 + 667.764i 0.0436321 + 0.0755731i
\(95\) 5613.50 7141.26i 0.621995 0.791275i
\(96\) 0 0
\(97\) 14265.5 + 8236.22i 1.51616 + 0.875355i 0.999820 + 0.0189715i \(0.00603918\pi\)
0.516340 + 0.856384i \(0.327294\pi\)
\(98\) −4895.13 −0.509697
\(99\) 0 0
\(100\) 5345.77 5101.50i 0.534577 0.510150i
\(101\) −2850.51 1645.74i −0.279434 0.161332i 0.353733 0.935346i \(-0.384912\pi\)
−0.633167 + 0.774015i \(0.718245\pi\)
\(102\) 0 0
\(103\) −1997.64 + 1153.34i −0.188297 + 0.108713i −0.591185 0.806536i \(-0.701340\pi\)
0.402888 + 0.915249i \(0.368006\pi\)
\(104\) −7762.08 + 4481.44i −0.717648 + 0.414334i
\(105\) 0 0
\(106\) 709.948 1229.67i 0.0631851 0.109440i
\(107\) 3623.64 0.316503 0.158251 0.987399i \(-0.449414\pi\)
0.158251 + 0.987399i \(0.449414\pi\)
\(108\) 0 0
\(109\) 17380.4 1.46288 0.731438 0.681908i \(-0.238850\pi\)
0.731438 + 0.681908i \(0.238850\pi\)
\(110\) 986.777 6873.51i 0.0815518 0.568059i
\(111\) 0 0
\(112\) 152.999 88.3340i 0.0121970 0.00704193i
\(113\) −5120.93 8869.71i −0.401044 0.694628i 0.592808 0.805343i \(-0.298019\pi\)
−0.993852 + 0.110715i \(0.964686\pi\)
\(114\) 0 0
\(115\) −19446.8 2791.82i −1.47045 0.211102i
\(116\) 8599.86i 0.639109i
\(117\) 0 0
\(118\) 5244.30i 0.376638i
\(119\) 541.455 + 312.609i 0.0382357 + 0.0220754i
\(120\) 0 0
\(121\) 1914.53 + 3316.06i 0.130765 + 0.226492i
\(122\) 5266.83 + 9122.41i 0.353858 + 0.612901i
\(123\) 0 0
\(124\) 5476.04 9484.78i 0.356142 0.616856i
\(125\) 14217.1 + 6481.84i 0.909895 + 0.414838i
\(126\) 0 0
\(127\) 27661.2i 1.71500i 0.514484 + 0.857500i \(0.327983\pi\)
−0.514484 + 0.857500i \(0.672017\pi\)
\(128\) −7452.52 + 12908.1i −0.454866 + 0.787850i
\(129\) 0 0
\(130\) −6331.53 4977.00i −0.374647 0.294497i
\(131\) 11192.2 6461.79i 0.652185 0.376539i −0.137108 0.990556i \(-0.543781\pi\)
0.789293 + 0.614017i \(0.210447\pi\)
\(132\) 0 0
\(133\) 762.036 + 439.962i 0.0430797 + 0.0248721i
\(134\) 13384.6i 0.745413i
\(135\) 0 0
\(136\) −14680.3 −0.793702
\(137\) −17968.9 + 31123.0i −0.957369 + 1.65821i −0.228519 + 0.973539i \(0.573388\pi\)
−0.728850 + 0.684673i \(0.759945\pi\)
\(138\) 0 0
\(139\) −9010.90 15607.3i −0.466379 0.807792i 0.532884 0.846188i \(-0.321108\pi\)
−0.999263 + 0.0383967i \(0.987775\pi\)
\(140\) 562.762 + 442.368i 0.0287123 + 0.0225698i
\(141\) 0 0
\(142\) 5896.59 + 3404.40i 0.292432 + 0.168836i
\(143\) 21421.2 1.04754
\(144\) 0 0
\(145\) −16880.6 + 6762.12i −0.802883 + 0.321623i
\(146\) −3072.06 1773.65i −0.144120 0.0832077i
\(147\) 0 0
\(148\) −20456.2 + 11810.4i −0.933904 + 0.539190i
\(149\) −30500.0 + 17609.2i −1.37381 + 0.793172i −0.991406 0.130822i \(-0.958238\pi\)
−0.382408 + 0.923994i \(0.624905\pi\)
\(150\) 0 0
\(151\) −5908.59 + 10234.0i −0.259137 + 0.448839i −0.966011 0.258501i \(-0.916771\pi\)
0.706874 + 0.707340i \(0.250105\pi\)
\(152\) −20660.9 −0.894255
\(153\) 0 0
\(154\) 672.671 0.0283636
\(155\) 22923.5 + 3290.95i 0.954151 + 0.136980i
\(156\) 0 0
\(157\) −4657.79 + 2689.18i −0.188965 + 0.109099i −0.591498 0.806307i \(-0.701463\pi\)
0.402533 + 0.915405i \(0.368130\pi\)
\(158\) 7552.87 + 13082.0i 0.302550 + 0.524033i
\(159\) 0 0
\(160\) −26204.3 3761.95i −1.02360 0.146951i
\(161\) 1903.14i 0.0734209i
\(162\) 0 0
\(163\) 12593.5i 0.473991i −0.971511 0.236995i \(-0.923837\pi\)
0.971511 0.236995i \(-0.0761626\pi\)
\(164\) −14787.1 8537.33i −0.549788 0.317420i
\(165\) 0 0
\(166\) −11169.4 19345.9i −0.405334 0.702059i
\(167\) 17707.1 + 30669.5i 0.634912 + 1.09970i 0.986534 + 0.163558i \(0.0522971\pi\)
−0.351622 + 0.936142i \(0.614370\pi\)
\(168\) 0 0
\(169\) −1858.54 + 3219.09i −0.0650727 + 0.112709i
\(170\) −4905.13 12244.9i −0.169728 0.423699i
\(171\) 0 0
\(172\) 7400.63i 0.250156i
\(173\) 10598.2 18356.6i 0.354112 0.613340i −0.632854 0.774271i \(-0.718117\pi\)
0.986966 + 0.160932i \(0.0514499\pi\)
\(174\) 0 0
\(175\) −425.819 + 1452.48i −0.0139043 + 0.0474279i
\(176\) 8585.95 4957.10i 0.277181 0.160030i
\(177\) 0 0
\(178\) −4115.68 2376.19i −0.129898 0.0749965i
\(179\) 16660.9i 0.519986i 0.965611 + 0.259993i \(0.0837202\pi\)
−0.965611 + 0.259993i \(0.916280\pi\)
\(180\) 0 0
\(181\) 45130.9 1.37758 0.688791 0.724960i \(-0.258142\pi\)
0.688791 + 0.724960i \(0.258142\pi\)
\(182\) 390.076 675.631i 0.0117762 0.0203970i
\(183\) 0 0
\(184\) 22343.2 + 38699.5i 0.659947 + 1.14306i
\(185\) −39267.5 30866.8i −1.14733 0.901880i
\(186\) 0 0
\(187\) 30385.2 + 17542.9i 0.868919 + 0.501670i
\(188\) −4460.51 −0.126203
\(189\) 0 0
\(190\) −6903.40 17233.3i −0.191230 0.477377i
\(191\) −30912.8 17847.5i −0.847367 0.489228i 0.0123943 0.999923i \(-0.496055\pi\)
−0.859762 + 0.510695i \(0.829388\pi\)
\(192\) 0 0
\(193\) 21060.2 12159.1i 0.565390 0.326428i −0.189916 0.981800i \(-0.560822\pi\)
0.755306 + 0.655372i \(0.227488\pi\)
\(194\) 29155.7 16833.0i 0.774675 0.447259i
\(195\) 0 0
\(196\) 14158.8 24523.7i 0.368565 0.638373i
\(197\) −13918.9 −0.358652 −0.179326 0.983790i \(-0.557392\pi\)
−0.179326 + 0.983790i \(0.557392\pi\)
\(198\) 0 0
\(199\) −41162.0 −1.03942 −0.519709 0.854343i \(-0.673960\pi\)
−0.519709 + 0.854343i \(0.673960\pi\)
\(200\) −8393.49 34534.7i −0.209837 0.863366i
\(201\) 0 0
\(202\) −5825.82 + 3363.54i −0.142776 + 0.0824316i
\(203\) −880.784 1525.56i −0.0213736 0.0370201i
\(204\) 0 0
\(205\) 5130.70 35738.5i 0.122087 0.850410i
\(206\) 4714.34i 0.111093i
\(207\) 0 0
\(208\) 11498.3i 0.265771i
\(209\) 42763.7 + 24689.6i 0.979001 + 0.565226i
\(210\) 0 0
\(211\) 24325.2 + 42132.5i 0.546377 + 0.946352i 0.998519 + 0.0544061i \(0.0173266\pi\)
−0.452142 + 0.891946i \(0.649340\pi\)
\(212\) 4106.94 + 7113.42i 0.0913790 + 0.158273i
\(213\) 0 0
\(214\) 3702.96 6413.72i 0.0808577 0.140050i
\(215\) −14526.7 + 5819.16i −0.314260 + 0.125888i
\(216\) 0 0
\(217\) 2243.39i 0.0476415i
\(218\) 17760.9 30762.8i 0.373725 0.647310i
\(219\) 0 0
\(220\) 31580.9 + 24824.7i 0.652498 + 0.512907i
\(221\) 35240.2 20345.9i 0.721529 0.416575i
\(222\) 0 0
\(223\) 24767.9 + 14299.7i 0.498057 + 0.287553i 0.727911 0.685672i \(-0.240491\pi\)
−0.229854 + 0.973225i \(0.573825\pi\)
\(224\) 2564.46i 0.0511094i
\(225\) 0 0
\(226\) −20932.1 −0.409823
\(227\) −4539.31 + 7862.32i −0.0880923 + 0.152580i −0.906705 0.421766i \(-0.861410\pi\)
0.818612 + 0.574346i \(0.194744\pi\)
\(228\) 0 0
\(229\) −11598.2 20088.6i −0.221166 0.383071i 0.733996 0.679154i \(-0.237653\pi\)
−0.955162 + 0.296082i \(0.904320\pi\)
\(230\) −24813.9 + 31567.2i −0.469072 + 0.596733i
\(231\) 0 0
\(232\) 35820.6 + 20681.1i 0.665514 + 0.384235i
\(233\) −18159.1 −0.334490 −0.167245 0.985915i \(-0.553487\pi\)
−0.167245 + 0.985915i \(0.553487\pi\)
\(234\) 0 0
\(235\) −3507.33 8755.51i −0.0635097 0.158542i
\(236\) 26273.0 + 15168.7i 0.471722 + 0.272349i
\(237\) 0 0
\(238\) 1106.62 638.905i 0.0195363 0.0112793i
\(239\) 28454.7 16428.3i 0.498147 0.287605i −0.229801 0.973238i \(-0.573807\pi\)
0.727948 + 0.685632i \(0.240474\pi\)
\(240\) 0 0
\(241\) 17841.6 30902.5i 0.307185 0.532060i −0.670561 0.741855i \(-0.733946\pi\)
0.977745 + 0.209795i \(0.0672797\pi\)
\(242\) 7825.76 0.133627
\(243\) 0 0
\(244\) −60935.6 −1.02351
\(245\) 59270.7 + 8509.04i 0.987434 + 0.141758i
\(246\) 0 0
\(247\) 49596.5 28634.6i 0.812938 0.469350i
\(248\) −26337.7 45618.2i −0.428228 0.741712i
\(249\) 0 0
\(250\) 26001.0 18540.1i 0.416016 0.296641i
\(251\) 7904.26i 0.125462i −0.998030 0.0627312i \(-0.980019\pi\)
0.998030 0.0627312i \(-0.0199811\pi\)
\(252\) 0 0
\(253\) 106800.i 1.66852i
\(254\) 48959.5 + 28266.8i 0.758873 + 0.438136i
\(255\) 0 0
\(256\) 23207.3 + 40196.3i 0.354116 + 0.613346i
\(257\) −37848.7 65555.8i −0.573039 0.992533i −0.996252 0.0865023i \(-0.972431\pi\)
0.423213 0.906030i \(-0.360902\pi\)
\(258\) 0 0
\(259\) 2419.21 4190.19i 0.0360640 0.0624646i
\(260\) 43247.4 17324.2i 0.639754 0.256276i
\(261\) 0 0
\(262\) 26413.0i 0.384782i
\(263\) −9619.50 + 16661.5i −0.139072 + 0.240881i −0.927146 0.374701i \(-0.877745\pi\)
0.788073 + 0.615581i \(0.211079\pi\)
\(264\) 0 0
\(265\) −10733.6 + 13654.8i −0.152846 + 0.194444i
\(266\) 1557.44 899.186i 0.0220114 0.0127083i
\(267\) 0 0
\(268\) 67054.7 + 38714.0i 0.933597 + 0.539012i
\(269\) 44799.5i 0.619111i −0.950881 0.309556i \(-0.899820\pi\)
0.950881 0.309556i \(-0.100180\pi\)
\(270\) 0 0
\(271\) −18271.5 −0.248792 −0.124396 0.992233i \(-0.539699\pi\)
−0.124396 + 0.992233i \(0.539699\pi\)
\(272\) 9416.53 16309.9i 0.127278 0.220452i
\(273\) 0 0
\(274\) 36724.4 + 63608.6i 0.489163 + 0.847256i
\(275\) −23896.0 + 81509.8i −0.315980 + 1.07782i
\(276\) 0 0
\(277\) −100122. 57805.4i −1.30488 0.753371i −0.323641 0.946180i \(-0.604907\pi\)
−0.981236 + 0.192809i \(0.938240\pi\)
\(278\) −36832.6 −0.476588
\(279\) 0 0
\(280\) 3195.92 1280.24i 0.0407642 0.0163295i
\(281\) −104701. 60449.1i −1.32598 0.765557i −0.341308 0.939952i \(-0.610870\pi\)
−0.984676 + 0.174395i \(0.944203\pi\)
\(282\) 0 0
\(283\) −123681. + 71407.4i −1.54430 + 0.891600i −0.545737 + 0.837957i \(0.683750\pi\)
−0.998560 + 0.0536438i \(0.982916\pi\)
\(284\) −34110.9 + 19693.9i −0.422918 + 0.244172i
\(285\) 0 0
\(286\) 21890.1 37914.8i 0.267619 0.463529i
\(287\) 3497.52 0.0424616
\(288\) 0 0
\(289\) −16871.8 −0.202006
\(290\) −5281.41 + 36788.3i −0.0627992 + 0.437435i
\(291\) 0 0
\(292\) 17771.4 10260.3i 0.208428 0.120336i
\(293\) 24499.4 + 42434.3i 0.285378 + 0.494290i 0.972701 0.232063i \(-0.0745475\pi\)
−0.687323 + 0.726352i \(0.741214\pi\)
\(294\) 0 0
\(295\) −9115.99 + 63498.5i −0.104751 + 0.729658i
\(296\) 113607.i 1.29665i
\(297\) 0 0
\(298\) 71978.7i 0.810535i
\(299\) −107270. 61932.3i −1.19987 0.692747i
\(300\) 0 0
\(301\) −757.961 1312.83i −0.00836592 0.0144902i
\(302\) 12075.9 + 20916.0i 0.132405 + 0.229332i
\(303\) 0 0
\(304\) 13252.7 22954.3i 0.143403 0.248381i
\(305\) −47914.1 119610.i −0.515066 1.28579i
\(306\) 0 0
\(307\) 116431.i 1.23536i 0.786430 + 0.617680i \(0.211927\pi\)
−0.786430 + 0.617680i \(0.788073\pi\)
\(308\) −1945.65 + 3369.96i −0.0205099 + 0.0355242i
\(309\) 0 0
\(310\) 29250.1 37210.8i 0.304372 0.387209i
\(311\) 33284.3 19216.7i 0.344127 0.198682i −0.317968 0.948101i \(-0.603001\pi\)
0.662096 + 0.749419i \(0.269667\pi\)
\(312\) 0 0
\(313\) −67083.4 38730.6i −0.684741 0.395335i 0.116898 0.993144i \(-0.462705\pi\)
−0.801639 + 0.597809i \(0.796038\pi\)
\(314\) 10992.2i 0.111487i
\(315\) 0 0
\(316\) −87384.4 −0.875104
\(317\) −2741.17 + 4747.85i −0.0272783 + 0.0472475i −0.879342 0.476190i \(-0.842017\pi\)
0.852064 + 0.523438i \(0.175351\pi\)
\(318\) 0 0
\(319\) −49427.6 85611.0i −0.485722 0.841295i
\(320\) −15403.5 + 19595.7i −0.150425 + 0.191364i
\(321\) 0 0
\(322\) −3368.50 1944.80i −0.0324881 0.0187570i
\(323\) 93801.2 0.899090
\(324\) 0 0
\(325\) 68011.4 + 71267.9i 0.643895 + 0.674725i
\(326\) −22290.0 12869.1i −0.209737 0.121092i
\(327\) 0 0
\(328\) −71120.4 + 41061.4i −0.661069 + 0.381668i
\(329\) 791.267 456.838i 0.00731023 0.00422056i
\(330\) 0 0
\(331\) −33569.2 + 58143.6i −0.306397 + 0.530696i −0.977571 0.210604i \(-0.932457\pi\)
0.671174 + 0.741300i \(0.265790\pi\)
\(332\) 129226. 1.17240
\(333\) 0 0
\(334\) 72378.7 0.648811
\(335\) −23266.1 + 162062.i −0.207316 + 1.44408i
\(336\) 0 0
\(337\) −80579.2 + 46522.4i −0.709517 + 0.409640i −0.810882 0.585209i \(-0.801012\pi\)
0.101365 + 0.994849i \(0.467679\pi\)
\(338\) 3798.45 + 6579.11i 0.0332486 + 0.0575882i
\(339\) 0 0
\(340\) 75532.5 + 10843.6i 0.653395 + 0.0938030i
\(341\) 125894.i 1.08267i
\(342\) 0 0
\(343\) 11615.2i 0.0987273i
\(344\) 30825.5 + 17797.1i 0.260492 + 0.150395i
\(345\) 0 0
\(346\) −21660.4 37517.0i −0.180932 0.313383i
\(347\) 25688.7 + 44494.1i 0.213345 + 0.369525i 0.952759 0.303726i \(-0.0982307\pi\)
−0.739414 + 0.673251i \(0.764897\pi\)
\(348\) 0 0
\(349\) −5628.71 + 9749.21i −0.0462123 + 0.0800421i −0.888206 0.459445i \(-0.848048\pi\)
0.841994 + 0.539487i \(0.181382\pi\)
\(350\) 2135.70 + 2237.96i 0.0174343 + 0.0182691i
\(351\) 0 0
\(352\) 143912.i 1.16148i
\(353\) −78993.2 + 136820.i −0.633929 + 1.09800i 0.352812 + 0.935694i \(0.385225\pi\)
−0.986741 + 0.162302i \(0.948108\pi\)
\(354\) 0 0
\(355\) −65478.8 51470.6i −0.519570 0.408416i
\(356\) 23808.6 13745.9i 0.187860 0.108461i
\(357\) 0 0
\(358\) 29489.2 + 17025.6i 0.230089 + 0.132842i
\(359\) 101263.i 0.785710i 0.919600 + 0.392855i \(0.128513\pi\)
−0.919600 + 0.392855i \(0.871487\pi\)
\(360\) 0 0
\(361\) 1693.47 0.0129946
\(362\) 46118.9 79880.2i 0.351934 0.609568i
\(363\) 0 0
\(364\) 2256.53 + 3908.42i 0.0170309 + 0.0294984i
\(365\) 34113.7 + 26815.6i 0.256061 + 0.201281i
\(366\) 0 0
\(367\) −170900. 98669.4i −1.26885 0.732572i −0.294082 0.955780i \(-0.595014\pi\)
−0.974771 + 0.223208i \(0.928347\pi\)
\(368\) −57327.2 −0.423316
\(369\) 0 0
\(370\) −94760.3 + 37959.6i −0.692187 + 0.277280i
\(371\) −1457.09 841.252i −0.0105862 0.00611193i
\(372\) 0 0
\(373\) 207774. 119959.i 1.49339 0.862212i 0.493423 0.869789i \(-0.335745\pi\)
0.999971 + 0.00757777i \(0.00241210\pi\)
\(374\) 62100.7 35853.9i 0.443970 0.256326i
\(375\) 0 0
\(376\) −10726.7 + 18579.2i −0.0758735 + 0.131417i
\(377\) −114650. −0.806663
\(378\) 0 0
\(379\) 201753. 1.40456 0.702282 0.711898i \(-0.252164\pi\)
0.702282 + 0.711898i \(0.252164\pi\)
\(380\) 106303. + 15261.2i 0.736173 + 0.105687i
\(381\) 0 0
\(382\) −63179.0 + 36476.4i −0.432958 + 0.249969i
\(383\) 30536.6 + 52891.0i 0.208173 + 0.360565i 0.951139 0.308763i \(-0.0999151\pi\)
−0.742966 + 0.669329i \(0.766582\pi\)
\(384\) 0 0
\(385\) −8144.76 1169.28i −0.0549487 0.00788856i
\(386\) 49701.1i 0.333574i
\(387\) 0 0
\(388\) 194753.i 1.29366i
\(389\) −49647.1 28663.8i −0.328091 0.189424i 0.326902 0.945058i \(-0.393995\pi\)
−0.654993 + 0.755635i \(0.727329\pi\)
\(390\) 0 0
\(391\) −101439. 175697.i −0.663516 1.14924i
\(392\) −68098.5 117950.i −0.443165 0.767584i
\(393\) 0 0
\(394\) −14223.6 + 24636.0i −0.0916258 + 0.158701i
\(395\) −68710.9 171526.i −0.440384 1.09935i
\(396\) 0 0
\(397\) 258112.i 1.63767i −0.574029 0.818835i \(-0.694620\pi\)
0.574029 0.818835i \(-0.305380\pi\)
\(398\) −42063.1 + 72855.4i −0.265543 + 0.459934i
\(399\) 0 0
\(400\) 43752.1 + 12826.7i 0.273451 + 0.0801667i
\(401\) 159961. 92353.5i 0.994776 0.574334i 0.0880773 0.996114i \(-0.471928\pi\)
0.906698 + 0.421780i \(0.138594\pi\)
\(402\) 0 0
\(403\) 126448. + 73004.6i 0.778576 + 0.449511i
\(404\) 38915.1i 0.238427i
\(405\) 0 0
\(406\) −3600.26 −0.0218415
\(407\) 135760. 235144.i 0.819566 1.41953i
\(408\) 0 0
\(409\) 25843.5 + 44762.2i 0.154491 + 0.267587i 0.932874 0.360204i \(-0.117293\pi\)
−0.778382 + 0.627790i \(0.783959\pi\)
\(410\) −58012.9 45602.0i −0.345109 0.271279i
\(411\) 0 0
\(412\) −23618.0 13635.9i −0.139139 0.0803320i
\(413\) −6214.23 −0.0364324
\(414\) 0 0
\(415\) 101611. + 253658.i 0.589993 + 1.47283i
\(416\) −144545. 83453.1i −0.835250 0.482232i
\(417\) 0 0
\(418\) 87399.7 50460.2i 0.500216 0.288800i
\(419\) −293177. + 169266.i −1.66994 + 0.964142i −0.702278 + 0.711903i \(0.747833\pi\)
−0.967665 + 0.252239i \(0.918833\pi\)
\(420\) 0 0
\(421\) −112147. + 194245.i −0.632740 + 1.09594i 0.354249 + 0.935151i \(0.384736\pi\)
−0.986989 + 0.160787i \(0.948597\pi\)
\(422\) 99430.9 0.558337
\(423\) 0 0
\(424\) 39505.7 0.219749
\(425\) 38106.8 + 156789.i 0.210972 + 0.868035i
\(426\) 0 0
\(427\) 10809.6 6240.93i 0.0592862 0.0342289i
\(428\) 21421.1 + 37102.4i 0.116937 + 0.202541i
\(429\) 0 0
\(430\) −4544.93 + 31658.3i −0.0245805 + 0.171218i
\(431\) 334739.i 1.80199i 0.433833 + 0.900993i \(0.357161\pi\)
−0.433833 + 0.900993i \(0.642839\pi\)
\(432\) 0 0
\(433\) 79690.3i 0.425040i −0.977157 0.212520i \(-0.931833\pi\)
0.977157 0.212520i \(-0.0681671\pi\)
\(434\) 3970.72 + 2292.50i 0.0210809 + 0.0121711i
\(435\) 0 0
\(436\) 102744. + 177958.i 0.540485 + 0.936147i
\(437\) −142764. 247274.i −0.747575 1.29484i
\(438\) 0 0
\(439\) 25448.4 44077.8i 0.132048 0.228713i −0.792418 0.609978i \(-0.791178\pi\)
0.924466 + 0.381265i \(0.124511\pi\)
\(440\) 179347. 71843.9i 0.926381 0.371095i
\(441\) 0 0
\(442\) 83165.3i 0.425694i
\(443\) 145297. 251662.i 0.740372 1.28236i −0.211955 0.977280i \(-0.567983\pi\)
0.952326 0.305082i \(-0.0986838\pi\)
\(444\) 0 0
\(445\) 45702.6 + 35925.3i 0.230792 + 0.181418i
\(446\) 50620.1 29225.6i 0.254480 0.146924i
\(447\) 0 0
\(448\) −2091.03 1207.26i −0.0104185 0.00601511i
\(449\) 361637.i 1.79382i −0.442210 0.896912i \(-0.645805\pi\)
0.442210 0.896912i \(-0.354195\pi\)
\(450\) 0 0
\(451\) 196273. 0.964955
\(452\) 60544.5 104866.i 0.296345 0.513285i
\(453\) 0 0
\(454\) 9277.36 + 16068.9i 0.0450104 + 0.0779602i
\(455\) −5897.50 + 7502.54i −0.0284869 + 0.0362398i
\(456\) 0 0
\(457\) −63960.2 36927.5i −0.306251 0.176814i 0.338997 0.940788i \(-0.389912\pi\)
−0.645248 + 0.763973i \(0.723246\pi\)
\(458\) −47408.3 −0.226008
\(459\) 0 0
\(460\) −86373.7 215619.i −0.408193 1.01899i
\(461\) −5305.41 3063.08i −0.0249642 0.0144131i 0.487466 0.873142i \(-0.337921\pi\)
−0.512430 + 0.858729i \(0.671255\pi\)
\(462\) 0 0
\(463\) 207709. 119921.i 0.968933 0.559414i 0.0700222 0.997545i \(-0.477693\pi\)
0.898911 + 0.438132i \(0.144360\pi\)
\(464\) −45953.6 + 26531.3i −0.213444 + 0.123232i
\(465\) 0 0
\(466\) −18556.6 + 32141.0i −0.0854530 + 0.148009i
\(467\) 55135.6 0.252812 0.126406 0.991979i \(-0.459656\pi\)
0.126406 + 0.991979i \(0.459656\pi\)
\(468\) 0 0
\(469\) −15860.1 −0.0721042
\(470\) −19081.1 2739.32i −0.0863787 0.0124007i
\(471\) 0 0
\(472\) 126364. 72956.0i 0.567202 0.327474i
\(473\) −42535.0 73672.8i −0.190118 0.329295i
\(474\) 0 0
\(475\) 53631.0 + 220662.i 0.237700 + 0.978005i
\(476\) 7391.93i 0.0326245i
\(477\) 0 0
\(478\) 67151.7i 0.293901i
\(479\) 315795. + 182324.i 1.37637 + 0.794645i 0.991720 0.128419i \(-0.0409904\pi\)
0.384646 + 0.923064i \(0.374324\pi\)
\(480\) 0 0
\(481\) −157452. 272715.i −0.680548 1.17874i
\(482\) −36464.3 63158.0i −0.156955 0.271853i
\(483\) 0 0
\(484\) −22635.4 + 39205.7i −0.0966268 + 0.167363i
\(485\) −382280. + 153136.i −1.62517 + 0.651017i
\(486\) 0 0
\(487\) 119653.i 0.504505i 0.967661 + 0.252253i \(0.0811714\pi\)
−0.967661 + 0.252253i \(0.918829\pi\)
\(488\) −146539. + 253813.i −0.615337 + 1.06579i
\(489\) 0 0
\(490\) 75628.9 96211.8i 0.314989 0.400716i
\(491\) 91852.2 53030.9i 0.381001 0.219971i −0.297253 0.954799i \(-0.596070\pi\)
0.678254 + 0.734828i \(0.262737\pi\)
\(492\) 0 0
\(493\) −162627. 93892.9i −0.669113 0.386312i
\(494\) 117046.i 0.479624i
\(495\) 0 0
\(496\) 67576.2 0.274682
\(497\) 4034.04 6987.17i 0.0163316 0.0282871i
\(498\) 0 0
\(499\) −95907.1 166116.i −0.385167 0.667129i 0.606625 0.794988i \(-0.292523\pi\)
−0.991792 + 0.127859i \(0.959190\pi\)
\(500\) 17676.8 + 183886.i 0.0707071 + 0.735544i
\(501\) 0 0
\(502\) −13990.3 8077.29i −0.0555161 0.0320522i
\(503\) 155699. 0.615391 0.307696 0.951485i \(-0.400442\pi\)
0.307696 + 0.951485i \(0.400442\pi\)
\(504\) 0 0
\(505\) 76386.3 30599.2i 0.299525 0.119985i
\(506\) −189032. 109138.i −0.738304 0.426260i
\(507\) 0 0
\(508\) −283223. + 163519.i −1.09749 + 0.633637i
\(509\) 253416. 146310.i 0.978132 0.564725i 0.0764267 0.997075i \(-0.475649\pi\)
0.901706 + 0.432350i \(0.142316\pi\)
\(510\) 0 0
\(511\) −2101.69 + 3640.24i −0.00804873 + 0.0139408i
\(512\) −143619. −0.547864
\(513\) 0 0
\(514\) −154709. −0.585583
\(515\) 8194.78 57081.7i 0.0308975 0.215220i
\(516\) 0 0
\(517\) 44404.1 25636.7i 0.166128 0.0959138i
\(518\) −4944.33 8563.83i −0.0184267 0.0319160i
\(519\) 0 0
\(520\) 31841.9 221798.i 0.117758 0.820259i
\(521\) 28599.3i 0.105361i −0.998611 0.0526805i \(-0.983224\pi\)
0.998611 0.0526805i \(-0.0167765\pi\)
\(522\) 0 0
\(523\) 255598.i 0.934444i 0.884140 + 0.467222i \(0.154745\pi\)
−0.884140 + 0.467222i \(0.845255\pi\)
\(524\) 132324. + 76397.5i 0.481923 + 0.278238i
\(525\) 0 0
\(526\) 19660.2 + 34052.4i 0.0710584 + 0.123077i
\(527\) 119574. + 207109.i 0.430543 + 0.745722i
\(528\) 0 0
\(529\) −168856. + 292467.i −0.603400 + 1.04512i
\(530\) 13200.0 + 32951.8i 0.0469919 + 0.117308i
\(531\) 0 0
\(532\) 10403.3i 0.0367577i
\(533\) 113817. 197136.i 0.400638 0.693925i
\(534\) 0 0
\(535\) −55984.5 + 71221.1i −0.195596 + 0.248829i
\(536\) 322508. 186200.i 1.12256 0.648112i
\(537\) 0 0
\(538\) −79293.6 45780.2i −0.273952 0.158166i
\(539\) 325510.i 1.12043i
\(540\) 0 0
\(541\) 222986. 0.761874 0.380937 0.924601i \(-0.375601\pi\)
0.380937 + 0.924601i \(0.375601\pi\)
\(542\) −18671.5 + 32339.9i −0.0635595 + 0.110088i
\(543\) 0 0
\(544\) −136688. 236750.i −0.461883 0.800005i
\(545\) −268524. + 341605.i −0.904046 + 1.15009i
\(546\) 0 0
\(547\) 92696.0 + 53518.0i 0.309803 + 0.178865i 0.646838 0.762627i \(-0.276091\pi\)
−0.337035 + 0.941492i \(0.609424\pi\)
\(548\) −424890. −1.41487
\(549\) 0 0
\(550\) 119851. + 125589.i 0.396200 + 0.415171i
\(551\) −228879. 132143.i −0.753882 0.435254i
\(552\) 0 0
\(553\) 15501.5 8949.77i 0.0506900 0.0292659i
\(554\) −204627. + 118142.i −0.666721 + 0.384931i
\(555\) 0 0
\(556\) 106536. 184525.i 0.344624 0.596906i
\(557\) 165757. 0.534272 0.267136 0.963659i \(-0.413923\pi\)
0.267136 + 0.963659i \(0.413923\pi\)
\(558\) 0 0
\(559\) −98662.6 −0.315740
\(560\) −627.637 + 4371.88i −0.00200139 + 0.0139409i
\(561\) 0 0
\(562\) −213986. + 123545.i −0.677505 + 0.391158i
\(563\) 198623. + 344026.i 0.626634 + 1.08536i 0.988223 + 0.153024i \(0.0489011\pi\)
−0.361589 + 0.932338i \(0.617766\pi\)
\(564\) 0 0
\(565\) 253448. + 36385.6i 0.793947 + 0.113981i
\(566\) 291882.i 0.911118i
\(567\) 0 0
\(568\) 189441.i 0.587188i
\(569\) 39485.1 + 22796.7i 0.121957 + 0.0704122i 0.559738 0.828670i \(-0.310902\pi\)
−0.437780 + 0.899082i \(0.644235\pi\)
\(570\) 0 0
\(571\) 137353. + 237902.i 0.421275 + 0.729669i 0.996064 0.0886320i \(-0.0282495\pi\)
−0.574790 + 0.818301i \(0.694916\pi\)
\(572\) 126631. + 219331.i 0.387033 + 0.670361i
\(573\) 0 0
\(574\) 3574.08 6190.49i 0.0108478 0.0187889i
\(575\) 355321. 339085.i 1.07469 1.02559i
\(576\) 0 0
\(577\) 85338.7i 0.256327i 0.991753 + 0.128164i \(0.0409082\pi\)
−0.991753 + 0.128164i \(0.959092\pi\)
\(578\) −17241.1 + 29862.5i −0.0516071 + 0.0893861i
\(579\) 0 0
\(580\) −169027. 132866.i −0.502457 0.394965i
\(581\) −22924.0 + 13235.2i −0.0679106 + 0.0392082i
\(582\) 0 0
\(583\) −81768.6 47209.1i −0.240574 0.138896i
\(584\) 98696.7i 0.289385i
\(585\) 0 0
\(586\) 100143. 0.291625
\(587\) −183601. + 318006.i −0.532843 + 0.922910i 0.466422 + 0.884562i \(0.345543\pi\)
−0.999264 + 0.0383480i \(0.987790\pi\)
\(588\) 0 0
\(589\) 168287. + 291482.i 0.485088 + 0.840197i
\(590\) 103075. + 81023.5i 0.296106 + 0.232759i
\(591\) 0 0
\(592\) −126218. 72872.3i −0.360147 0.207931i
\(593\) 203932. 0.579930 0.289965 0.957037i \(-0.406356\pi\)
0.289965 + 0.957037i \(0.406356\pi\)
\(594\) 0 0
\(595\) −14509.6 + 5812.33i −0.0409847 + 0.0164178i
\(596\) −360601. 208193.i −1.01516 0.586102i
\(597\) 0 0
\(598\) −219236. + 126576.i −0.613070 + 0.353956i
\(599\) −150018. + 86613.1i −0.418110 + 0.241396i −0.694268 0.719716i \(-0.744272\pi\)
0.276158 + 0.961112i \(0.410939\pi\)
\(600\) 0 0
\(601\) 194986. 337727.i 0.539828 0.935010i −0.459085 0.888393i \(-0.651823\pi\)
0.998913 0.0466173i \(-0.0148441\pi\)
\(602\) −3098.21 −0.00854906
\(603\) 0 0
\(604\) −139714. −0.382971
\(605\) −94755.0 13603.3i −0.258876 0.0371648i
\(606\) 0 0
\(607\) −162922. + 94063.2i −0.442184 + 0.255295i −0.704524 0.709681i \(-0.748839\pi\)
0.262340 + 0.964976i \(0.415506\pi\)
\(608\) −192373. 333199.i −0.520398 0.901356i
\(609\) 0 0
\(610\) −260669. 37422.2i −0.700535 0.100570i
\(611\) 59465.9i 0.159289i
\(612\) 0 0
\(613\) 105068.i 0.279608i −0.990179 0.139804i \(-0.955353\pi\)
0.990179 0.139804i \(-0.0446472\pi\)
\(614\) 206080. + 118980.i 0.546636 + 0.315601i
\(615\) 0 0
\(616\) 9357.85 + 16208.3i 0.0246612 + 0.0427145i
\(617\) 40749.7 + 70580.5i 0.107042 + 0.185402i 0.914571 0.404426i \(-0.132529\pi\)
−0.807529 + 0.589828i \(0.799195\pi\)
\(618\) 0 0
\(619\) −61533.5 + 106579.i −0.160594 + 0.278158i −0.935082 0.354431i \(-0.884674\pi\)
0.774488 + 0.632589i \(0.218008\pi\)
\(620\) 101816. + 254167.i 0.264869 + 0.661205i
\(621\) 0 0
\(622\) 78549.5i 0.203031i
\(623\) −2815.67 + 4876.88i −0.00725446 + 0.0125651i
\(624\) 0 0
\(625\) −347050. + 179289.i −0.888447 + 0.458979i
\(626\) −137104. + 79156.9i −0.349865 + 0.201995i
\(627\) 0 0
\(628\) −55068.9 31794.0i −0.139633 0.0806170i
\(629\) 515782.i 1.30366i
\(630\) 0 0
\(631\) −760006. −1.90879 −0.954396 0.298545i \(-0.903499\pi\)
−0.954396 + 0.298545i \(0.903499\pi\)
\(632\) −210143. + 363979.i −0.526116 + 0.911259i
\(633\) 0 0
\(634\) 5602.36 + 9703.57i 0.0139377 + 0.0241409i
\(635\) −543670. 427361.i −1.34831 1.05986i
\(636\) 0 0
\(637\) 326942. + 188760.i 0.805734 + 0.465191i
\(638\) −202038. −0.496355
\(639\) 0 0
\(640\) −138564. 345905.i −0.338292 0.844494i
\(641\) 209786. + 121120.i 0.510577 + 0.294782i 0.733071 0.680152i \(-0.238086\pi\)
−0.222494 + 0.974934i \(0.571420\pi\)
\(642\) 0 0
\(643\) 335283. 193576.i 0.810941 0.468197i −0.0363415 0.999339i \(-0.511570\pi\)
0.847283 + 0.531142i \(0.178237\pi\)
\(644\) 19486.2 11250.4i 0.0469847 0.0271266i
\(645\) 0 0
\(646\) 95854.5 166025.i 0.229693 0.397840i
\(647\) −174684. −0.417297 −0.208649 0.977991i \(-0.566907\pi\)
−0.208649 + 0.977991i \(0.566907\pi\)
\(648\) 0 0
\(649\) −348729. −0.827939
\(650\) 195642. 47549.9i 0.463058 0.112544i
\(651\) 0 0
\(652\) 128944. 74446.0i 0.303324 0.175124i
\(653\) −149972. 259759.i −0.351709 0.609178i 0.634840 0.772644i \(-0.281066\pi\)
−0.986549 + 0.163466i \(0.947733\pi\)
\(654\) 0 0
\(655\) −45912.8 + 319811.i −0.107017 + 0.745436i
\(656\) 105354.i 0.244817i
\(657\) 0 0
\(658\) 1867.35i 0.00431295i
\(659\) −206766. 119376.i −0.476111 0.274883i 0.242683 0.970106i \(-0.421972\pi\)
−0.718794 + 0.695223i \(0.755306\pi\)
\(660\) 0 0
\(661\) 174605. + 302425.i 0.399627 + 0.692174i 0.993680 0.112252i \(-0.0358063\pi\)
−0.594053 + 0.804426i \(0.702473\pi\)
\(662\) 68608.1 + 118833.i 0.156552 + 0.271157i
\(663\) 0 0
\(664\) 310765. 538261.i 0.704849 1.22083i
\(665\) −20420.6 + 8180.19i −0.0461769 + 0.0184978i
\(666\) 0 0
\(667\) 571613.i 1.28484i
\(668\) −209350. + 362605.i −0.469159 + 0.812607i
\(669\) 0 0
\(670\) 263070. + 206790.i 0.586032 + 0.460660i
\(671\) 606610. 350226.i 1.34730 0.777864i
\(672\) 0 0
\(673\) −154058. 88945.3i −0.340137 0.196378i 0.320196 0.947351i \(-0.396251\pi\)
−0.660332 + 0.750973i \(0.729585\pi\)
\(674\) 190163.i 0.418607i
\(675\) 0 0
\(676\) −43946.9 −0.0961690
\(677\) 23441.0 40601.0i 0.0511444 0.0885848i −0.839320 0.543638i \(-0.817046\pi\)
0.890464 + 0.455053i \(0.150380\pi\)
\(678\) 0 0
\(679\) −19946.3 34548.0i −0.0432636 0.0749347i
\(680\) 226808. 288536.i 0.490502 0.623996i
\(681\) 0 0
\(682\) 222828. + 128650.i 0.479072 + 0.276592i
\(683\) 880813. 1.88817 0.944087 0.329696i \(-0.106946\pi\)
0.944087 + 0.329696i \(0.106946\pi\)
\(684\) 0 0
\(685\) −334094. 834015.i −0.712013 1.77743i
\(686\) 20558.5 + 11869.4i 0.0436860 + 0.0252221i
\(687\) 0 0
\(688\) −39545.5 + 22831.6i −0.0835449 + 0.0482346i
\(689\) −94833.7 + 54752.2i −0.199767 + 0.115336i
\(690\) 0 0
\(691\) 43555.7 75440.8i 0.0912198 0.157997i −0.816805 0.576914i \(-0.804257\pi\)
0.908025 + 0.418917i \(0.137590\pi\)
\(692\) 250605. 0.523331
\(693\) 0 0
\(694\) 105004. 0.218016
\(695\) 445973. + 64024.9i 0.923292 + 0.132550i
\(696\) 0 0
\(697\) 322890. 186420.i 0.664643 0.383732i
\(698\) 11503.9 + 19925.3i 0.0236120 + 0.0408971i
\(699\) 0 0
\(700\) −17389.1 + 4226.35i −0.0354880 + 0.00862520i
\(701\) 595389.i 1.21162i 0.795611 + 0.605808i \(0.207150\pi\)
−0.795611 + 0.605808i \(0.792850\pi\)
\(702\) 0 0
\(703\) 725905.i 1.46882i
\(704\) −117344. 67748.5i −0.236764 0.136696i
\(705\) 0 0
\(706\) 161445. + 279631.i 0.323903 + 0.561016i
\(707\) 3985.62 + 6903.30i 0.00797365 + 0.0138108i
\(708\) 0 0
\(709\) 323680. 560629.i 0.643906 1.11528i −0.340647 0.940191i \(-0.610646\pi\)
0.984553 0.175087i \(-0.0560207\pi\)
\(710\) −158013. + 63297.8i −0.313456 + 0.125566i
\(711\) 0 0
\(712\) 132225.i 0.260828i
\(713\) 363980. 630432.i 0.715976 1.24011i
\(714\) 0 0
\(715\) −330954. + 421025.i −0.647374 + 0.823562i
\(716\) −170590. + 98490.4i −0.332758 + 0.192118i
\(717\) 0 0
\(718\) 179232. + 103480.i 0.347670 + 0.200727i
\(719\) 234792.i 0.454178i 0.973874 + 0.227089i \(0.0729209\pi\)
−0.973874 + 0.227089i \(0.927079\pi\)
\(720\) 0 0
\(721\) 5586.26 0.0107461
\(722\) 1730.54 2997.39i 0.00331977 0.00575001i
\(723\) 0 0
\(724\) 266791. + 462095.i 0.508971 + 0.881564i
\(725\) 127896. 436255.i 0.243321 0.829974i
\(726\) 0 0
\(727\) 772639. + 446083.i 1.46187 + 0.844009i 0.999098 0.0424699i \(-0.0135227\pi\)
0.462769 + 0.886479i \(0.346856\pi\)
\(728\) 21706.1 0.0409562
\(729\) 0 0
\(730\) 82323.2 32977.5i 0.154482 0.0618830i
\(731\) −139949. 80799.8i −0.261900 0.151208i
\(732\) 0 0
\(733\) 354772. 204828.i 0.660300 0.381224i −0.132092 0.991238i \(-0.542169\pi\)
0.792391 + 0.610013i \(0.208836\pi\)
\(734\) −349283. + 201659.i −0.648314 + 0.374304i
\(735\) 0 0
\(736\) −416073. + 720659.i −0.768093 + 1.33038i
\(737\) −890033. −1.63859
\(738\) 0 0
\(739\) 635453. 1.16357 0.581787 0.813341i \(-0.302354\pi\)
0.581787 + 0.813341i \(0.302354\pi\)
\(740\) 83916.2 584528.i 0.153244 1.06744i
\(741\) 0 0
\(742\) −2977.98 + 1719.34i −0.00540896 + 0.00312286i
\(743\) −22811.7 39511.0i −0.0413219 0.0715716i 0.844625 0.535359i \(-0.179824\pi\)
−0.885947 + 0.463787i \(0.846490\pi\)
\(744\) 0 0
\(745\) 125118. 871525.i 0.225428 1.57024i
\(746\) 490338.i 0.881086i
\(747\) 0 0
\(748\) 414818.i 0.741404i
\(749\) −7599.93 4387.82i −0.0135471 0.00782142i
\(750\) 0 0
\(751\) −134221. 232478.i −0.237981 0.412195i 0.722154 0.691732i \(-0.243152\pi\)
−0.960135 + 0.279538i \(0.909819\pi\)
\(752\) −13761.0 23834.8i −0.0243341 0.0421479i
\(753\) 0 0
\(754\) −117160. + 202927.i −0.206080 + 0.356942i
\(755\) −109858. 274244.i −0.192725 0.481108i
\(756\) 0 0
\(757\) 453292.i 0.791018i 0.918462 + 0.395509i \(0.129432\pi\)
−0.918462 + 0.395509i \(0.870568\pi\)
\(758\) 206170. 357096.i 0.358828 0.621508i
\(759\) 0 0
\(760\) 319207. 406081.i 0.552643 0.703049i
\(761\) −20609.8 + 11899.1i −0.0355881 + 0.0205468i −0.517689 0.855569i \(-0.673207\pi\)
0.482100 + 0.876116i \(0.339874\pi\)
\(762\) 0 0
\(763\) −36452.3 21045.8i −0.0626147 0.0361506i
\(764\) 422021.i 0.723015i
\(765\) 0 0
\(766\) 124820. 0.212730
\(767\) −202224. + 350263.i −0.343750 + 0.595392i
\(768\) 0 0
\(769\) 424556. + 735352.i 0.717930 + 1.24349i 0.961818 + 0.273688i \(0.0882437\pi\)
−0.243888 + 0.969803i \(0.578423\pi\)
\(770\) −10392.6 + 13221.1i −0.0175285 + 0.0222990i
\(771\) 0 0
\(772\) 248994. + 143757.i 0.417786 + 0.241209i
\(773\) −367992. −0.615857 −0.307928 0.951410i \(-0.599636\pi\)
−0.307928 + 0.951410i \(0.599636\pi\)
\(774\) 0 0
\(775\) −418846. + 399707.i −0.697350 + 0.665485i
\(776\) 811197. + 468345.i 1.34711 + 0.777754i
\(777\) 0 0
\(778\) −101468. + 58582.5i −0.167637 + 0.0967851i
\(779\) 454430. 262366.i 0.748846 0.432346i
\(780\) 0 0
\(781\) 226381. 392104.i 0.371140 0.642834i
\(782\) −414638. −0.678040
\(783\) 0 0
\(784\) 174724. 0.284264
\(785\) 19107.3 133094.i 0.0310071 0.215983i
\(786\) 0 0
\(787\) −9633.41 + 5561.85i −0.0155536 + 0.00897987i −0.507757 0.861501i \(-0.669525\pi\)
0.492203 + 0.870480i \(0.336192\pi\)
\(788\) −82281.5 142516.i −0.132510 0.229515i
\(789\) 0 0
\(790\) −373811. 53665.2i −0.598960 0.0859881i
\(791\) 24803.5i 0.0396424i
\(792\) 0 0
\(793\) 812372.i 1.29184i
\(794\) −456849. 263762.i −0.724655 0.418380i
\(795\) 0 0
\(796\) −243328. 421457.i −0.384031 0.665162i
\(797\) −131296. 227411.i −0.206697 0.358009i 0.743975 0.668207i \(-0.232938\pi\)
−0.950672 + 0.310198i \(0.899605\pi\)
\(798\) 0 0
\(799\) 48699.6 84350.2i 0.0762837 0.132127i
\(800\) 478791. 456913.i 0.748111 0.713927i
\(801\) 0 0
\(802\) 377501.i 0.586906i
\(803\) −117942. + 204282.i −0.182910 + 0.316810i
\(804\) 0 0
\(805\) 37405.5 + 29403.2i 0.0577223 + 0.0453736i
\(806\) 258431. 149205.i 0.397810 0.229675i
\(807\) 0 0
\(808\) −162092. 93583.6i −0.248278 0.143343i
\(809\) 1.09146e6i 1.66767i 0.552012 + 0.833836i \(0.313860\pi\)
−0.552012 + 0.833836i \(0.686140\pi\)
\(810\) 0 0
\(811\) −380079. −0.577873 −0.288936 0.957348i \(-0.593302\pi\)
−0.288936 + 0.957348i \(0.593302\pi\)
\(812\) 10413.5 18036.7i 0.0157937 0.0273555i
\(813\) 0 0
\(814\) −277464. 480583.i −0.418754 0.725303i
\(815\) 247519. + 194567.i 0.372644 + 0.292923i
\(816\) 0 0
\(817\) −196963. 113716.i −0.295080 0.170365i
\(818\) 105637. 0.157873
\(819\) 0 0
\(820\) 396256. 158734.i 0.589316 0.236071i
\(821\) −468285. 270364.i −0.694743 0.401110i 0.110644 0.993860i \(-0.464709\pi\)
−0.805386 + 0.592750i \(0.798042\pi\)
\(822\) 0 0
\(823\) 41821.1 24145.4i 0.0617441 0.0356480i −0.468810 0.883299i \(-0.655317\pi\)
0.530554 + 0.847651i \(0.321984\pi\)
\(824\) −113594. + 65583.5i −0.167302 + 0.0965917i
\(825\) 0 0
\(826\) −6350.27 + 10999.0i −0.00930748 + 0.0161210i
\(827\) 433990. 0.634554 0.317277 0.948333i \(-0.397232\pi\)
0.317277 + 0.948333i \(0.397232\pi\)
\(828\) 0 0
\(829\) −126257. −0.183716 −0.0918578 0.995772i \(-0.529281\pi\)
−0.0918578 + 0.995772i \(0.529281\pi\)
\(830\) 552801. + 79361.5i 0.802441 + 0.115200i
\(831\) 0 0
\(832\) −136093. + 78573.4i −0.196603 + 0.113509i
\(833\) 309170. + 535498.i 0.445561 + 0.771735i
\(834\) 0 0
\(835\) −876368. 125813.i −1.25694 0.180449i
\(836\) 583809.i 0.835331i
\(837\) 0 0
\(838\) 691884.i 0.985247i
\(839\) −130170. 75153.9i −0.184922 0.106765i 0.404681 0.914458i \(-0.367382\pi\)
−0.589603 + 0.807693i \(0.700716\pi\)
\(840\) 0 0
\(841\) −89095.3 154318.i −0.125969 0.218184i
\(842\) 229205. + 396994.i 0.323295 + 0.559964i
\(843\) 0 0
\(844\) −287596. + 498131.i −0.403737 + 0.699292i
\(845\) −34555.7 86263.2i −0.0483957 0.120813i
\(846\) 0 0
\(847\) 9273.13i 0.0129259i
\(848\) −25340.5 + 43891.1i −0.0352390 + 0.0610358i
\(849\) 0 0
\(850\) 316452. + 92773.2i 0.437996 + 0.128406i
\(851\) −1.35968e6 + 785011.i −1.87749 + 1.08397i
\(852\) 0 0
\(853\) 247353. + 142809.i 0.339953 + 0.196272i 0.660251 0.751045i \(-0.270450\pi\)
−0.320298 + 0.947317i \(0.603783\pi\)
\(854\) 25510.2i 0.0349782i
\(855\) 0 0
\(856\) 206055. 0.281213
\(857\) −604631. + 1.04725e6i −0.823244 + 1.42590i 0.0800099 + 0.996794i \(0.474505\pi\)
−0.903254 + 0.429106i \(0.858829\pi\)
\(858\) 0 0
\(859\) −322885. 559253.i −0.437584 0.757918i 0.559919 0.828548i \(-0.310832\pi\)
−0.997503 + 0.0706299i \(0.977499\pi\)
\(860\) −145456. 114338.i −0.196669 0.154595i
\(861\) 0 0
\(862\) 592477. + 342067.i 0.797364 + 0.460358i
\(863\) −753393. −1.01158 −0.505790 0.862657i \(-0.668799\pi\)
−0.505790 + 0.862657i \(0.668799\pi\)
\(864\) 0 0
\(865\) 197052. + 491910.i 0.263359 + 0.657437i
\(866\) −141049. 81434.8i −0.188077 0.108586i
\(867\) 0 0
\(868\) −22970.0 + 13261.7i −0.0304875 + 0.0176020i
\(869\) 869906. 502241.i 1.15195 0.665077i
\(870\) 0 0
\(871\) −516122. + 893949.i −0.680324 + 1.17836i
\(872\) 988321. 1.29977
\(873\) 0 0
\(874\) −583556. −0.763940
\(875\) −21969.1 30809.8i −0.0286943 0.0402414i
\(876\) 0 0
\(877\) −765073. + 441715.i −0.994726 + 0.574306i −0.906684 0.421811i \(-0.861395\pi\)
−0.0880427 + 0.996117i \(0.528061\pi\)
\(878\) −52010.9 90085.5i −0.0674691 0.116860i
\(879\) 0 0
\(880\) −35221.5 + 245340.i −0.0454824 + 0.316813i
\(881\) 404743.i 0.521468i −0.965411 0.260734i \(-0.916035\pi\)
0.965411 0.260734i \(-0.0839646\pi\)
\(882\) 0 0
\(883\) 27686.5i 0.0355096i −0.999842 0.0177548i \(-0.994348\pi\)
0.999842 0.0177548i \(-0.00565183\pi\)
\(884\) 416643. + 240549.i 0.533163 + 0.307822i
\(885\) 0 0
\(886\) −296956. 514342.i −0.378289 0.655216i
\(887\) 636301. + 1.10210e6i 0.808752 + 1.40080i 0.913729 + 0.406324i \(0.133190\pi\)
−0.104978 + 0.994475i \(0.533477\pi\)
\(888\) 0 0
\(889\) 33494.7 58014.5i 0.0423811 0.0734062i
\(890\) 110290. 44180.4i 0.139237 0.0557763i
\(891\) 0 0
\(892\) 338131.i 0.424967i
\(893\) 68539.1 118713.i 0.0859480 0.148866i
\(894\) 0 0
\(895\) −327463. 257407.i −0.408804 0.321347i
\(896\) 31260.6 18048.3i 0.0389387 0.0224813i
\(897\) 0 0
\(898\) −640085. 369553.i −0.793752 0.458273i
\(899\) 673807.i 0.833712i
\(900\) 0 0
\(901\) −179357. −0.220938
\(902\) 200569. 347396.i 0.246520 0.426985i
\(903\) 0 0
\(904\) −291197. 504367.i −0.356328 0.617177i
\(905\) −697265. + 887030.i −0.851335 + 1.08303i
\(906\) 0 0
\(907\) −479947. 277097.i −0.583416 0.336836i 0.179074 0.983836i \(-0.442690\pi\)
−0.762490 + 0.647000i \(0.776023\pi\)
\(908\) −107336. −0.130189
\(909\) 0 0
\(910\) 7252.65 + 18105.1i 0.00875818 + 0.0218635i
\(911\) 771670. + 445524.i 0.929811 + 0.536827i 0.886752 0.462246i \(-0.152956\pi\)
0.0430595 + 0.999073i \(0.486289\pi\)
\(912\) 0 0
\(913\) −1.28644e6 + 742726.i −1.54329 + 0.891019i
\(914\) −130721. + 75471.6i −0.156478 + 0.0903424i
\(915\) 0 0
\(916\) 137125. 237507.i 0.163427 0.283065i
\(917\) −31298.1 −0.0372202
\(918\) 0 0
\(919\) 242131. 0.286695 0.143347 0.989672i \(-0.454213\pi\)
0.143347 + 0.989672i \(0.454213\pi\)
\(920\) −1.10582e6 158754.i −1.30650 0.187564i
\(921\) 0 0
\(922\) −10843.1 + 6260.27i −0.0127553 + 0.00736430i
\(923\) −262553. 454754.i −0.308186 0.533794i
\(924\) 0 0
\(925\) 1.21335e6 294899.i 1.41809 0.344660i
\(926\) 490184.i 0.571660i
\(927\) 0 0
\(928\) 770242.i 0.894399i
\(929\) −953051. 550244.i −1.10429 0.637565i −0.166949 0.985966i \(-0.553391\pi\)
−0.937346 + 0.348401i \(0.886725\pi\)
\(930\) 0 0
\(931\) 435122. + 753653.i 0.502009 + 0.869505i
\(932\) −107347. 185931.i −0.123583 0.214052i
\(933\) 0 0
\(934\) 56342.5 97588.1i 0.0645866 0.111867i
\(935\) −814245. + 326174.i −0.931391 + 0.373101i
\(936\) 0 0
\(937\) 580897.i 0.661637i 0.943694 + 0.330819i \(0.107325\pi\)
−0.943694 + 0.330819i \(0.892675\pi\)
\(938\) −16207.3 + 28071.9i −0.0184207 + 0.0319055i
\(939\) 0 0
\(940\) 68914.0 87669.4i 0.0779923 0.0992185i
\(941\) −721653. + 416647.i −0.814985 + 0.470532i −0.848684 0.528900i \(-0.822604\pi\)
0.0336993 + 0.999432i \(0.489271\pi\)
\(942\) 0 0
\(943\) −982865. 567457.i −1.10528 0.638131i
\(944\) 187188.i 0.210055i
\(945\) 0 0
\(946\) −173865. −0.194280
\(947\) −78904.6 + 136667.i −0.0879837 + 0.152392i −0.906659 0.421865i \(-0.861376\pi\)
0.818675 + 0.574257i \(0.194709\pi\)
\(948\) 0 0
\(949\) 136787. + 236922.i 0.151884 + 0.263071i
\(950\) 445370. + 130568.i 0.493485 + 0.144673i
\(951\) 0 0
\(952\) 30789.3 + 17776.2i 0.0339724 + 0.0196140i
\(953\) 904204. 0.995590 0.497795 0.867295i \(-0.334143\pi\)
0.497795 + 0.867295i \(0.334143\pi\)
\(954\) 0 0
\(955\) 828383. 331838.i 0.908290 0.363847i
\(956\) 336418. + 194231.i 0.368098 + 0.212522i
\(957\) 0 0
\(958\) 645415. 372631.i 0.703247 0.406020i
\(959\) 75373.0 43516.6i 0.0819556 0.0473171i
\(960\) 0 0
\(961\) 32708.0 56651.8i 0.0354166 0.0613433i
\(962\) −643596. −0.695446
\(963\) 0 0
\(964\) 421881. 0.453979
\(965\) −86393.8 + 601786.i −0.0927743 + 0.646230i
\(966\) 0 0
\(967\) 605117. 349365.i 0.647122 0.373616i −0.140230 0.990119i \(-0.544784\pi\)
0.787353 + 0.616503i \(0.211451\pi\)
\(968\) 108868. + 188565.i 0.116185 + 0.201238i
\(969\) 0 0
\(970\) −119603. + 833110.i −0.127116 + 0.885439i
\(971\) 1.63052e6i 1.72937i −0.502311 0.864687i \(-0.667517\pi\)
0.502311 0.864687i \(-0.332483\pi\)
\(972\) 0 0
\(973\) 43644.8i 0.0461006i
\(974\) 211782. + 122272.i 0.223239 + 0.128887i
\(975\) 0 0
\(976\) −187992. 325611.i −0.197351 0.341821i
\(977\) −260634. 451431.i −0.273050 0.472936i 0.696592 0.717468i \(-0.254699\pi\)
−0.969641 + 0.244532i \(0.921366\pi\)
\(978\) 0 0
\(979\) −158009. + 273679.i −0.164860 + 0.285546i
\(980\) 263254. + 657173.i 0.274108 + 0.684270i
\(981\) 0 0
\(982\) 216767.i 0.224786i
\(983\) −275182. + 476630.i −0.284783 + 0.493258i −0.972556 0.232667i \(-0.925255\pi\)
0.687774 + 0.725925i \(0.258588\pi\)
\(984\) 0 0
\(985\) 215045. 273571.i 0.221644 0.281967i
\(986\) −332374. + 191896.i −0.341880 + 0.197385i
\(987\) 0 0
\(988\) 586378. + 338545.i 0.600708 + 0.346819i
\(989\) 491903.i 0.502906i
\(990\) 0 0
\(991\) 1.51931e6 1.54703 0.773516 0.633777i \(-0.218496\pi\)
0.773516 + 0.633777i \(0.218496\pi\)
\(992\) 490459. 849499.i 0.498401 0.863256i
\(993\) 0 0
\(994\) −8244.70 14280.2i −0.00834454 0.0144532i
\(995\) 635946. 809023.i 0.642353 0.817174i
\(996\) 0 0
\(997\) −1.62802e6 939936.i −1.63783 0.945601i −0.981579 0.191057i \(-0.938808\pi\)
−0.656250 0.754544i \(-0.727858\pi\)
\(998\) −392026. −0.393599
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 135.5.h.a.89.14 44
3.2 odd 2 45.5.h.a.29.9 yes 44
5.4 even 2 inner 135.5.h.a.89.9 44
9.2 odd 6 405.5.d.a.404.28 44
9.4 even 3 45.5.h.a.14.14 yes 44
9.5 odd 6 inner 135.5.h.a.44.9 44
9.7 even 3 405.5.d.a.404.18 44
15.14 odd 2 45.5.h.a.29.14 yes 44
45.4 even 6 45.5.h.a.14.9 44
45.14 odd 6 inner 135.5.h.a.44.14 44
45.29 odd 6 405.5.d.a.404.17 44
45.34 even 6 405.5.d.a.404.27 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
45.5.h.a.14.9 44 45.4 even 6
45.5.h.a.14.14 yes 44 9.4 even 3
45.5.h.a.29.9 yes 44 3.2 odd 2
45.5.h.a.29.14 yes 44 15.14 odd 2
135.5.h.a.44.9 44 9.5 odd 6 inner
135.5.h.a.44.14 44 45.14 odd 6 inner
135.5.h.a.89.9 44 5.4 even 2 inner
135.5.h.a.89.14 44 1.1 even 1 trivial
405.5.d.a.404.17 44 45.29 odd 6
405.5.d.a.404.18 44 9.7 even 3
405.5.d.a.404.27 44 45.34 even 6
405.5.d.a.404.28 44 9.2 odd 6