Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [136,2,Mod(69,136)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(136, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("136.69");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 136.c (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Coefficient field: | 8.0.4469724736.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
69.1 |
|
−1.33209 | − | 0.474920i | 2.10562i | 1.54890 | + | 1.26527i | 1.58069i | 1.00000 | − | 2.80487i | −5.01127 | −1.46237 | − | 2.42105i | −1.43364 | 0.750703 | − | 2.10562i | ||||||||||||||||||||||||||||||||
69.2 | −1.33209 | + | 0.474920i | − | 2.10562i | 1.54890 | − | 1.26527i | − | 1.58069i | 1.00000 | + | 2.80487i | −5.01127 | −1.46237 | + | 2.42105i | −1.43364 | 0.750703 | + | 2.10562i | |||||||||||||||||||||||||||||||
69.3 | −0.733159 | − | 1.20933i | 0.826905i | −0.924955 | + | 1.77326i | 1.12786i | 1.00000 | − | 0.606253i | 1.74755 | 2.82260 | − | 0.181508i | 2.31623 | 1.36396 | − | 0.826905i | |||||||||||||||||||||||||||||||||
69.4 | −0.733159 | + | 1.20933i | − | 0.826905i | −0.924955 | − | 1.77326i | − | 1.12786i | 1.00000 | + | 0.606253i | 1.74755 | 2.82260 | + | 0.181508i | 2.31623 | 1.36396 | + | 0.826905i | |||||||||||||||||||||||||||||||
69.5 | 0.185533 | − | 1.40199i | 0.713272i | −1.93115 | − | 0.520231i | − | 3.84444i | 1.00000 | + | 0.132335i | −1.15650 | −1.08765 | + | 2.61094i | 2.49124 | −5.38987 | − | 0.713272i | ||||||||||||||||||||||||||||||||
69.6 | 0.185533 | + | 1.40199i | − | 0.713272i | −1.93115 | + | 0.520231i | 3.84444i | 1.00000 | − | 0.132335i | −1.15650 | −1.08765 | − | 2.61094i | 2.49124 | −5.38987 | + | 0.713272i | ||||||||||||||||||||||||||||||||
69.7 | 1.37971 | − | 0.310478i | 3.22084i | 1.80721 | − | 0.856739i | − | 2.33443i | 1.00000 | + | 4.44384i | −1.57978 | 2.22743 | − | 1.74315i | −7.37384 | −0.724789 | − | 3.22084i | ||||||||||||||||||||||||||||||||
69.8 | 1.37971 | + | 0.310478i | − | 3.22084i | 1.80721 | + | 0.856739i | 2.33443i | 1.00000 | − | 4.44384i | −1.57978 | 2.22743 | + | 1.74315i | −7.37384 | −0.724789 | + | 3.22084i | ||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 136.2.c.b | ✓ | 8 |
3.b | odd | 2 | 1 | 1224.2.f.c | 8 | ||
4.b | odd | 2 | 1 | 544.2.c.b | 8 | ||
8.b | even | 2 | 1 | inner | 136.2.c.b | ✓ | 8 |
8.d | odd | 2 | 1 | 544.2.c.b | 8 | ||
12.b | even | 2 | 1 | 4896.2.f.d | 8 | ||
16.e | even | 4 | 2 | 4352.2.a.bf | 8 | ||
16.f | odd | 4 | 2 | 4352.2.a.bb | 8 | ||
24.f | even | 2 | 1 | 4896.2.f.d | 8 | ||
24.h | odd | 2 | 1 | 1224.2.f.c | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
136.2.c.b | ✓ | 8 | 1.a | even | 1 | 1 | trivial |
136.2.c.b | ✓ | 8 | 8.b | even | 2 | 1 | inner |
544.2.c.b | 8 | 4.b | odd | 2 | 1 | ||
544.2.c.b | 8 | 8.d | odd | 2 | 1 | ||
1224.2.f.c | 8 | 3.b | odd | 2 | 1 | ||
1224.2.f.c | 8 | 24.h | odd | 2 | 1 | ||
4352.2.a.bb | 8 | 16.f | odd | 4 | 2 | ||
4352.2.a.bf | 8 | 16.e | even | 4 | 2 | ||
4896.2.f.d | 8 | 12.b | even | 2 | 1 | ||
4896.2.f.d | 8 | 24.f | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .