Properties

Label 136.2.c.b
Level 136136
Weight 22
Character orbit 136.c
Analytic conductor 1.0861.086
Analytic rank 00
Dimension 88
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [136,2,Mod(69,136)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(136, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("136.69");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 136=2317 136 = 2^{3} \cdot 17
Weight: k k == 2 2
Character orbit: [χ][\chi] == 136.c (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.085965467491.08596546749
Analytic rank: 00
Dimension: 88
Coefficient field: 8.0.4469724736.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8x7+2x54x4+4x38x+16 x^{8} - x^{7} + 2x^{5} - 4x^{4} + 4x^{3} - 8x + 16 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 22 2^{2}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβ1q2+(β6+β1)q3+β2q4+(β7+β2β1)q5+(β7+β3β2+1)q6+(β4β21)q7+(β7β6β4++1)q8++(4β7β6+β1)q99+O(q100) q - \beta_1 q^{2} + (\beta_{6} + \beta_1) q^{3} + \beta_{2} q^{4} + (\beta_{7} + \beta_{2} - \beta_1) q^{5} + ( - \beta_{7} + \beta_{3} - \beta_{2} + 1) q^{6} + ( - \beta_{4} - \beta_{2} - 1) q^{7} + ( - \beta_{7} - \beta_{6} - \beta_{4} + \cdots + 1) q^{8}+ \cdots + (4 \beta_{7} - \beta_{6} + \cdots - \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8qq2+q4+8q612q7+5q88q98q102q12+6q14+12q15+9q16+8q1719q1816q20+4q2216q23+18q248q254q26+57q98+O(q100) 8 q - q^{2} + q^{4} + 8 q^{6} - 12 q^{7} + 5 q^{8} - 8 q^{9} - 8 q^{10} - 2 q^{12} + 6 q^{14} + 12 q^{15} + 9 q^{16} + 8 q^{17} - 19 q^{18} - 16 q^{20} + 4 q^{22} - 16 q^{23} + 18 q^{24} - 8 q^{25} - 4 q^{26}+ \cdots - 57 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x8x7+2x54x4+4x38x+16 x^{8} - x^{7} + 2x^{5} - 4x^{4} + 4x^{3} - 8x + 16 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν2 \nu^{2} Copy content Toggle raw display
β3\beta_{3}== (ν4+ν3+2)/2 ( -\nu^{4} + \nu^{3} + 2 ) / 2 Copy content Toggle raw display
β4\beta_{4}== (ν7ν6+4ν34ν2+8)/8 ( -\nu^{7} - \nu^{6} + 4\nu^{3} - 4\nu^{2} + 8 ) / 8 Copy content Toggle raw display
β5\beta_{5}== (ν7+ν6+2ν5+4ν34ν2+8)/8 ( -\nu^{7} + \nu^{6} + 2\nu^{5} + 4\nu^{3} - 4\nu^{2} + 8 ) / 8 Copy content Toggle raw display
β6\beta_{6}== (ν7ν6+2ν5+4ν28ν)/8 ( \nu^{7} - \nu^{6} + 2\nu^{5} + 4\nu^{2} - 8\nu ) / 8 Copy content Toggle raw display
β7\beta_{7}== (ν6ν5+2ν34ν2+4ν)/4 ( \nu^{6} - \nu^{5} + 2\nu^{3} - 4\nu^{2} + 4\nu ) / 4 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β2 \beta_{2} Copy content Toggle raw display
ν3\nu^{3}== β7+β6+β4+β21 \beta_{7} + \beta_{6} + \beta_{4} + \beta_{2} - 1 Copy content Toggle raw display
ν4\nu^{4}== β7+β6+β42β3+β2+1 \beta_{7} + \beta_{6} + \beta_{4} - 2\beta_{3} + \beta_{2} + 1 Copy content Toggle raw display
ν5\nu^{5}== β7+β6+2β5β4β2+2β11 -\beta_{7} + \beta_{6} + 2\beta_{5} - \beta_{4} - \beta_{2} + 2\beta _1 - 1 Copy content Toggle raw display
ν6\nu^{6}== β7β6+2β53β4+β22β1+1 \beta_{7} - \beta_{6} + 2\beta_{5} - 3\beta_{4} + \beta_{2} - 2\beta _1 + 1 Copy content Toggle raw display
ν7\nu^{7}== 3β7+5β62β5β4β2+2β1+3 3\beta_{7} + 5\beta_{6} - 2\beta_{5} - \beta_{4} - \beta_{2} + 2\beta _1 + 3 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/136Z)×\left(\mathbb{Z}/136\mathbb{Z}\right)^\times.

nn 6969 103103 105105
χ(n)\chi(n) 1-1 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
69.1
1.33209 + 0.474920i
1.33209 0.474920i
0.733159 + 1.20933i
0.733159 1.20933i
−0.185533 + 1.40199i
−0.185533 1.40199i
−1.37971 + 0.310478i
−1.37971 0.310478i
−1.33209 0.474920i 2.10562i 1.54890 + 1.26527i 1.58069i 1.00000 2.80487i −5.01127 −1.46237 2.42105i −1.43364 0.750703 2.10562i
69.2 −1.33209 + 0.474920i 2.10562i 1.54890 1.26527i 1.58069i 1.00000 + 2.80487i −5.01127 −1.46237 + 2.42105i −1.43364 0.750703 + 2.10562i
69.3 −0.733159 1.20933i 0.826905i −0.924955 + 1.77326i 1.12786i 1.00000 0.606253i 1.74755 2.82260 0.181508i 2.31623 1.36396 0.826905i
69.4 −0.733159 + 1.20933i 0.826905i −0.924955 1.77326i 1.12786i 1.00000 + 0.606253i 1.74755 2.82260 + 0.181508i 2.31623 1.36396 + 0.826905i
69.5 0.185533 1.40199i 0.713272i −1.93115 0.520231i 3.84444i 1.00000 + 0.132335i −1.15650 −1.08765 + 2.61094i 2.49124 −5.38987 0.713272i
69.6 0.185533 + 1.40199i 0.713272i −1.93115 + 0.520231i 3.84444i 1.00000 0.132335i −1.15650 −1.08765 2.61094i 2.49124 −5.38987 + 0.713272i
69.7 1.37971 0.310478i 3.22084i 1.80721 0.856739i 2.33443i 1.00000 + 4.44384i −1.57978 2.22743 1.74315i −7.37384 −0.724789 3.22084i
69.8 1.37971 + 0.310478i 3.22084i 1.80721 + 0.856739i 2.33443i 1.00000 4.44384i −1.57978 2.22743 + 1.74315i −7.37384 −0.724789 + 3.22084i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 69.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 136.2.c.b 8
3.b odd 2 1 1224.2.f.c 8
4.b odd 2 1 544.2.c.b 8
8.b even 2 1 inner 136.2.c.b 8
8.d odd 2 1 544.2.c.b 8
12.b even 2 1 4896.2.f.d 8
16.e even 4 2 4352.2.a.bf 8
16.f odd 4 2 4352.2.a.bb 8
24.f even 2 1 4896.2.f.d 8
24.h odd 2 1 1224.2.f.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
136.2.c.b 8 1.a even 1 1 trivial
136.2.c.b 8 8.b even 2 1 inner
544.2.c.b 8 4.b odd 2 1
544.2.c.b 8 8.d odd 2 1
1224.2.f.c 8 3.b odd 2 1
1224.2.f.c 8 24.h odd 2 1
4352.2.a.bb 8 16.f odd 4 2
4352.2.a.bf 8 16.e even 4 2
4896.2.f.d 8 12.b even 2 1
4896.2.f.d 8 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T38+16T36+64T34+60T32+16 T_{3}^{8} + 16T_{3}^{6} + 64T_{3}^{4} + 60T_{3}^{2} + 16 acting on S2new(136,[χ])S_{2}^{\mathrm{new}}(136, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8+T7++16 T^{8} + T^{7} + \cdots + 16 Copy content Toggle raw display
33 T8+16T6++16 T^{8} + 16 T^{6} + \cdots + 16 Copy content Toggle raw display
55 T8+24T6++256 T^{8} + 24 T^{6} + \cdots + 256 Copy content Toggle raw display
77 (T4+6T3+2T2+16)2 (T^{4} + 6 T^{3} + 2 T^{2} + \cdots - 16)^{2} Copy content Toggle raw display
1111 T8+44T6++5776 T^{8} + 44 T^{6} + \cdots + 5776 Copy content Toggle raw display
1313 T8+52T6++256 T^{8} + 52 T^{6} + \cdots + 256 Copy content Toggle raw display
1717 (T1)8 (T - 1)^{8} Copy content Toggle raw display
1919 T8+80T6++6400 T^{8} + 80 T^{6} + \cdots + 6400 Copy content Toggle raw display
2323 (T4+8T3++944)2 (T^{4} + 8 T^{3} + \cdots + 944)^{2} Copy content Toggle raw display
2929 T8+24T6++256 T^{8} + 24 T^{6} + \cdots + 256 Copy content Toggle raw display
3131 (T412T3+160)2 (T^{4} - 12 T^{3} + \cdots - 160)^{2} Copy content Toggle raw display
3737 T8+160T6++160000 T^{8} + 160 T^{6} + \cdots + 160000 Copy content Toggle raw display
4141 (T456T2+80)2 (T^{4} - 56 T^{2} + \cdots - 80)^{2} Copy content Toggle raw display
4343 T8+188T6++102400 T^{8} + 188 T^{6} + \cdots + 102400 Copy content Toggle raw display
4747 (T42T3++3200)2 (T^{4} - 2 T^{3} + \cdots + 3200)^{2} Copy content Toggle raw display
5353 T8+112T6++102400 T^{8} + 112 T^{6} + \cdots + 102400 Copy content Toggle raw display
5959 T8+300T6++10240000 T^{8} + 300 T^{6} + \cdots + 10240000 Copy content Toggle raw display
6161 T8+24T6++256 T^{8} + 24 T^{6} + \cdots + 256 Copy content Toggle raw display
6767 T8+112T6++6400 T^{8} + 112 T^{6} + \cdots + 6400 Copy content Toggle raw display
7171 (T4+18T3+400)2 (T^{4} + 18 T^{3} + \cdots - 400)^{2} Copy content Toggle raw display
7373 (T44T3++304)2 (T^{4} - 4 T^{3} + \cdots + 304)^{2} Copy content Toggle raw display
7979 (T412T3+128)2 (T^{4} - 12 T^{3} + \cdots - 128)^{2} Copy content Toggle raw display
8383 T8+316T6++36966400 T^{8} + 316 T^{6} + \cdots + 36966400 Copy content Toggle raw display
8989 (T44T3+2456)2 (T^{4} - 4 T^{3} + \cdots - 2456)^{2} Copy content Toggle raw display
9797 (T4+4T3+688)2 (T^{4} + 4 T^{3} + \cdots - 688)^{2} Copy content Toggle raw display
show more
show less