Properties

Label 136.2.c.b
Level $136$
Weight $2$
Character orbit 136.c
Analytic conductor $1.086$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [136,2,Mod(69,136)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(136, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("136.69");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 136 = 2^{3} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 136.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.08596546749\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.4469724736.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 2x^{5} - 4x^{4} + 4x^{3} - 8x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} + (\beta_{6} + \beta_1) q^{3} + \beta_{2} q^{4} + (\beta_{7} + \beta_{2} - \beta_1) q^{5} + ( - \beta_{7} + \beta_{3} - \beta_{2} + 1) q^{6} + ( - \beta_{4} - \beta_{2} - 1) q^{7} + ( - \beta_{7} - \beta_{6} - \beta_{4} + \cdots + 1) q^{8}+ \cdots + (4 \beta_{7} - \beta_{6} + \cdots - \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - q^{2} + q^{4} + 8 q^{6} - 12 q^{7} + 5 q^{8} - 8 q^{9} - 8 q^{10} - 2 q^{12} + 6 q^{14} + 12 q^{15} + 9 q^{16} + 8 q^{17} - 19 q^{18} - 16 q^{20} + 4 q^{22} - 16 q^{23} + 18 q^{24} - 8 q^{25} - 4 q^{26}+ \cdots - 57 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - x^{7} + 2x^{5} - 4x^{4} + 4x^{3} - 8x + 16 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{4} + \nu^{3} + 2 ) / 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{7} - \nu^{6} + 4\nu^{3} - 4\nu^{2} + 8 ) / 8 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{7} + \nu^{6} + 2\nu^{5} + 4\nu^{3} - 4\nu^{2} + 8 ) / 8 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{7} - \nu^{6} + 2\nu^{5} + 4\nu^{2} - 8\nu ) / 8 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( \nu^{6} - \nu^{5} + 2\nu^{3} - 4\nu^{2} + 4\nu ) / 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{7} + \beta_{6} + \beta_{4} + \beta_{2} - 1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{7} + \beta_{6} + \beta_{4} - 2\beta_{3} + \beta_{2} + 1 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( -\beta_{7} + \beta_{6} + 2\beta_{5} - \beta_{4} - \beta_{2} + 2\beta _1 - 1 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( \beta_{7} - \beta_{6} + 2\beta_{5} - 3\beta_{4} + \beta_{2} - 2\beta _1 + 1 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 3\beta_{7} + 5\beta_{6} - 2\beta_{5} - \beta_{4} - \beta_{2} + 2\beta _1 + 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/136\mathbb{Z}\right)^\times\).

\(n\) \(69\) \(103\) \(105\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
69.1
1.33209 + 0.474920i
1.33209 0.474920i
0.733159 + 1.20933i
0.733159 1.20933i
−0.185533 + 1.40199i
−0.185533 1.40199i
−1.37971 + 0.310478i
−1.37971 0.310478i
−1.33209 0.474920i 2.10562i 1.54890 + 1.26527i 1.58069i 1.00000 2.80487i −5.01127 −1.46237 2.42105i −1.43364 0.750703 2.10562i
69.2 −1.33209 + 0.474920i 2.10562i 1.54890 1.26527i 1.58069i 1.00000 + 2.80487i −5.01127 −1.46237 + 2.42105i −1.43364 0.750703 + 2.10562i
69.3 −0.733159 1.20933i 0.826905i −0.924955 + 1.77326i 1.12786i 1.00000 0.606253i 1.74755 2.82260 0.181508i 2.31623 1.36396 0.826905i
69.4 −0.733159 + 1.20933i 0.826905i −0.924955 1.77326i 1.12786i 1.00000 + 0.606253i 1.74755 2.82260 + 0.181508i 2.31623 1.36396 + 0.826905i
69.5 0.185533 1.40199i 0.713272i −1.93115 0.520231i 3.84444i 1.00000 + 0.132335i −1.15650 −1.08765 + 2.61094i 2.49124 −5.38987 0.713272i
69.6 0.185533 + 1.40199i 0.713272i −1.93115 + 0.520231i 3.84444i 1.00000 0.132335i −1.15650 −1.08765 2.61094i 2.49124 −5.38987 + 0.713272i
69.7 1.37971 0.310478i 3.22084i 1.80721 0.856739i 2.33443i 1.00000 + 4.44384i −1.57978 2.22743 1.74315i −7.37384 −0.724789 3.22084i
69.8 1.37971 + 0.310478i 3.22084i 1.80721 + 0.856739i 2.33443i 1.00000 4.44384i −1.57978 2.22743 + 1.74315i −7.37384 −0.724789 + 3.22084i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 69.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 136.2.c.b 8
3.b odd 2 1 1224.2.f.c 8
4.b odd 2 1 544.2.c.b 8
8.b even 2 1 inner 136.2.c.b 8
8.d odd 2 1 544.2.c.b 8
12.b even 2 1 4896.2.f.d 8
16.e even 4 2 4352.2.a.bf 8
16.f odd 4 2 4352.2.a.bb 8
24.f even 2 1 4896.2.f.d 8
24.h odd 2 1 1224.2.f.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
136.2.c.b 8 1.a even 1 1 trivial
136.2.c.b 8 8.b even 2 1 inner
544.2.c.b 8 4.b odd 2 1
544.2.c.b 8 8.d odd 2 1
1224.2.f.c 8 3.b odd 2 1
1224.2.f.c 8 24.h odd 2 1
4352.2.a.bb 8 16.f odd 4 2
4352.2.a.bf 8 16.e even 4 2
4896.2.f.d 8 12.b even 2 1
4896.2.f.d 8 24.f even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{8} + 16T_{3}^{6} + 64T_{3}^{4} + 60T_{3}^{2} + 16 \) acting on \(S_{2}^{\mathrm{new}}(136, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} + T^{7} + \cdots + 16 \) Copy content Toggle raw display
$3$ \( T^{8} + 16 T^{6} + \cdots + 16 \) Copy content Toggle raw display
$5$ \( T^{8} + 24 T^{6} + \cdots + 256 \) Copy content Toggle raw display
$7$ \( (T^{4} + 6 T^{3} + 2 T^{2} + \cdots - 16)^{2} \) Copy content Toggle raw display
$11$ \( T^{8} + 44 T^{6} + \cdots + 5776 \) Copy content Toggle raw display
$13$ \( T^{8} + 52 T^{6} + \cdots + 256 \) Copy content Toggle raw display
$17$ \( (T - 1)^{8} \) Copy content Toggle raw display
$19$ \( T^{8} + 80 T^{6} + \cdots + 6400 \) Copy content Toggle raw display
$23$ \( (T^{4} + 8 T^{3} + \cdots + 944)^{2} \) Copy content Toggle raw display
$29$ \( T^{8} + 24 T^{6} + \cdots + 256 \) Copy content Toggle raw display
$31$ \( (T^{4} - 12 T^{3} + \cdots - 160)^{2} \) Copy content Toggle raw display
$37$ \( T^{8} + 160 T^{6} + \cdots + 160000 \) Copy content Toggle raw display
$41$ \( (T^{4} - 56 T^{2} + \cdots - 80)^{2} \) Copy content Toggle raw display
$43$ \( T^{8} + 188 T^{6} + \cdots + 102400 \) Copy content Toggle raw display
$47$ \( (T^{4} - 2 T^{3} + \cdots + 3200)^{2} \) Copy content Toggle raw display
$53$ \( T^{8} + 112 T^{6} + \cdots + 102400 \) Copy content Toggle raw display
$59$ \( T^{8} + 300 T^{6} + \cdots + 10240000 \) Copy content Toggle raw display
$61$ \( T^{8} + 24 T^{6} + \cdots + 256 \) Copy content Toggle raw display
$67$ \( T^{8} + 112 T^{6} + \cdots + 6400 \) Copy content Toggle raw display
$71$ \( (T^{4} + 18 T^{3} + \cdots - 400)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} - 4 T^{3} + \cdots + 304)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} - 12 T^{3} + \cdots - 128)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} + 316 T^{6} + \cdots + 36966400 \) Copy content Toggle raw display
$89$ \( (T^{4} - 4 T^{3} + \cdots - 2456)^{2} \) Copy content Toggle raw display
$97$ \( (T^{4} + 4 T^{3} + \cdots - 688)^{2} \) Copy content Toggle raw display
show more
show less