Properties

Label 1360.4.a.g
Level $1360$
Weight $4$
Character orbit 1360.a
Self dual yes
Analytic conductor $80.243$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1360,4,Mod(1,1360)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1360, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1360.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1360 = 2^{4} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1360.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(80.2425976078\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 5 q^{3} - 5 q^{5} + 22 q^{7} - 2 q^{9} - 60 q^{11} - 31 q^{13} - 25 q^{15} + 17 q^{17} + 61 q^{19} + 110 q^{21} + 78 q^{23} + 25 q^{25} - 145 q^{27} + 69 q^{29} + 31 q^{31} - 300 q^{33} - 110 q^{35}+ \cdots + 120 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 5.00000 0 −5.00000 0 22.0000 0 −2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(17\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1360.4.a.g 1
4.b odd 2 1 85.4.a.b 1
12.b even 2 1 765.4.a.c 1
20.d odd 2 1 425.4.a.b 1
20.e even 4 2 425.4.b.b 2
68.d odd 2 1 1445.4.a.g 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
85.4.a.b 1 4.b odd 2 1
425.4.a.b 1 20.d odd 2 1
425.4.b.b 2 20.e even 4 2
765.4.a.c 1 12.b even 2 1
1360.4.a.g 1 1.a even 1 1 trivial
1445.4.a.g 1 68.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(1360))\):

\( T_{3} - 5 \) Copy content Toggle raw display
\( T_{7} - 22 \) Copy content Toggle raw display
\( T_{11} + 60 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 5 \) Copy content Toggle raw display
$5$ \( T + 5 \) Copy content Toggle raw display
$7$ \( T - 22 \) Copy content Toggle raw display
$11$ \( T + 60 \) Copy content Toggle raw display
$13$ \( T + 31 \) Copy content Toggle raw display
$17$ \( T - 17 \) Copy content Toggle raw display
$19$ \( T - 61 \) Copy content Toggle raw display
$23$ \( T - 78 \) Copy content Toggle raw display
$29$ \( T - 69 \) Copy content Toggle raw display
$31$ \( T - 31 \) Copy content Toggle raw display
$37$ \( T - 56 \) Copy content Toggle raw display
$41$ \( T + 6 \) Copy content Toggle raw display
$43$ \( T - 538 \) Copy content Toggle raw display
$47$ \( T - 465 \) Copy content Toggle raw display
$53$ \( T - 723 \) Copy content Toggle raw display
$59$ \( T - 753 \) Copy content Toggle raw display
$61$ \( T - 35 \) Copy content Toggle raw display
$67$ \( T - 322 \) Copy content Toggle raw display
$71$ \( T - 99 \) Copy content Toggle raw display
$73$ \( T + 1123 \) Copy content Toggle raw display
$79$ \( T + 488 \) Copy content Toggle raw display
$83$ \( T - 852 \) Copy content Toggle raw display
$89$ \( T - 1215 \) Copy content Toggle raw display
$97$ \( T + 601 \) Copy content Toggle raw display
show more
show less