Properties

Label 1368.1.ba.c
Level $1368$
Weight $1$
Character orbit 1368.ba
Analytic conductor $0.683$
Analytic rank $0$
Dimension $4$
Projective image $A_{4}$
CM/RM no
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1368,1,Mod(619,1368)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1368, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 4, 4]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1368.619");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1368 = 2^{3} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1368.ba (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.682720937282\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(A_{4}\)
Projective field: Galois closure of 4.0.1871424.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q - \zeta_{12} q^{2} - \zeta_{12}^{4} q^{3} + \zeta_{12}^{2} q^{4} - \zeta_{12}^{3} q^{5} + \zeta_{12}^{5} q^{6} - \zeta_{12}^{5} q^{7} - \zeta_{12}^{3} q^{8} - \zeta_{12}^{2} q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q - \zeta_{12} q^{2} - \zeta_{12}^{4} q^{3} + \zeta_{12}^{2} q^{4} - \zeta_{12}^{3} q^{5} + \zeta_{12}^{5} q^{6} - \zeta_{12}^{5} q^{7} - \zeta_{12}^{3} q^{8} - \zeta_{12}^{2} q^{9} + \zeta_{12}^{4} q^{10} + \zeta_{12}^{2} q^{11} + q^{12} - q^{14} - \zeta_{12} q^{15} + \zeta_{12}^{4} q^{16} - \zeta_{12}^{2} q^{17} + \zeta_{12}^{3} q^{18} + q^{19} - \zeta_{12}^{5} q^{20} - \zeta_{12}^{3} q^{21} - \zeta_{12}^{3} q^{22} - \zeta_{12} q^{24} - q^{27} + \zeta_{12} q^{28} + \zeta_{12}^{3} q^{29} + \zeta_{12}^{2} q^{30} - \zeta_{12} q^{31} - \zeta_{12}^{5} q^{32} + q^{33} + \zeta_{12}^{3} q^{34} - \zeta_{12}^{2} q^{35} - \zeta_{12}^{4} q^{36} + 2 \zeta_{12}^{3} q^{37} - \zeta_{12} q^{38} - q^{40} - q^{41} + \zeta_{12}^{4} q^{42} + \zeta_{12}^{4} q^{44} + \zeta_{12}^{5} q^{45} - \zeta_{12}^{3} q^{47} + \zeta_{12}^{2} q^{48} - q^{51} + \zeta_{12} q^{53} + \zeta_{12} q^{54} - \zeta_{12}^{5} q^{55} - \zeta_{12}^{2} q^{56} - \zeta_{12}^{4} q^{57} - \zeta_{12}^{4} q^{58} + q^{59} - \zeta_{12}^{3} q^{60} + \zeta_{12}^{3} q^{61} + \zeta_{12}^{2} q^{62} - \zeta_{12} q^{63} - q^{64} - \zeta_{12} q^{66} - 2 \zeta_{12}^{2} q^{67} - \zeta_{12}^{4} q^{68} + \zeta_{12}^{3} q^{70} + \zeta_{12}^{5} q^{71} + \zeta_{12}^{5} q^{72} - \zeta_{12}^{2} q^{73} - 2 \zeta_{12}^{4} q^{74} + \zeta_{12}^{2} q^{76} + \zeta_{12} q^{77} + \zeta_{12} q^{80} + \zeta_{12}^{4} q^{81} + \zeta_{12} q^{82} + \zeta_{12}^{2} q^{83} - \zeta_{12}^{5} q^{84} + \zeta_{12}^{5} q^{85} + \zeta_{12} q^{87} - \zeta_{12}^{5} q^{88} + \zeta_{12}^{4} q^{89} + q^{90} + \zeta_{12}^{5} q^{93} + \zeta_{12}^{4} q^{94} - \zeta_{12}^{3} q^{95} - \zeta_{12}^{3} q^{96} - \zeta_{12}^{4} q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{3} + 2 q^{4} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{3} + 2 q^{4} - 2 q^{9} - 2 q^{10} + 2 q^{11} + 4 q^{12} - 4 q^{14} - 2 q^{16} - 2 q^{17} + 4 q^{19} - 4 q^{27} + 2 q^{30} + 4 q^{33} - 2 q^{35} + 2 q^{36} - 4 q^{40} - 4 q^{41} - 2 q^{42} - 2 q^{44} + 2 q^{48} - 4 q^{51} - 2 q^{56} + 2 q^{57} + 2 q^{58} + 4 q^{59} + 2 q^{62} - 4 q^{64} - 4 q^{67} + 2 q^{68} - 2 q^{73} + 4 q^{74} + 2 q^{76} - 2 q^{81} + 2 q^{83} - 2 q^{89} + 4 q^{90} - 2 q^{94} + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1368\mathbb{Z}\right)^\times\).

\(n\) \(343\) \(685\) \(1009\) \(1217\)
\(\chi(n)\) \(-1\) \(-1\) \(\zeta_{12}^{4}\) \(\zeta_{12}^{4}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
619.1
0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 + 0.500000i
−0.866025 0.500000i
−0.866025 + 0.500000i 0.500000 + 0.866025i 0.500000 0.866025i 1.00000i −0.866025 0.500000i 0.866025 + 0.500000i 1.00000i −0.500000 + 0.866025i −0.500000 0.866025i
619.2 0.866025 0.500000i 0.500000 + 0.866025i 0.500000 0.866025i 1.00000i 0.866025 + 0.500000i −0.866025 0.500000i 1.00000i −0.500000 + 0.866025i −0.500000 0.866025i
1147.1 −0.866025 0.500000i 0.500000 0.866025i 0.500000 + 0.866025i 1.00000i −0.866025 + 0.500000i 0.866025 0.500000i 1.00000i −0.500000 0.866025i −0.500000 + 0.866025i
1147.2 0.866025 + 0.500000i 0.500000 0.866025i 0.500000 + 0.866025i 1.00000i 0.866025 0.500000i −0.866025 + 0.500000i 1.00000i −0.500000 0.866025i −0.500000 + 0.866025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 inner
171.g even 3 1 inner
1368.ba odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1368.1.ba.c 4
8.d odd 2 1 inner 1368.1.ba.c 4
9.c even 3 1 1368.1.cj.c yes 4
19.c even 3 1 1368.1.cj.c yes 4
72.p odd 6 1 1368.1.cj.c yes 4
152.k odd 6 1 1368.1.cj.c yes 4
171.g even 3 1 inner 1368.1.ba.c 4
1368.ba odd 6 1 inner 1368.1.ba.c 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1368.1.ba.c 4 1.a even 1 1 trivial
1368.1.ba.c 4 8.d odd 2 1 inner
1368.1.ba.c 4 171.g even 3 1 inner
1368.1.ba.c 4 1368.ba odd 6 1 inner
1368.1.cj.c yes 4 9.c even 3 1
1368.1.cj.c yes 4 19.c even 3 1
1368.1.cj.c yes 4 72.p odd 6 1
1368.1.cj.c yes 4 152.k odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(1368, [\chi])\):

\( T_{5}^{2} + 1 \) Copy content Toggle raw display
\( T_{11}^{2} - T_{11} + 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$3$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$11$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$19$ \( (T - 1)^{4} \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$37$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$41$ \( (T + 1)^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$53$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$59$ \( (T - 1)^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 2 T + 4)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$73$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$79$ \( T^{4} \) Copy content Toggle raw display
$83$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less