Properties

Label 1368.1.bt.b
Level $1368$
Weight $1$
Character orbit 1368.bt
Analytic conductor $0.683$
Analytic rank $0$
Dimension $2$
Projective image $D_{6}$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1368,1,Mod(635,1368)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1368, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 5, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1368.635");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1368 = 2^{3} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1368.bt (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.682720937282\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{6}\)
Projective field: Galois closure of 6.2.3119171623488.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + q^{2} - \zeta_{6}^{2} q^{3} + q^{4} - \zeta_{6}^{2} q^{6} + q^{8} - \zeta_{6} q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + q^{2} - \zeta_{6}^{2} q^{3} + q^{4} - \zeta_{6}^{2} q^{6} + q^{8} - \zeta_{6} q^{9} - \zeta_{6}^{2} q^{12} + q^{16} + (\zeta_{6}^{2} - 1) q^{17} - \zeta_{6} q^{18} - q^{19} - \zeta_{6}^{2} q^{24} + \zeta_{6} q^{25} - q^{27} + q^{32} + (\zeta_{6}^{2} - 1) q^{34} - \zeta_{6} q^{36} - q^{38} + \zeta_{6}^{2} q^{41} + q^{43} - \zeta_{6}^{2} q^{48} - \zeta_{6} q^{49} + \zeta_{6} q^{50} + (\zeta_{6}^{2} + \zeta_{6}) q^{51} - q^{54} + \zeta_{6}^{2} q^{57} - \zeta_{6}^{2} q^{59} + q^{64} + ( - \zeta_{6}^{2} - \zeta_{6}) q^{67} + (\zeta_{6}^{2} - 1) q^{68} - \zeta_{6} q^{72} + 2 \zeta_{6} q^{73} + q^{75} - q^{76} + \zeta_{6}^{2} q^{81} + \zeta_{6}^{2} q^{82} + ( - \zeta_{6} - 1) q^{83} + q^{86} + 2 \zeta_{6}^{2} q^{89} - \zeta_{6}^{2} q^{96} - \zeta_{6} q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + q^{3} + 2 q^{4} + q^{6} + 2 q^{8} - q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{2} + q^{3} + 2 q^{4} + q^{6} + 2 q^{8} - q^{9} + q^{12} + 2 q^{16} - 3 q^{17} - q^{18} - 2 q^{19} + q^{24} + q^{25} - 2 q^{27} + 2 q^{32} - 3 q^{34} - q^{36} - 2 q^{38} - q^{41} + 2 q^{43} + q^{48} - q^{49} + q^{50} - 2 q^{54} - q^{57} + q^{59} + 2 q^{64} - 3 q^{68} - q^{72} + 2 q^{73} + 2 q^{75} - 2 q^{76} - q^{81} - q^{82} - 3 q^{83} + 2 q^{86} - 2 q^{89} + q^{96} - q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1368\mathbb{Z}\right)^\times\).

\(n\) \(343\) \(685\) \(1009\) \(1217\)
\(\chi(n)\) \(-1\) \(-1\) \(-\zeta_{6}^{2}\) \(\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
635.1
0.500000 0.866025i
0.500000 + 0.866025i
1.00000 0.500000 + 0.866025i 1.00000 0 0.500000 + 0.866025i 0 1.00000 −0.500000 + 0.866025i 0
1019.1 1.00000 0.500000 0.866025i 1.00000 0 0.500000 0.866025i 0 1.00000 −0.500000 0.866025i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by \(\Q(\sqrt{-2}) \)
171.t even 6 1 inner
1368.bt odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1368.1.bt.b 2
8.d odd 2 1 CM 1368.1.bt.b 2
9.d odd 6 1 1368.1.cz.b yes 2
19.d odd 6 1 1368.1.cz.b yes 2
72.l even 6 1 1368.1.cz.b yes 2
152.o even 6 1 1368.1.cz.b yes 2
171.t even 6 1 inner 1368.1.bt.b 2
1368.bt odd 6 1 inner 1368.1.bt.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1368.1.bt.b 2 1.a even 1 1 trivial
1368.1.bt.b 2 8.d odd 2 1 CM
1368.1.bt.b 2 171.t even 6 1 inner
1368.1.bt.b 2 1368.bt odd 6 1 inner
1368.1.cz.b yes 2 9.d odd 6 1
1368.1.cz.b yes 2 19.d odd 6 1
1368.1.cz.b yes 2 72.l even 6 1
1368.1.cz.b yes 2 152.o even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{11} \) acting on \(S_{1}^{\mathrm{new}}(1368, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 3T + 3 \) Copy content Toggle raw display
$19$ \( (T + 1)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$43$ \( (T - 1)^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 3 \) Copy content Toggle raw display
$71$ \( T^{2} \) Copy content Toggle raw display
$73$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
$79$ \( T^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 3T + 3 \) Copy content Toggle raw display
$89$ \( T^{2} + 2T + 4 \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less