Properties

Label 1368.2.a.n.1.2
Level $1368$
Weight $2$
Character 1368.1
Self dual yes
Analytic conductor $10.924$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1368,2,Mod(1,1368)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1368, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1368.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1368 = 2^{3} \cdot 3^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1368.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(10.9235349965\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.961.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 10x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 152)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(0.786802\) of defining polynomial
Character \(\chi\) \(=\) 1368.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.786802 q^{5} +4.29707 q^{7} +1.21320 q^{11} +5.08387 q^{13} +2.29707 q^{17} -1.00000 q^{19} -7.67801 q^{23} -4.38094 q^{25} +0.489731 q^{29} -3.38094 q^{35} -2.00000 q^{37} +4.16774 q^{41} +12.9545 q^{43} +5.80734 q^{47} +11.4648 q^{49} -1.93667 q^{53} -0.954547 q^{55} +11.0839 q^{59} -5.38094 q^{61} -4.00000 q^{65} +2.48973 q^{67} +11.7413 q^{71} -8.46482 q^{73} +5.21320 q^{77} +1.83226 q^{79} +7.02054 q^{83} -1.80734 q^{85} -13.7413 q^{89} +21.8458 q^{91} +0.786802 q^{95} -3.57360 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{5} + 4 q^{7} + 5 q^{11} + 5 q^{13} - 2 q^{17} - 3 q^{19} + 5 q^{23} + 6 q^{25} + 9 q^{29} + 9 q^{35} - 6 q^{37} - 8 q^{41} + 17 q^{43} + q^{47} + 5 q^{49} - q^{53} + 19 q^{55} + 23 q^{59} + 3 q^{61}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.786802 −0.351868 −0.175934 0.984402i \(-0.556295\pi\)
−0.175934 + 0.984402i \(0.556295\pi\)
\(6\) 0 0
\(7\) 4.29707 1.62414 0.812070 0.583560i \(-0.198341\pi\)
0.812070 + 0.583560i \(0.198341\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.21320 0.365793 0.182897 0.983132i \(-0.441453\pi\)
0.182897 + 0.983132i \(0.441453\pi\)
\(12\) 0 0
\(13\) 5.08387 1.41001 0.705006 0.709201i \(-0.250944\pi\)
0.705006 + 0.709201i \(0.250944\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.29707 0.557121 0.278561 0.960419i \(-0.410143\pi\)
0.278561 + 0.960419i \(0.410143\pi\)
\(18\) 0 0
\(19\) −1.00000 −0.229416
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −7.67801 −1.60098 −0.800488 0.599348i \(-0.795426\pi\)
−0.800488 + 0.599348i \(0.795426\pi\)
\(24\) 0 0
\(25\) −4.38094 −0.876189
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0.489731 0.0909408 0.0454704 0.998966i \(-0.485521\pi\)
0.0454704 + 0.998966i \(0.485521\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3.38094 −0.571484
\(36\) 0 0
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.16774 0.650892 0.325446 0.945561i \(-0.394486\pi\)
0.325446 + 0.945561i \(0.394486\pi\)
\(42\) 0 0
\(43\) 12.9545 1.97555 0.987775 0.155887i \(-0.0498235\pi\)
0.987775 + 0.155887i \(0.0498235\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 5.80734 0.847087 0.423544 0.905876i \(-0.360786\pi\)
0.423544 + 0.905876i \(0.360786\pi\)
\(48\) 0 0
\(49\) 11.4648 1.63783
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.93667 −0.266021 −0.133011 0.991115i \(-0.542464\pi\)
−0.133011 + 0.991115i \(0.542464\pi\)
\(54\) 0 0
\(55\) −0.954547 −0.128711
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 11.0839 1.44300 0.721499 0.692416i \(-0.243454\pi\)
0.721499 + 0.692416i \(0.243454\pi\)
\(60\) 0 0
\(61\) −5.38094 −0.688959 −0.344480 0.938794i \(-0.611945\pi\)
−0.344480 + 0.938794i \(0.611945\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −4.00000 −0.496139
\(66\) 0 0
\(67\) 2.48973 0.304169 0.152085 0.988367i \(-0.451401\pi\)
0.152085 + 0.988367i \(0.451401\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 11.7413 1.39344 0.696721 0.717342i \(-0.254642\pi\)
0.696721 + 0.717342i \(0.254642\pi\)
\(72\) 0 0
\(73\) −8.46482 −0.990732 −0.495366 0.868684i \(-0.664966\pi\)
−0.495366 + 0.868684i \(0.664966\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 5.21320 0.594099
\(78\) 0 0
\(79\) 1.83226 0.206145 0.103072 0.994674i \(-0.467133\pi\)
0.103072 + 0.994674i \(0.467133\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 7.02054 0.770604 0.385302 0.922791i \(-0.374097\pi\)
0.385302 + 0.922791i \(0.374097\pi\)
\(84\) 0 0
\(85\) −1.80734 −0.196033
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −13.7413 −1.45658 −0.728290 0.685269i \(-0.759685\pi\)
−0.728290 + 0.685269i \(0.759685\pi\)
\(90\) 0 0
\(91\) 21.8458 2.29006
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0.786802 0.0807242
\(96\) 0 0
\(97\) −3.57360 −0.362844 −0.181422 0.983405i \(-0.558070\pi\)
−0.181422 + 0.983405i \(0.558070\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.33549 0.630405 0.315202 0.949024i \(-0.397928\pi\)
0.315202 + 0.949024i \(0.397928\pi\)
\(102\) 0 0
\(103\) −5.44693 −0.536702 −0.268351 0.963321i \(-0.586479\pi\)
−0.268351 + 0.963321i \(0.586479\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −3.08387 −0.298129 −0.149065 0.988827i \(-0.547626\pi\)
−0.149065 + 0.988827i \(0.547626\pi\)
\(108\) 0 0
\(109\) 8.10441 0.776262 0.388131 0.921604i \(-0.373121\pi\)
0.388131 + 0.921604i \(0.373121\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −14.3355 −1.34857 −0.674285 0.738471i \(-0.735548\pi\)
−0.674285 + 0.738471i \(0.735548\pi\)
\(114\) 0 0
\(115\) 6.04107 0.563333
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 9.87067 0.904843
\(120\) 0 0
\(121\) −9.52815 −0.866195
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 7.38094 0.660172
\(126\) 0 0
\(127\) −3.74135 −0.331991 −0.165995 0.986127i \(-0.553084\pi\)
−0.165995 + 0.986127i \(0.553084\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 12.9545 1.13184 0.565922 0.824459i \(-0.308520\pi\)
0.565922 + 0.824459i \(0.308520\pi\)
\(132\) 0 0
\(133\) −4.29707 −0.372603
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.63256 0.566658 0.283329 0.959023i \(-0.408561\pi\)
0.283329 + 0.959023i \(0.408561\pi\)
\(138\) 0 0
\(139\) −4.23374 −0.359101 −0.179550 0.983749i \(-0.557464\pi\)
−0.179550 + 0.983749i \(0.557464\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 6.16774 0.515773
\(144\) 0 0
\(145\) −0.385321 −0.0319992
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 9.63959 0.789706 0.394853 0.918744i \(-0.370795\pi\)
0.394853 + 0.918744i \(0.370795\pi\)
\(150\) 0 0
\(151\) −5.44693 −0.443265 −0.221633 0.975130i \(-0.571139\pi\)
−0.221633 + 0.975130i \(0.571139\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 14.0000 1.11732 0.558661 0.829396i \(-0.311315\pi\)
0.558661 + 0.829396i \(0.311315\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −32.9930 −2.60021
\(162\) 0 0
\(163\) −16.3355 −1.27949 −0.639747 0.768585i \(-0.720961\pi\)
−0.639747 + 0.768585i \(0.720961\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 13.5736 1.05036 0.525178 0.850992i \(-0.323999\pi\)
0.525178 + 0.850992i \(0.323999\pi\)
\(168\) 0 0
\(169\) 12.8458 0.988135
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −18.3355 −1.39402 −0.697011 0.717061i \(-0.745487\pi\)
−0.697011 + 0.717061i \(0.745487\pi\)
\(174\) 0 0
\(175\) −18.8252 −1.42305
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −19.9502 −1.49115 −0.745573 0.666424i \(-0.767824\pi\)
−0.745573 + 0.666424i \(0.767824\pi\)
\(180\) 0 0
\(181\) −6.85279 −0.509364 −0.254682 0.967025i \(-0.581971\pi\)
−0.254682 + 0.967025i \(0.581971\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.57360 0.115694
\(186\) 0 0
\(187\) 2.78680 0.203791
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −19.7798 −1.43121 −0.715607 0.698503i \(-0.753850\pi\)
−0.715607 + 0.698503i \(0.753850\pi\)
\(192\) 0 0
\(193\) −9.61468 −0.692080 −0.346040 0.938220i \(-0.612474\pi\)
−0.346040 + 0.938220i \(0.612474\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −4.16774 −0.296940 −0.148470 0.988917i \(-0.547435\pi\)
−0.148470 + 0.988917i \(0.547435\pi\)
\(198\) 0 0
\(199\) 5.48535 0.388846 0.194423 0.980918i \(-0.437717\pi\)
0.194423 + 0.980918i \(0.437717\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2.10441 0.147701
\(204\) 0 0
\(205\) −3.27919 −0.229029
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −1.21320 −0.0839187
\(210\) 0 0
\(211\) −1.89559 −0.130498 −0.0652489 0.997869i \(-0.520784\pi\)
−0.0652489 + 0.997869i \(0.520784\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −10.1927 −0.695134
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 11.6780 0.785548
\(222\) 0 0
\(223\) 3.74135 0.250539 0.125270 0.992123i \(-0.460020\pi\)
0.125270 + 0.992123i \(0.460020\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −19.6780 −1.30608 −0.653038 0.757325i \(-0.726506\pi\)
−0.653038 + 0.757325i \(0.726506\pi\)
\(228\) 0 0
\(229\) 21.7164 1.43506 0.717531 0.696526i \(-0.245272\pi\)
0.717531 + 0.696526i \(0.245272\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 10.5692 0.692413 0.346206 0.938158i \(-0.387470\pi\)
0.346206 + 0.938158i \(0.387470\pi\)
\(234\) 0 0
\(235\) −4.56923 −0.298063
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 16.0384 1.03744 0.518720 0.854944i \(-0.326409\pi\)
0.518720 + 0.854944i \(0.326409\pi\)
\(240\) 0 0
\(241\) −17.0205 −1.09639 −0.548195 0.836351i \(-0.684685\pi\)
−0.548195 + 0.836351i \(0.684685\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −9.02054 −0.576301
\(246\) 0 0
\(247\) −5.08387 −0.323479
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 19.1223 1.20699 0.603494 0.797367i \(-0.293775\pi\)
0.603494 + 0.797367i \(0.293775\pi\)
\(252\) 0 0
\(253\) −9.31495 −0.585626
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0.553066 0.0344993 0.0172497 0.999851i \(-0.494509\pi\)
0.0172497 + 0.999851i \(0.494509\pi\)
\(258\) 0 0
\(259\) −8.59414 −0.534014
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −7.04545 −0.434441 −0.217221 0.976123i \(-0.569699\pi\)
−0.217221 + 0.976123i \(0.569699\pi\)
\(264\) 0 0
\(265\) 1.52377 0.0936045
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −12.7619 −0.778106 −0.389053 0.921215i \(-0.627198\pi\)
−0.389053 + 0.921215i \(0.627198\pi\)
\(270\) 0 0
\(271\) 15.6780 0.952371 0.476186 0.879345i \(-0.342019\pi\)
0.476186 + 0.879345i \(0.342019\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −5.31495 −0.320504
\(276\) 0 0
\(277\) −5.97508 −0.359008 −0.179504 0.983757i \(-0.557449\pi\)
−0.179504 + 0.983757i \(0.557449\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −30.2088 −1.80211 −0.901054 0.433708i \(-0.857205\pi\)
−0.901054 + 0.433708i \(0.857205\pi\)
\(282\) 0 0
\(283\) −1.21320 −0.0721171 −0.0360586 0.999350i \(-0.511480\pi\)
−0.0360586 + 0.999350i \(0.511480\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 17.9091 1.05714
\(288\) 0 0
\(289\) −11.7235 −0.689616
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −0.104410 −0.00609969 −0.00304984 0.999995i \(-0.500971\pi\)
−0.00304984 + 0.999995i \(0.500971\pi\)
\(294\) 0 0
\(295\) −8.72081 −0.507745
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −39.0340 −2.25740
\(300\) 0 0
\(301\) 55.6666 3.20857
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 4.23374 0.242423
\(306\) 0 0
\(307\) 0.852793 0.0486715 0.0243357 0.999704i \(-0.492253\pi\)
0.0243357 + 0.999704i \(0.492253\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 6.12933 0.347562 0.173781 0.984784i \(-0.444401\pi\)
0.173781 + 0.984784i \(0.444401\pi\)
\(312\) 0 0
\(313\) −3.17478 −0.179449 −0.0897246 0.995967i \(-0.528599\pi\)
−0.0897246 + 0.995967i \(0.528599\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 20.6986 1.16255 0.581273 0.813708i \(-0.302555\pi\)
0.581273 + 0.813708i \(0.302555\pi\)
\(318\) 0 0
\(319\) 0.594141 0.0332655
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −2.29707 −0.127812
\(324\) 0 0
\(325\) −22.2722 −1.23544
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 24.9545 1.37579
\(330\) 0 0
\(331\) 9.84576 0.541172 0.270586 0.962696i \(-0.412783\pi\)
0.270586 + 0.962696i \(0.412783\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −1.95893 −0.107028
\(336\) 0 0
\(337\) −18.9296 −1.03116 −0.515581 0.856841i \(-0.672424\pi\)
−0.515581 + 0.856841i \(0.672424\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 19.1856 1.03593
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6.78680 0.364335 0.182167 0.983268i \(-0.441689\pi\)
0.182167 + 0.983268i \(0.441689\pi\)
\(348\) 0 0
\(349\) 6.23374 0.333684 0.166842 0.985984i \(-0.446643\pi\)
0.166842 + 0.985984i \(0.446643\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −31.7191 −1.68824 −0.844118 0.536157i \(-0.819876\pi\)
−0.844118 + 0.536157i \(0.819876\pi\)
\(354\) 0 0
\(355\) −9.23811 −0.490308
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 23.3944 1.23471 0.617356 0.786684i \(-0.288204\pi\)
0.617356 + 0.786684i \(0.288204\pi\)
\(360\) 0 0
\(361\) 1.00000 0.0526316
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 6.66013 0.348607
\(366\) 0 0
\(367\) −20.3355 −1.06150 −0.530752 0.847527i \(-0.678090\pi\)
−0.530752 + 0.847527i \(0.678090\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −8.32199 −0.432056
\(372\) 0 0
\(373\) −36.9021 −1.91072 −0.955358 0.295450i \(-0.904530\pi\)
−0.955358 + 0.295450i \(0.904530\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 2.48973 0.128228
\(378\) 0 0
\(379\) −15.9367 −0.818611 −0.409306 0.912397i \(-0.634229\pi\)
−0.409306 + 0.912397i \(0.634229\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 19.0205 0.971904 0.485952 0.873985i \(-0.338473\pi\)
0.485952 + 0.873985i \(0.338473\pi\)
\(384\) 0 0
\(385\) −4.10175 −0.209045
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −2.61906 −0.132791 −0.0663957 0.997793i \(-0.521150\pi\)
−0.0663957 + 0.997793i \(0.521150\pi\)
\(390\) 0 0
\(391\) −17.6369 −0.891938
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1.44162 −0.0725359
\(396\) 0 0
\(397\) −31.1634 −1.56404 −0.782022 0.623251i \(-0.785812\pi\)
−0.782022 + 0.623251i \(0.785812\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −21.7413 −1.08571 −0.542856 0.839826i \(-0.682657\pi\)
−0.542856 + 0.839826i \(0.682657\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −2.42640 −0.120272
\(408\) 0 0
\(409\) −23.2651 −1.15039 −0.575193 0.818018i \(-0.695073\pi\)
−0.575193 + 0.818018i \(0.695073\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 47.6282 2.34363
\(414\) 0 0
\(415\) −5.52377 −0.271151
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −8.33549 −0.407215 −0.203608 0.979053i \(-0.565267\pi\)
−0.203608 + 0.979053i \(0.565267\pi\)
\(420\) 0 0
\(421\) 0.748383 0.0364740 0.0182370 0.999834i \(-0.494195\pi\)
0.0182370 + 0.999834i \(0.494195\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −10.0633 −0.488143
\(426\) 0 0
\(427\) −23.1223 −1.11897
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −31.3560 −1.51037 −0.755183 0.655514i \(-0.772452\pi\)
−0.755183 + 0.655514i \(0.772452\pi\)
\(432\) 0 0
\(433\) 9.48270 0.455709 0.227855 0.973695i \(-0.426829\pi\)
0.227855 + 0.973695i \(0.426829\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 7.67801 0.367289
\(438\) 0 0
\(439\) −31.9502 −1.52490 −0.762449 0.647048i \(-0.776003\pi\)
−0.762449 + 0.647048i \(0.776003\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2.91878 −0.138676 −0.0693378 0.997593i \(-0.522089\pi\)
−0.0693378 + 0.997593i \(0.522089\pi\)
\(444\) 0 0
\(445\) 10.8117 0.512525
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −0.0909069 −0.00429016 −0.00214508 0.999998i \(-0.500683\pi\)
−0.00214508 + 0.999998i \(0.500683\pi\)
\(450\) 0 0
\(451\) 5.05630 0.238092
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −17.1883 −0.805799
\(456\) 0 0
\(457\) 19.1499 0.895793 0.447896 0.894085i \(-0.352173\pi\)
0.447896 + 0.894085i \(0.352173\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −33.9253 −1.58006 −0.790028 0.613070i \(-0.789934\pi\)
−0.790028 + 0.613070i \(0.789934\pi\)
\(462\) 0 0
\(463\) 27.3809 1.27250 0.636250 0.771483i \(-0.280485\pi\)
0.636250 + 0.771483i \(0.280485\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −17.2132 −0.796532 −0.398266 0.917270i \(-0.630388\pi\)
−0.398266 + 0.917270i \(0.630388\pi\)
\(468\) 0 0
\(469\) 10.6986 0.494013
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 15.7164 0.722642
\(474\) 0 0
\(475\) 4.38094 0.201011
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −15.4827 −0.707422 −0.353711 0.935355i \(-0.615080\pi\)
−0.353711 + 0.935355i \(0.615080\pi\)
\(480\) 0 0
\(481\) −10.1677 −0.463609
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.81172 0.127674
\(486\) 0 0
\(487\) 30.1179 1.36477 0.682386 0.730992i \(-0.260942\pi\)
0.682386 + 0.730992i \(0.260942\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 18.2944 0.825615 0.412808 0.910818i \(-0.364548\pi\)
0.412808 + 0.910818i \(0.364548\pi\)
\(492\) 0 0
\(493\) 1.12495 0.0506651
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 50.4534 2.26314
\(498\) 0 0
\(499\) 10.5282 0.471305 0.235652 0.971837i \(-0.424277\pi\)
0.235652 + 0.971837i \(0.424277\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −37.2018 −1.65875 −0.829373 0.558696i \(-0.811302\pi\)
−0.829373 + 0.558696i \(0.811302\pi\)
\(504\) 0 0
\(505\) −4.98477 −0.221820
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 20.4264 0.905384 0.452692 0.891667i \(-0.350464\pi\)
0.452692 + 0.891667i \(0.350464\pi\)
\(510\) 0 0
\(511\) −36.3739 −1.60909
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 4.28566 0.188849
\(516\) 0 0
\(517\) 7.04545 0.309859
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 37.8235 1.65708 0.828539 0.559932i \(-0.189173\pi\)
0.828539 + 0.559932i \(0.189173\pi\)
\(522\) 0 0
\(523\) 13.0428 0.570322 0.285161 0.958480i \(-0.407953\pi\)
0.285161 + 0.958480i \(0.407953\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 35.9519 1.56313
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 21.1883 0.917766
\(534\) 0 0
\(535\) 2.42640 0.104902
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 13.9091 0.599107
\(540\) 0 0
\(541\) −27.6754 −1.18986 −0.594928 0.803779i \(-0.702820\pi\)
−0.594928 + 0.803779i \(0.702820\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −6.37656 −0.273142
\(546\) 0 0
\(547\) 12.0000 0.513083 0.256541 0.966533i \(-0.417417\pi\)
0.256541 + 0.966533i \(0.417417\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −0.489731 −0.0208633
\(552\) 0 0
\(553\) 7.87333 0.334808
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 36.2695 1.53679 0.768394 0.639977i \(-0.221056\pi\)
0.768394 + 0.639977i \(0.221056\pi\)
\(558\) 0 0
\(559\) 65.8593 2.78555
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −13.9091 −0.586198 −0.293099 0.956082i \(-0.594687\pi\)
−0.293099 + 0.956082i \(0.594687\pi\)
\(564\) 0 0
\(565\) 11.2792 0.474519
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −29.7413 −1.24682 −0.623411 0.781894i \(-0.714254\pi\)
−0.623411 + 0.781894i \(0.714254\pi\)
\(570\) 0 0
\(571\) −36.6710 −1.53463 −0.767316 0.641269i \(-0.778408\pi\)
−0.767316 + 0.641269i \(0.778408\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 33.6369 1.40276
\(576\) 0 0
\(577\) 20.4648 0.851961 0.425981 0.904732i \(-0.359929\pi\)
0.425981 + 0.904732i \(0.359929\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 30.1677 1.25157
\(582\) 0 0
\(583\) −2.34956 −0.0973088
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −18.2748 −0.754282 −0.377141 0.926156i \(-0.623093\pi\)
−0.377141 + 0.926156i \(0.623093\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −31.5238 −1.29453 −0.647263 0.762267i \(-0.724086\pi\)
−0.647263 + 0.762267i \(0.724086\pi\)
\(594\) 0 0
\(595\) −7.76626 −0.318386
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 26.3766 1.07772 0.538859 0.842396i \(-0.318856\pi\)
0.538859 + 0.842396i \(0.318856\pi\)
\(600\) 0 0
\(601\) −27.3971 −1.11755 −0.558776 0.829319i \(-0.688729\pi\)
−0.558776 + 0.829319i \(0.688729\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 7.49677 0.304787
\(606\) 0 0
\(607\) 33.9859 1.37945 0.689723 0.724073i \(-0.257732\pi\)
0.689723 + 0.724073i \(0.257732\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 29.5238 1.19440
\(612\) 0 0
\(613\) 3.08653 0.124664 0.0623319 0.998055i \(-0.480146\pi\)
0.0623319 + 0.998055i \(0.480146\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 26.1018 1.05082 0.525409 0.850850i \(-0.323913\pi\)
0.525409 + 0.850850i \(0.323913\pi\)
\(618\) 0 0
\(619\) 29.0616 1.16808 0.584042 0.811723i \(-0.301470\pi\)
0.584042 + 0.811723i \(0.301470\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −59.0475 −2.36569
\(624\) 0 0
\(625\) 16.0974 0.643895
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −4.59414 −0.183180
\(630\) 0 0
\(631\) 20.1018 0.800238 0.400119 0.916463i \(-0.368969\pi\)
0.400119 + 0.916463i \(0.368969\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 2.94370 0.116817
\(636\) 0 0
\(637\) 58.2857 2.30936
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −24.7619 −0.978036 −0.489018 0.872274i \(-0.662645\pi\)
−0.489018 + 0.872274i \(0.662645\pi\)
\(642\) 0 0
\(643\) −11.8431 −0.467046 −0.233523 0.972351i \(-0.575025\pi\)
−0.233523 + 0.972351i \(0.575025\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −37.4854 −1.47370 −0.736851 0.676056i \(-0.763688\pi\)
−0.736851 + 0.676056i \(0.763688\pi\)
\(648\) 0 0
\(649\) 13.4469 0.527838
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 34.8279 1.36292 0.681460 0.731855i \(-0.261345\pi\)
0.681460 + 0.731855i \(0.261345\pi\)
\(654\) 0 0
\(655\) −10.1927 −0.398260
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −28.2722 −1.10133 −0.550663 0.834727i \(-0.685625\pi\)
−0.550663 + 0.834727i \(0.685625\pi\)
\(660\) 0 0
\(661\) 2.58064 0.100375 0.0501876 0.998740i \(-0.484018\pi\)
0.0501876 + 0.998740i \(0.484018\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 3.38094 0.131107
\(666\) 0 0
\(667\) −3.76016 −0.145594
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −6.52815 −0.252016
\(672\) 0 0
\(673\) 50.5443 1.94834 0.974170 0.225816i \(-0.0725048\pi\)
0.974170 + 0.225816i \(0.0725048\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −0.825221 −0.0317158 −0.0158579 0.999874i \(-0.505048\pi\)
−0.0158579 + 0.999874i \(0.505048\pi\)
\(678\) 0 0
\(679\) −15.3560 −0.589310
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 12.0000 0.459167 0.229584 0.973289i \(-0.426264\pi\)
0.229584 + 0.973289i \(0.426264\pi\)
\(684\) 0 0
\(685\) −5.21851 −0.199389
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −9.84576 −0.375094
\(690\) 0 0
\(691\) 0.0249160 0.000947850 0 0.000473925 1.00000i \(-0.499849\pi\)
0.000473925 1.00000i \(0.499849\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 3.33111 0.126356
\(696\) 0 0
\(697\) 9.57360 0.362626
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −29.3560 −1.10876 −0.554381 0.832263i \(-0.687045\pi\)
−0.554381 + 0.832263i \(0.687045\pi\)
\(702\) 0 0
\(703\) 2.00000 0.0754314
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 27.2240 1.02387
\(708\) 0 0
\(709\) −17.4827 −0.656576 −0.328288 0.944578i \(-0.606472\pi\)
−0.328288 + 0.944578i \(0.606472\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −4.85279 −0.181484
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −18.5915 −0.693345 −0.346673 0.937986i \(-0.612689\pi\)
−0.346673 + 0.937986i \(0.612689\pi\)
\(720\) 0 0
\(721\) −23.4059 −0.871680
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −2.14548 −0.0796813
\(726\) 0 0
\(727\) −8.50589 −0.315466 −0.157733 0.987482i \(-0.550419\pi\)
−0.157733 + 0.987482i \(0.550419\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 29.7575 1.10062
\(732\) 0 0
\(733\) 24.5032 0.905048 0.452524 0.891752i \(-0.350524\pi\)
0.452524 + 0.891752i \(0.350524\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3.02054 0.111263
\(738\) 0 0
\(739\) −20.9047 −0.768992 −0.384496 0.923127i \(-0.625625\pi\)
−0.384496 + 0.923127i \(0.625625\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −21.5238 −0.789631 −0.394815 0.918761i \(-0.629191\pi\)
−0.394815 + 0.918761i \(0.629191\pi\)
\(744\) 0 0
\(745\) −7.58445 −0.277873
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −13.2516 −0.484204
\(750\) 0 0
\(751\) 2.37656 0.0867221 0.0433610 0.999059i \(-0.486193\pi\)
0.0433610 + 0.999059i \(0.486193\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 4.28566 0.155971
\(756\) 0 0
\(757\) 46.9545 1.70659 0.853296 0.521427i \(-0.174600\pi\)
0.853296 + 0.521427i \(0.174600\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 5.44428 0.197355 0.0986775 0.995119i \(-0.468539\pi\)
0.0986775 + 0.995119i \(0.468539\pi\)
\(762\) 0 0
\(763\) 34.8252 1.26076
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 56.3490 2.03464
\(768\) 0 0
\(769\) 8.92697 0.321915 0.160957 0.986961i \(-0.448542\pi\)
0.160957 + 0.986961i \(0.448542\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 17.8047 0.640390 0.320195 0.947352i \(-0.396252\pi\)
0.320195 + 0.947352i \(0.396252\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −4.16774 −0.149325
\(780\) 0 0
\(781\) 14.2446 0.509711
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −11.0152 −0.393150
\(786\) 0 0
\(787\) 13.3836 0.477074 0.238537 0.971133i \(-0.423332\pi\)
0.238537 + 0.971133i \(0.423332\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −61.6006 −2.19027
\(792\) 0 0
\(793\) −27.3560 −0.971441
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −28.5666 −1.01188 −0.505940 0.862569i \(-0.668854\pi\)
−0.505940 + 0.862569i \(0.668854\pi\)
\(798\) 0 0
\(799\) 13.3399 0.471931
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −10.2695 −0.362403
\(804\) 0 0
\(805\) 25.9589 0.914932
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −45.2625 −1.59134 −0.795672 0.605728i \(-0.792882\pi\)
−0.795672 + 0.605728i \(0.792882\pi\)
\(810\) 0 0
\(811\) −49.4551 −1.73660 −0.868302 0.496036i \(-0.834789\pi\)
−0.868302 + 0.496036i \(0.834789\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 12.8528 0.450214
\(816\) 0 0
\(817\) −12.9545 −0.453222
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 41.7933 1.45860 0.729298 0.684197i \(-0.239847\pi\)
0.729298 + 0.684197i \(0.239847\pi\)
\(822\) 0 0
\(823\) −8.68239 −0.302649 −0.151325 0.988484i \(-0.548354\pi\)
−0.151325 + 0.988484i \(0.548354\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −13.1196 −0.456214 −0.228107 0.973636i \(-0.573254\pi\)
−0.228107 + 0.973636i \(0.573254\pi\)
\(828\) 0 0
\(829\) −8.83053 −0.306697 −0.153349 0.988172i \(-0.549006\pi\)
−0.153349 + 0.988172i \(0.549006\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 26.3355 0.912471
\(834\) 0 0
\(835\) −10.6797 −0.369588
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −4.80296 −0.165817 −0.0829083 0.996557i \(-0.526421\pi\)
−0.0829083 + 0.996557i \(0.526421\pi\)
\(840\) 0 0
\(841\) −28.7602 −0.991730
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −10.1071 −0.347694
\(846\) 0 0
\(847\) −40.9431 −1.40682
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 15.3560 0.526398
\(852\) 0 0
\(853\) −2.51730 −0.0861908 −0.0430954 0.999071i \(-0.513722\pi\)
−0.0430954 + 0.999071i \(0.513722\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 37.3560 1.27606 0.638029 0.770013i \(-0.279750\pi\)
0.638029 + 0.770013i \(0.279750\pi\)
\(858\) 0 0
\(859\) 40.6461 1.38683 0.693413 0.720540i \(-0.256106\pi\)
0.693413 + 0.720540i \(0.256106\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 7.40586 0.252098 0.126049 0.992024i \(-0.459770\pi\)
0.126049 + 0.992024i \(0.459770\pi\)
\(864\) 0 0
\(865\) 14.4264 0.490512
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 2.22289 0.0754063
\(870\) 0 0
\(871\) 12.6575 0.428882
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 31.7164 1.07221
\(876\) 0 0
\(877\) 50.5308 1.70630 0.853152 0.521662i \(-0.174688\pi\)
0.853152 + 0.521662i \(0.174688\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −33.4631 −1.12740 −0.563700 0.825980i \(-0.690623\pi\)
−0.563700 + 0.825980i \(0.690623\pi\)
\(882\) 0 0
\(883\) 30.0162 1.01012 0.505062 0.863083i \(-0.331470\pi\)
0.505062 + 0.863083i \(0.331470\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −19.0704 −0.640320 −0.320160 0.947363i \(-0.603737\pi\)
−0.320160 + 0.947363i \(0.603737\pi\)
\(888\) 0 0
\(889\) −16.0768 −0.539200
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −5.80734 −0.194335
\(894\) 0 0
\(895\) 15.6968 0.524687
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) −4.44866 −0.148206
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 5.39179 0.179229
\(906\) 0 0
\(907\) −48.0135 −1.59426 −0.797131 0.603806i \(-0.793650\pi\)
−0.797131 + 0.603806i \(0.793650\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 46.2446 1.53215 0.766076 0.642750i \(-0.222207\pi\)
0.766076 + 0.642750i \(0.222207\pi\)
\(912\) 0 0
\(913\) 8.51730 0.281882
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 55.6666 1.83827
\(918\) 0 0
\(919\) 41.5103 1.36930 0.684649 0.728873i \(-0.259956\pi\)
0.684649 + 0.728873i \(0.259956\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 59.6915 1.96477
\(924\) 0 0
\(925\) 8.76189 0.288089
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −55.4551 −1.81942 −0.909712 0.415240i \(-0.863698\pi\)
−0.909712 + 0.415240i \(0.863698\pi\)
\(930\) 0 0
\(931\) −11.4648 −0.375744
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −2.19266 −0.0717077
\(936\) 0 0
\(937\) −6.08825 −0.198894 −0.0994472 0.995043i \(-0.531707\pi\)
−0.0994472 + 0.995043i \(0.531707\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 11.3836 0.371095 0.185547 0.982635i \(-0.440594\pi\)
0.185547 + 0.982635i \(0.440594\pi\)
\(942\) 0 0
\(943\) −32.0000 −1.04206
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 38.3766 1.24707 0.623535 0.781795i \(-0.285696\pi\)
0.623535 + 0.781795i \(0.285696\pi\)
\(948\) 0 0
\(949\) −43.0340 −1.39694
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −30.2857 −0.981049 −0.490524 0.871427i \(-0.663195\pi\)
−0.490524 + 0.871427i \(0.663195\pi\)
\(954\) 0 0
\(955\) 15.5628 0.503599
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 28.5006 0.920332
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 7.56485 0.243521
\(966\) 0 0
\(967\) −24.6710 −0.793365 −0.396683 0.917956i \(-0.629839\pi\)
−0.396683 + 0.917956i \(0.629839\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −20.0000 −0.641831 −0.320915 0.947108i \(-0.603990\pi\)
−0.320915 + 0.947108i \(0.603990\pi\)
\(972\) 0 0
\(973\) −18.1927 −0.583230
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 21.4059 0.684834 0.342417 0.939548i \(-0.388754\pi\)
0.342417 + 0.939548i \(0.388754\pi\)
\(978\) 0 0
\(979\) −16.6710 −0.532807
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −38.1677 −1.21736 −0.608681 0.793415i \(-0.708301\pi\)
−0.608681 + 0.793415i \(0.708301\pi\)
\(984\) 0 0
\(985\) 3.27919 0.104484
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −99.4652 −3.16281
\(990\) 0 0
\(991\) 16.4675 0.523106 0.261553 0.965189i \(-0.415765\pi\)
0.261553 + 0.965189i \(0.415765\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −4.31589 −0.136823
\(996\) 0 0
\(997\) 13.8431 0.438415 0.219208 0.975678i \(-0.429653\pi\)
0.219208 + 0.975678i \(0.429653\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1368.2.a.n.1.2 3
3.2 odd 2 152.2.a.c.1.1 3
4.3 odd 2 2736.2.a.bd.1.2 3
12.11 even 2 304.2.a.g.1.3 3
15.2 even 4 3800.2.d.j.3649.5 6
15.8 even 4 3800.2.d.j.3649.2 6
15.14 odd 2 3800.2.a.r.1.3 3
21.20 even 2 7448.2.a.bf.1.3 3
24.5 odd 2 1216.2.a.u.1.3 3
24.11 even 2 1216.2.a.v.1.1 3
57.56 even 2 2888.2.a.o.1.3 3
60.59 even 2 7600.2.a.bv.1.1 3
228.227 odd 2 5776.2.a.bp.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
152.2.a.c.1.1 3 3.2 odd 2
304.2.a.g.1.3 3 12.11 even 2
1216.2.a.u.1.3 3 24.5 odd 2
1216.2.a.v.1.1 3 24.11 even 2
1368.2.a.n.1.2 3 1.1 even 1 trivial
2736.2.a.bd.1.2 3 4.3 odd 2
2888.2.a.o.1.3 3 57.56 even 2
3800.2.a.r.1.3 3 15.14 odd 2
3800.2.d.j.3649.2 6 15.8 even 4
3800.2.d.j.3649.5 6 15.2 even 4
5776.2.a.bp.1.1 3 228.227 odd 2
7448.2.a.bf.1.3 3 21.20 even 2
7600.2.a.bv.1.1 3 60.59 even 2