Defining parameters
Level: | \( N \) | \(=\) | \( 138 = 2 \cdot 3 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 138.d (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 69 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(48\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(138, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 28 | 8 | 20 |
Cusp forms | 20 | 8 | 12 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(138, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
138.2.d.a | $8$ | $1.102$ | 8.0.\(\cdots\).3 | None | \(0\) | \(-4\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}+(\beta _{1}+\beta _{7})q^{3}-q^{4}+\beta _{3}q^{5}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(138, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(138, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(69, [\chi])\)\(^{\oplus 2}\)