Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1380,2,Mod(737,1380)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1380, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([0, 2, 1, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1380.737");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1380 = 2^{2} \cdot 3 \cdot 5 \cdot 23 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1380.r (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(11.0193554789\) |
Analytic rank: | \(0\) |
Dimension: | \(80\) |
Relative dimension: | \(40\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
737.1 | 0 | −1.72892 | − | 0.104128i | 0 | 1.51193 | + | 1.64744i | 0 | 3.27368 | + | 3.27368i | 0 | 2.97831 | + | 0.360057i | 0 | ||||||||||
737.2 | 0 | −1.71368 | − | 0.251606i | 0 | 0.257544 | − | 2.22119i | 0 | −2.77975 | − | 2.77975i | 0 | 2.87339 | + | 0.862345i | 0 | ||||||||||
737.3 | 0 | −1.67967 | − | 0.422758i | 0 | 2.05360 | − | 0.884710i | 0 | 0.924264 | + | 0.924264i | 0 | 2.64255 | + | 1.42018i | 0 | ||||||||||
737.4 | 0 | −1.57061 | − | 0.730184i | 0 | −0.115647 | + | 2.23308i | 0 | −0.487335 | − | 0.487335i | 0 | 1.93366 | + | 2.29368i | 0 | ||||||||||
737.5 | 0 | −1.53876 | + | 0.795128i | 0 | 1.56652 | − | 1.59562i | 0 | 0.769646 | + | 0.769646i | 0 | 1.73554 | − | 2.44702i | 0 | ||||||||||
737.6 | 0 | −1.50371 | − | 0.859570i | 0 | −0.917834 | − | 2.03901i | 0 | 0.160200 | + | 0.160200i | 0 | 1.52228 | + | 2.58509i | 0 | ||||||||||
737.7 | 0 | −1.43700 | + | 0.966965i | 0 | 1.81165 | + | 1.31070i | 0 | −2.64771 | − | 2.64771i | 0 | 1.12996 | − | 2.77906i | 0 | ||||||||||
737.8 | 0 | −1.43142 | + | 0.975211i | 0 | 0.832554 | + | 2.07530i | 0 | 0.0455472 | + | 0.0455472i | 0 | 1.09793 | − | 2.79187i | 0 | ||||||||||
737.9 | 0 | −1.31796 | − | 1.12382i | 0 | 2.16179 | + | 0.571544i | 0 | −3.03605 | − | 3.03605i | 0 | 0.474038 | + | 2.96231i | 0 | ||||||||||
737.10 | 0 | −1.29281 | − | 1.15267i | 0 | −0.532114 | + | 2.17183i | 0 | −0.268444 | − | 0.268444i | 0 | 0.342726 | + | 2.98036i | 0 | ||||||||||
737.11 | 0 | −1.21045 | − | 1.23887i | 0 | −2.23574 | + | 0.0384947i | 0 | 1.22712 | + | 1.22712i | 0 | −0.0696199 | + | 2.99919i | 0 | ||||||||||
737.12 | 0 | −0.975211 | + | 1.43142i | 0 | −0.832554 | − | 2.07530i | 0 | 0.0455472 | + | 0.0455472i | 0 | −1.09793 | − | 2.79187i | 0 | ||||||||||
737.13 | 0 | −0.966965 | + | 1.43700i | 0 | −1.81165 | − | 1.31070i | 0 | −2.64771 | − | 2.64771i | 0 | −1.12996 | − | 2.77906i | 0 | ||||||||||
737.14 | 0 | −0.795128 | + | 1.53876i | 0 | −1.56652 | + | 1.59562i | 0 | 0.769646 | + | 0.769646i | 0 | −1.73554 | − | 2.44702i | 0 | ||||||||||
737.15 | 0 | −0.727046 | − | 1.57207i | 0 | 1.08694 | − | 1.95412i | 0 | 2.39152 | + | 2.39152i | 0 | −1.94281 | + | 2.28593i | 0 | ||||||||||
737.16 | 0 | −0.136960 | − | 1.72663i | 0 | −2.01176 | − | 0.976134i | 0 | −0.818985 | − | 0.818985i | 0 | −2.96248 | + | 0.472958i | 0 | ||||||||||
737.17 | 0 | −0.118851 | − | 1.72797i | 0 | 0.238514 | + | 2.22331i | 0 | 2.86460 | + | 2.86460i | 0 | −2.97175 | + | 0.410741i | 0 | ||||||||||
737.18 | 0 | −0.0819537 | − | 1.73011i | 0 | −1.50202 | + | 1.65649i | 0 | −2.00070 | − | 2.00070i | 0 | −2.98657 | + | 0.283578i | 0 | ||||||||||
737.19 | 0 | 0.104128 | + | 1.72892i | 0 | −1.51193 | − | 1.64744i | 0 | 3.27368 | + | 3.27368i | 0 | −2.97831 | + | 0.360057i | 0 | ||||||||||
737.20 | 0 | 0.251606 | + | 1.71368i | 0 | −0.257544 | + | 2.22119i | 0 | −2.77975 | − | 2.77975i | 0 | −2.87339 | + | 0.862345i | 0 | ||||||||||
See all 80 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.c | odd | 4 | 1 | inner |
15.e | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1380.2.r.c | ✓ | 80 |
3.b | odd | 2 | 1 | inner | 1380.2.r.c | ✓ | 80 |
5.c | odd | 4 | 1 | inner | 1380.2.r.c | ✓ | 80 |
15.e | even | 4 | 1 | inner | 1380.2.r.c | ✓ | 80 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1380.2.r.c | ✓ | 80 | 1.a | even | 1 | 1 | trivial |
1380.2.r.c | ✓ | 80 | 3.b | odd | 2 | 1 | inner |
1380.2.r.c | ✓ | 80 | 5.c | odd | 4 | 1 | inner |
1380.2.r.c | ✓ | 80 | 15.e | even | 4 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{40} - 20 T_{7}^{37} + 1084 T_{7}^{36} - 172 T_{7}^{35} + 200 T_{7}^{34} - 20844 T_{7}^{33} + \cdots + 136048896 \) acting on \(S_{2}^{\mathrm{new}}(1380, [\chi])\).