Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1386,2,Mod(703,1386)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1386, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 1, 3]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1386.703");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 1386.bk (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | no (minimal twist has level 462) |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
703.1 |
|
−0.866025 | + | 0.500000i | 0 | 0.500000 | − | 0.866025i | −2.83045 | + | 1.63416i | 0 | 2.54243 | + | 0.732142i | 1.00000i | 0 | 1.63416 | − | 2.83045i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
703.2 | −0.866025 | + | 0.500000i | 0 | 0.500000 | − | 0.866025i | −1.92604 | + | 1.11200i | 0 | −2.45660 | − | 0.982398i | 1.00000i | 0 | 1.11200 | − | 1.92604i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
703.3 | −0.866025 | + | 0.500000i | 0 | 0.500000 | − | 0.866025i | 0.606961 | − | 0.350429i | 0 | 1.82993 | − | 1.91085i | 1.00000i | 0 | −0.350429 | + | 0.606961i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
703.4 | −0.866025 | + | 0.500000i | 0 | 0.500000 | − | 0.866025i | 2.01555 | − | 1.16368i | 0 | 1.31629 | + | 2.29508i | 1.00000i | 0 | −1.16368 | + | 2.01555i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
703.5 | 0.866025 | − | 0.500000i | 0 | 0.500000 | − | 0.866025i | −3.72526 | + | 2.15078i | 0 | 1.43173 | + | 2.22489i | − | 1.00000i | 0 | −2.15078 | + | 3.72526i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
703.6 | 0.866025 | − | 0.500000i | 0 | 0.500000 | − | 0.866025i | −1.54813 | + | 0.893814i | 0 | −0.165362 | − | 2.64058i | − | 1.00000i | 0 | −0.893814 | + | 1.54813i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
703.7 | 0.866025 | − | 0.500000i | 0 | 0.500000 | − | 0.866025i | −0.725202 | + | 0.418696i | 0 | −2.44037 | + | 1.02205i | − | 1.00000i | 0 | −0.418696 | + | 0.725202i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
703.8 | 0.866025 | − | 0.500000i | 0 | 0.500000 | − | 0.866025i | 2.13257 | − | 1.23124i | 0 | 0.941950 | − | 2.47239i | − | 1.00000i | 0 | 1.23124 | − | 2.13257i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
901.1 | −0.866025 | − | 0.500000i | 0 | 0.500000 | + | 0.866025i | −2.83045 | − | 1.63416i | 0 | 2.54243 | − | 0.732142i | − | 1.00000i | 0 | 1.63416 | + | 2.83045i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
901.2 | −0.866025 | − | 0.500000i | 0 | 0.500000 | + | 0.866025i | −1.92604 | − | 1.11200i | 0 | −2.45660 | + | 0.982398i | − | 1.00000i | 0 | 1.11200 | + | 1.92604i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
901.3 | −0.866025 | − | 0.500000i | 0 | 0.500000 | + | 0.866025i | 0.606961 | + | 0.350429i | 0 | 1.82993 | + | 1.91085i | − | 1.00000i | 0 | −0.350429 | − | 0.606961i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
901.4 | −0.866025 | − | 0.500000i | 0 | 0.500000 | + | 0.866025i | 2.01555 | + | 1.16368i | 0 | 1.31629 | − | 2.29508i | − | 1.00000i | 0 | −1.16368 | − | 2.01555i | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
901.5 | 0.866025 | + | 0.500000i | 0 | 0.500000 | + | 0.866025i | −3.72526 | − | 2.15078i | 0 | 1.43173 | − | 2.22489i | 1.00000i | 0 | −2.15078 | − | 3.72526i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
901.6 | 0.866025 | + | 0.500000i | 0 | 0.500000 | + | 0.866025i | −1.54813 | − | 0.893814i | 0 | −0.165362 | + | 2.64058i | 1.00000i | 0 | −0.893814 | − | 1.54813i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
901.7 | 0.866025 | + | 0.500000i | 0 | 0.500000 | + | 0.866025i | −0.725202 | − | 0.418696i | 0 | −2.44037 | − | 1.02205i | 1.00000i | 0 | −0.418696 | − | 0.725202i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
901.8 | 0.866025 | + | 0.500000i | 0 | 0.500000 | + | 0.866025i | 2.13257 | + | 1.23124i | 0 | 0.941950 | + | 2.47239i | 1.00000i | 0 | 1.23124 | + | 2.13257i | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
77.i | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1386.2.bk.b | 16 | |
3.b | odd | 2 | 1 | 462.2.p.b | yes | 16 | |
7.d | odd | 6 | 1 | 1386.2.bk.a | 16 | ||
11.b | odd | 2 | 1 | 1386.2.bk.a | 16 | ||
21.g | even | 6 | 1 | 462.2.p.a | ✓ | 16 | |
21.g | even | 6 | 1 | 3234.2.e.a | 16 | ||
21.h | odd | 6 | 1 | 3234.2.e.b | 16 | ||
33.d | even | 2 | 1 | 462.2.p.a | ✓ | 16 | |
77.i | even | 6 | 1 | inner | 1386.2.bk.b | 16 | |
231.k | odd | 6 | 1 | 462.2.p.b | yes | 16 | |
231.k | odd | 6 | 1 | 3234.2.e.b | 16 | ||
231.l | even | 6 | 1 | 3234.2.e.a | 16 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
462.2.p.a | ✓ | 16 | 21.g | even | 6 | 1 | |
462.2.p.a | ✓ | 16 | 33.d | even | 2 | 1 | |
462.2.p.b | yes | 16 | 3.b | odd | 2 | 1 | |
462.2.p.b | yes | 16 | 231.k | odd | 6 | 1 | |
1386.2.bk.a | 16 | 7.d | odd | 6 | 1 | ||
1386.2.bk.a | 16 | 11.b | odd | 2 | 1 | ||
1386.2.bk.b | 16 | 1.a | even | 1 | 1 | trivial | |
1386.2.bk.b | 16 | 77.i | even | 6 | 1 | inner | |
3234.2.e.a | 16 | 21.g | even | 6 | 1 | ||
3234.2.e.a | 16 | 231.l | even | 6 | 1 | ||
3234.2.e.b | 16 | 21.h | odd | 6 | 1 | ||
3234.2.e.b | 16 | 231.k | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on :
|
|