Properties

Label 1386.2.bk.b
Level 13861386
Weight 22
Character orbit 1386.bk
Analytic conductor 11.06711.067
Analytic rank 00
Dimension 1616
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1386,2,Mod(703,1386)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1386, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 1, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1386.703");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1386=232711 1386 = 2 \cdot 3^{2} \cdot 7 \cdot 11
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1386.bk (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 11.067265720111.0672657201
Analytic rank: 00
Dimension: 1616
Relative dimension: 88 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q[x]/(x16)\mathbb{Q}[x]/(x^{16} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x168x15+74x14378x13+1878x126718x11+22086x1056904x9++13417 x^{16} - 8 x^{15} + 74 x^{14} - 378 x^{13} + 1878 x^{12} - 6718 x^{11} + 22086 x^{10} - 56904 x^{9} + \cdots + 13417 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 462)
Sato-Tate group: SU(2)[C6]\mathrm{SU}(2)[C_{6}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β151,\beta_1,\ldots,\beta_{15} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β12q2+(β13+1)q4+(β13β91)q5+(β15+β13+β11++1)q7+(β12+β11)q8+(β12β11+β7)q10++(2β15β14+β12+2)q98+O(q100) q + \beta_{12} q^{2} + (\beta_{13} + 1) q^{4} + ( - \beta_{13} - \beta_{9} - 1) q^{5} + ( - \beta_{15} + \beta_{13} + \beta_{11} + \cdots + 1) q^{7} + (\beta_{12} + \beta_{11}) q^{8} + ( - \beta_{12} - \beta_{11} + \beta_{7}) q^{10}+ \cdots + (2 \beta_{15} - \beta_{14} + \beta_{12} + \cdots - 2) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 16q+8q412q5+6q72q10+4q118q148q16+10q19+2q22+4q23+10q2512q26+6q318q35+14q37+12q38+2q40+32q41+40q98+O(q100) 16 q + 8 q^{4} - 12 q^{5} + 6 q^{7} - 2 q^{10} + 4 q^{11} - 8 q^{14} - 8 q^{16} + 10 q^{19} + 2 q^{22} + 4 q^{23} + 10 q^{25} - 12 q^{26} + 6 q^{31} - 8 q^{35} + 14 q^{37} + 12 q^{38} + 2 q^{40} + 32 q^{41}+ \cdots - 40 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x168x15+74x14378x13+1878x126718x11+22086x1056904x9++13417 x^{16} - 8 x^{15} + 74 x^{14} - 378 x^{13} + 1878 x^{12} - 6718 x^{11} + 22086 x^{10} - 56904 x^{9} + \cdots + 13417 : Copy content Toggle raw display

β1\beta_{1}== (3325577ν14+23279039ν13218220364ν12+1006694677ν11+13304183911)/3261539424 ( - 3325577 \nu^{14} + 23279039 \nu^{13} - 218220364 \nu^{12} + 1006694677 \nu^{11} + \cdots - 13304183911 ) / 3261539424 Copy content Toggle raw display
β2\beta_{2}== (14496748ν15+165765669ν141387066295ν13+16433893584ν12++8734585660679)/316369324128 ( 14496748 \nu^{15} + 165765669 \nu^{14} - 1387066295 \nu^{13} + 16433893584 \nu^{12} + \cdots + 8734585660679 ) / 316369324128 Copy content Toggle raw display
β3\beta_{3}== (14496748ν15383216889ν14+2455811611ν1320082727968ν12++1933997835005)/316369324128 ( 14496748 \nu^{15} - 383216889 \nu^{14} + 2455811611 \nu^{13} - 20082727968 \nu^{12} + \cdots + 1933997835005 ) / 316369324128 Copy content Toggle raw display
β4\beta_{4}== (28661011ν15+376248067ν143019246022ν13+19609879751ν12++1766457326490)/316369324128 ( - 28661011 \nu^{15} + 376248067 \nu^{14} - 3019246022 \nu^{13} + 19609879751 \nu^{12} + \cdots + 1766457326490 ) / 316369324128 Copy content Toggle raw display
β5\beta_{5}== (30920939ν1547258327ν14211956648ν137396232221ν12+2047012171496)/158184662064 ( - 30920939 \nu^{15} - 47258327 \nu^{14} - 211956648 \nu^{13} - 7396232221 \nu^{12} + \cdots - 2047012171496 ) / 158184662064 Copy content Toggle raw display
β6\beta_{6}== (30920939ν15+511072412ν144120271821ν13+28521203647ν12++1740262265133)/158184662064 ( - 30920939 \nu^{15} + 511072412 \nu^{14} - 4120271821 \nu^{13} + 28521203647 \nu^{12} + \cdots + 1740262265133 ) / 158184662064 Copy content Toggle raw display
β7\beta_{7}== (7915220ν1540953259ν14+414028833ν131460644352ν12+132462757465)/28760847648 ( 7915220 \nu^{15} - 40953259 \nu^{14} + 414028833 \nu^{13} - 1460644352 \nu^{12} + \cdots - 132462757465 ) / 28760847648 Copy content Toggle raw display
β8\beta_{8}== (7979ν15+68912ν14628546ν13+3357412ν1216625487ν11++285645792)/18627492 ( - 7979 \nu^{15} + 68912 \nu^{14} - 628546 \nu^{13} + 3357412 \nu^{12} - 16625487 \nu^{11} + \cdots + 285645792 ) / 18627492 Copy content Toggle raw display
β9\beta_{9}== (7979ν15+68912ν14628546ν13+3357412ν1216625487ν11++304273284)/18627492 ( - 7979 \nu^{15} + 68912 \nu^{14} - 628546 \nu^{13} + 3357412 \nu^{12} - 16625487 \nu^{11} + \cdots + 304273284 ) / 18627492 Copy content Toggle raw display
β10\beta_{10}== (6671ν15+41254ν14402799ν13+1707247ν128612564ν11++82787651)/7787936 ( - 6671 \nu^{15} + 41254 \nu^{14} - 402799 \nu^{13} + 1707247 \nu^{12} - 8612564 \nu^{11} + \cdots + 82787651 ) / 7787936 Copy content Toggle raw display
β11\beta_{11}== (24636003ν15180367241ν14+1683650240ν138042787727ν12+463004009716)/28760847648 ( 24636003 \nu^{15} - 180367241 \nu^{14} + 1683650240 \nu^{13} - 8042787727 \nu^{12} + \cdots - 463004009716 ) / 28760847648 Copy content Toggle raw display
β12\beta_{12}== (24636003ν15189172804ν14+1745289181ν138640627827ν12+503813289929)/28760847648 ( 24636003 \nu^{15} - 189172804 \nu^{14} + 1745289181 \nu^{13} - 8640627827 \nu^{12} + \cdots - 503813289929 ) / 28760847648 Copy content Toggle raw display
β13\beta_{13}== (15958ν15119685ν14+1130119ν135530551ν12+27795985ν11+518381770)/18627492 ( 15958 \nu^{15} - 119685 \nu^{14} + 1130119 \nu^{13} - 5530551 \nu^{12} + 27795985 \nu^{11} + \cdots - 518381770 ) / 18627492 Copy content Toggle raw display
β14\beta_{14}== (731076296ν15+5564679969ν1451759660791ν13+255254450652ν12++18336335470607)/316369324128 ( - 731076296 \nu^{15} + 5564679969 \nu^{14} - 51759660791 \nu^{13} + 255254450652 \nu^{12} + \cdots + 18336335470607 ) / 316369324128 Copy content Toggle raw display
β15\beta_{15}== (791321153ν155699211694ν14+53761281981ν13254911441289ν12+16525376998129)/316369324128 ( 791321153 \nu^{15} - 5699211694 \nu^{14} + 53761281981 \nu^{13} - 254911441289 \nu^{12} + \cdots - 16525376998129 ) / 316369324128 Copy content Toggle raw display
ν\nu== β9+β8+1 -\beta_{9} + \beta_{8} + 1 Copy content Toggle raw display
ν2\nu^{2}== β15+β14β132β11β102β9+β72β62β14 \beta_{15} + \beta_{14} - \beta_{13} - 2\beta_{11} - \beta_{10} - 2\beta_{9} + \beta_{7} - 2\beta_{6} - 2\beta _1 - 4 Copy content Toggle raw display
ν3\nu^{3}== 2β15+β145β13β122β113β10+9β9+14 2 \beta_{15} + \beta_{14} - 5 \beta_{13} - \beta_{12} - 2 \beta_{11} - 3 \beta_{10} + 9 \beta_{9} + \cdots - 14 Copy content Toggle raw display
ν4\nu^{4}== 8β1510β14+2β13+5β12+17β11+10β10++19 - 8 \beta_{15} - 10 \beta_{14} + 2 \beta_{13} + 5 \beta_{12} + 17 \beta_{11} + 10 \beta_{10} + \cdots + 19 Copy content Toggle raw display
ν5\nu^{5}== 28β1522β14+64β13+24β12+23β11+58β10++162 - 28 \beta_{15} - 22 \beta_{14} + 64 \beta_{13} + 24 \beta_{12} + 23 \beta_{11} + 58 \beta_{10} + \cdots + 162 Copy content Toggle raw display
ν6\nu^{6}== 52β15+75β14+61β1374β12170β1165β10+5 52 \beta_{15} + 75 \beta_{14} + 61 \beta_{13} - 74 \beta_{12} - 170 \beta_{11} - 65 \beta_{10} + \cdots - 5 Copy content Toggle raw display
ν7\nu^{7}== 325β15+298β14657β13450β12323β11852β10+1701 325 \beta_{15} + 298 \beta_{14} - 657 \beta_{13} - 450 \beta_{12} - 323 \beta_{11} - 852 \beta_{10} + \cdots - 1701 Copy content Toggle raw display
ν8\nu^{8}== 228β15448β141368β13+585β12+1711β11150β10+1786 - 228 \beta_{15} - 448 \beta_{14} - 1368 \beta_{13} + 585 \beta_{12} + 1711 \beta_{11} - 150 \beta_{10} + \cdots - 1786 Copy content Toggle raw display
ν9\nu^{9}== 3506β153490β14+5934β13+6780β12+4769β11++16429 - 3506 \beta_{15} - 3490 \beta_{14} + 5934 \beta_{13} + 6780 \beta_{12} + 4769 \beta_{11} + \cdots + 16429 Copy content Toggle raw display
ν10\nu^{10}== 775β15+1126β14+20300β13160β1215824β11++36293 - 775 \beta_{15} + 1126 \beta_{14} + 20300 \beta_{13} - 160 \beta_{12} - 15824 \beta_{11} + \cdots + 36293 Copy content Toggle raw display
ν11\nu^{11}== 35787β15+37693β1447572β1387239β1266603β11+143099 35787 \beta_{15} + 37693 \beta_{14} - 47572 \beta_{13} - 87239 \beta_{12} - 66603 \beta_{11} + \cdots - 143099 Copy content Toggle raw display
ν12\nu^{12}== 39984β15+26340β14258878β1394424β12+124230β11+542199 39984 \beta_{15} + 26340 \beta_{14} - 258878 \beta_{13} - 94424 \beta_{12} + 124230 \beta_{11} + \cdots - 542199 Copy content Toggle raw display
ν13\nu^{13}== 342678β15375858β14+321008β13+984284β12+862898β11++1048389 - 342678 \beta_{15} - 375858 \beta_{14} + 321008 \beta_{13} + 984284 \beta_{12} + 862898 \beta_{11} + \cdots + 1048389 Copy content Toggle raw display
ν14\nu^{14}== 729089β15672801β14+3058731β13+2237884β12659178β11++7051750 - 729089 \beta_{15} - 672801 \beta_{14} + 3058731 \beta_{13} + 2237884 \beta_{12} - 659178 \beta_{11} + \cdots + 7051750 Copy content Toggle raw display
ν15\nu^{15}== 3012048β15+3370541β141368219β139668935β1210414656β11+4830300 3012048 \beta_{15} + 3370541 \beta_{14} - 1368219 \beta_{13} - 9668935 \beta_{12} - 10414656 \beta_{11} + \cdots - 4830300 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1386Z)×\left(\mathbb{Z}/1386\mathbb{Z}\right)^\times.

nn 155155 199199 11351135
χ(n)\chi(n) 11 β13-\beta_{13} 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
703.1
0.500000 + 2.40229i
0.500000 + 1.35798i
0.500000 1.56688i
0.500000 3.19339i
0.500000 + 3.43554i
0.500000 + 0.921602i
0.500000 0.0286340i
0.500000 3.32851i
0.500000 2.40229i
0.500000 1.35798i
0.500000 + 1.56688i
0.500000 + 3.19339i
0.500000 3.43554i
0.500000 0.921602i
0.500000 + 0.0286340i
0.500000 + 3.32851i
−0.866025 + 0.500000i 0 0.500000 0.866025i −2.83045 + 1.63416i 0 2.54243 + 0.732142i 1.00000i 0 1.63416 2.83045i
703.2 −0.866025 + 0.500000i 0 0.500000 0.866025i −1.92604 + 1.11200i 0 −2.45660 0.982398i 1.00000i 0 1.11200 1.92604i
703.3 −0.866025 + 0.500000i 0 0.500000 0.866025i 0.606961 0.350429i 0 1.82993 1.91085i 1.00000i 0 −0.350429 + 0.606961i
703.4 −0.866025 + 0.500000i 0 0.500000 0.866025i 2.01555 1.16368i 0 1.31629 + 2.29508i 1.00000i 0 −1.16368 + 2.01555i
703.5 0.866025 0.500000i 0 0.500000 0.866025i −3.72526 + 2.15078i 0 1.43173 + 2.22489i 1.00000i 0 −2.15078 + 3.72526i
703.6 0.866025 0.500000i 0 0.500000 0.866025i −1.54813 + 0.893814i 0 −0.165362 2.64058i 1.00000i 0 −0.893814 + 1.54813i
703.7 0.866025 0.500000i 0 0.500000 0.866025i −0.725202 + 0.418696i 0 −2.44037 + 1.02205i 1.00000i 0 −0.418696 + 0.725202i
703.8 0.866025 0.500000i 0 0.500000 0.866025i 2.13257 1.23124i 0 0.941950 2.47239i 1.00000i 0 1.23124 2.13257i
901.1 −0.866025 0.500000i 0 0.500000 + 0.866025i −2.83045 1.63416i 0 2.54243 0.732142i 1.00000i 0 1.63416 + 2.83045i
901.2 −0.866025 0.500000i 0 0.500000 + 0.866025i −1.92604 1.11200i 0 −2.45660 + 0.982398i 1.00000i 0 1.11200 + 1.92604i
901.3 −0.866025 0.500000i 0 0.500000 + 0.866025i 0.606961 + 0.350429i 0 1.82993 + 1.91085i 1.00000i 0 −0.350429 0.606961i
901.4 −0.866025 0.500000i 0 0.500000 + 0.866025i 2.01555 + 1.16368i 0 1.31629 2.29508i 1.00000i 0 −1.16368 2.01555i
901.5 0.866025 + 0.500000i 0 0.500000 + 0.866025i −3.72526 2.15078i 0 1.43173 2.22489i 1.00000i 0 −2.15078 3.72526i
901.6 0.866025 + 0.500000i 0 0.500000 + 0.866025i −1.54813 0.893814i 0 −0.165362 + 2.64058i 1.00000i 0 −0.893814 1.54813i
901.7 0.866025 + 0.500000i 0 0.500000 + 0.866025i −0.725202 0.418696i 0 −2.44037 1.02205i 1.00000i 0 −0.418696 0.725202i
901.8 0.866025 + 0.500000i 0 0.500000 + 0.866025i 2.13257 + 1.23124i 0 0.941950 + 2.47239i 1.00000i 0 1.23124 + 2.13257i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 703.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
77.i even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1386.2.bk.b 16
3.b odd 2 1 462.2.p.b yes 16
7.d odd 6 1 1386.2.bk.a 16
11.b odd 2 1 1386.2.bk.a 16
21.g even 6 1 462.2.p.a 16
21.g even 6 1 3234.2.e.a 16
21.h odd 6 1 3234.2.e.b 16
33.d even 2 1 462.2.p.a 16
77.i even 6 1 inner 1386.2.bk.b 16
231.k odd 6 1 462.2.p.b yes 16
231.k odd 6 1 3234.2.e.b 16
231.l even 6 1 3234.2.e.a 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
462.2.p.a 16 21.g even 6 1
462.2.p.a 16 33.d even 2 1
462.2.p.b yes 16 3.b odd 2 1
462.2.p.b yes 16 231.k odd 6 1
1386.2.bk.a 16 7.d odd 6 1
1386.2.bk.a 16 11.b odd 2 1
1386.2.bk.b 16 1.a even 1 1 trivial
1386.2.bk.b 16 77.i even 6 1 inner
3234.2.e.a 16 21.g even 6 1
3234.2.e.a 16 231.l even 6 1
3234.2.e.b 16 21.h odd 6 1
3234.2.e.b 16 231.k odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1386,[χ])S_{2}^{\mathrm{new}}(1386, [\chi]):

T516+12T515+47T51412T513484T512312T511++35344 T_{5}^{16} + 12 T_{5}^{15} + 47 T_{5}^{14} - 12 T_{5}^{13} - 484 T_{5}^{12} - 312 T_{5}^{11} + \cdots + 35344 Copy content Toggle raw display
T13864T136+8T135+836T1341168T133592T132+1216T13128 T_{13}^{8} - 64T_{13}^{6} + 8T_{13}^{5} + 836T_{13}^{4} - 1168T_{13}^{3} - 592T_{13}^{2} + 1216T_{13} - 128 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T4T2+1)4 (T^{4} - T^{2} + 1)^{4} Copy content Toggle raw display
33 T16 T^{16} Copy content Toggle raw display
55 T16+12T15++35344 T^{16} + 12 T^{15} + \cdots + 35344 Copy content Toggle raw display
77 T166T15++5764801 T^{16} - 6 T^{15} + \cdots + 5764801 Copy content Toggle raw display
1111 T16++214358881 T^{16} + \cdots + 214358881 Copy content Toggle raw display
1313 (T864T6+128)2 (T^{8} - 64 T^{6} + \cdots - 128)^{2} Copy content Toggle raw display
1717 T16+53T14++576 T^{16} + 53 T^{14} + \cdots + 576 Copy content Toggle raw display
1919 T1610T15++2768896 T^{16} - 10 T^{15} + \cdots + 2768896 Copy content Toggle raw display
2323 T16++24039882304 T^{16} + \cdots + 24039882304 Copy content Toggle raw display
2929 T16++12810617856 T^{16} + \cdots + 12810617856 Copy content Toggle raw display
3131 T166T15++262144 T^{16} - 6 T^{15} + \cdots + 262144 Copy content Toggle raw display
3737 T16++125622042624 T^{16} + \cdots + 125622042624 Copy content Toggle raw display
4141 (T816T7++256)2 (T^{8} - 16 T^{7} + \cdots + 256)^{2} Copy content Toggle raw display
4343 T16++23084548096 T^{16} + \cdots + 23084548096 Copy content Toggle raw display
4747 T16++1344737098384 T^{16} + \cdots + 1344737098384 Copy content Toggle raw display
5353 T16++26488213504 T^{16} + \cdots + 26488213504 Copy content Toggle raw display
5959 T16++109280491776 T^{16} + \cdots + 109280491776 Copy content Toggle raw display
6161 T16++3489501184 T^{16} + \cdots + 3489501184 Copy content Toggle raw display
6767 T16++2403352576 T^{16} + \cdots + 2403352576 Copy content Toggle raw display
7171 (T828T7++4193232)2 (T^{8} - 28 T^{7} + \cdots + 4193232)^{2} Copy content Toggle raw display
7373 T16++119793516544 T^{16} + \cdots + 119793516544 Copy content Toggle raw display
7979 T16++1130708969104 T^{16} + \cdots + 1130708969104 Copy content Toggle raw display
8383 (T84T7++5604)2 (T^{8} - 4 T^{7} + \cdots + 5604)^{2} Copy content Toggle raw display
8989 T16++96546188427264 T^{16} + \cdots + 96546188427264 Copy content Toggle raw display
9797 T16++68597371921 T^{16} + \cdots + 68597371921 Copy content Toggle raw display
show more
show less