Properties

Label 1386.2.r.d.89.10
Level $1386$
Weight $2$
Character 1386.89
Analytic conductor $11.067$
Analytic rank $0$
Dimension $24$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1386,2,Mod(89,1386)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1386, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 5, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1386.89");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1386 = 2 \cdot 3^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1386.r (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.0672657201\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 89.10
Character \(\chi\) \(=\) 1386.89
Dual form 1386.2.r.d.1277.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.866025 + 0.500000i) q^{2} +(0.500000 + 0.866025i) q^{4} +(-0.645853 + 1.11865i) q^{5} +(2.63647 + 0.221466i) q^{7} +1.00000i q^{8} +(-1.11865 + 0.645853i) q^{10} +(-0.866025 + 0.500000i) q^{11} +3.78742i q^{13} +(2.17251 + 1.51003i) q^{14} +(-0.500000 + 0.866025i) q^{16} +(-0.552825 - 0.957521i) q^{17} +(2.02517 + 1.16923i) q^{19} -1.29171 q^{20} -1.00000 q^{22} +(-2.83782 - 1.63842i) q^{23} +(1.66575 + 2.88516i) q^{25} +(-1.89371 + 3.28000i) q^{26} +(1.12644 + 2.39398i) q^{28} +2.78548i q^{29} +(3.81931 - 2.20508i) q^{31} +(-0.866025 + 0.500000i) q^{32} -1.10565i q^{34} +(-1.95051 + 2.80625i) q^{35} +(-3.09743 + 5.36491i) q^{37} +(1.16923 + 2.02517i) q^{38} +(-1.11865 - 0.645853i) q^{40} +2.16639 q^{41} -8.44892 q^{43} +(-0.866025 - 0.500000i) q^{44} +(-1.63842 - 2.83782i) q^{46} +(1.74371 - 3.02020i) q^{47} +(6.90191 + 1.16778i) q^{49} +3.33150i q^{50} +(-3.28000 + 1.89371i) q^{52} +(-2.02952 + 1.17174i) q^{53} -1.29171i q^{55} +(-0.221466 + 2.63647i) q^{56} +(-1.39274 + 2.41230i) q^{58} +(2.30664 + 3.99523i) q^{59} +(1.60176 + 0.924776i) q^{61} +4.41016 q^{62} -1.00000 q^{64} +(-4.23679 - 2.44611i) q^{65} +(5.79630 + 10.0395i) q^{67} +(0.552825 - 0.957521i) q^{68} +(-3.09232 + 1.45503i) q^{70} +1.96495i q^{71} +(4.98535 - 2.87829i) q^{73} +(-5.36491 + 3.09743i) q^{74} +2.33847i q^{76} +(-2.39398 + 1.12644i) q^{77} +(2.49285 - 4.31774i) q^{79} +(-0.645853 - 1.11865i) q^{80} +(1.87615 + 1.08319i) q^{82} -8.95734 q^{83} +1.42817 q^{85} +(-7.31698 - 4.22446i) q^{86} +(-0.500000 - 0.866025i) q^{88} +(-1.79901 + 3.11598i) q^{89} +(-0.838784 + 9.98539i) q^{91} -3.27683i q^{92} +(3.02020 - 1.74371i) q^{94} +(-2.61593 + 1.51031i) q^{95} -15.8884i q^{97} +(5.39334 + 4.46228i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 24 q + 12 q^{4} + 8 q^{7} - 12 q^{16} + 12 q^{19} - 24 q^{22} + 4 q^{25} + 4 q^{28} + 20 q^{37} + 24 q^{43} + 12 q^{46} + 40 q^{49} - 28 q^{58} - 120 q^{61} - 24 q^{64} - 32 q^{67} + 48 q^{70} - 48 q^{73}+ \cdots + 60 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1386\mathbb{Z}\right)^\times\).

\(n\) \(155\) \(199\) \(1135\)
\(\chi(n)\) \(-1\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.866025 + 0.500000i 0.612372 + 0.353553i
\(3\) 0 0
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) −0.645853 + 1.11865i −0.288834 + 0.500275i −0.973532 0.228552i \(-0.926601\pi\)
0.684698 + 0.728827i \(0.259934\pi\)
\(6\) 0 0
\(7\) 2.63647 + 0.221466i 0.996490 + 0.0837063i
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −1.11865 + 0.645853i −0.353748 + 0.204237i
\(11\) −0.866025 + 0.500000i −0.261116 + 0.150756i
\(12\) 0 0
\(13\) 3.78742i 1.05044i 0.850966 + 0.525220i \(0.176017\pi\)
−0.850966 + 0.525220i \(0.823983\pi\)
\(14\) 2.17251 + 1.51003i 0.580629 + 0.403572i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −0.552825 0.957521i −0.134080 0.232233i 0.791166 0.611602i \(-0.209475\pi\)
−0.925246 + 0.379369i \(0.876141\pi\)
\(18\) 0 0
\(19\) 2.02517 + 1.16923i 0.464607 + 0.268241i 0.713979 0.700167i \(-0.246891\pi\)
−0.249373 + 0.968408i \(0.580224\pi\)
\(20\) −1.29171 −0.288834
\(21\) 0 0
\(22\) −1.00000 −0.213201
\(23\) −2.83782 1.63842i −0.591726 0.341633i 0.174054 0.984736i \(-0.444313\pi\)
−0.765780 + 0.643103i \(0.777647\pi\)
\(24\) 0 0
\(25\) 1.66575 + 2.88516i 0.333150 + 0.577032i
\(26\) −1.89371 + 3.28000i −0.371387 + 0.643261i
\(27\) 0 0
\(28\) 1.12644 + 2.39398i 0.212877 + 0.452420i
\(29\) 2.78548i 0.517251i 0.965978 + 0.258626i \(0.0832696\pi\)
−0.965978 + 0.258626i \(0.916730\pi\)
\(30\) 0 0
\(31\) 3.81931 2.20508i 0.685968 0.396044i −0.116132 0.993234i \(-0.537049\pi\)
0.802100 + 0.597190i \(0.203716\pi\)
\(32\) −0.866025 + 0.500000i −0.153093 + 0.0883883i
\(33\) 0 0
\(34\) 1.10565i 0.189617i
\(35\) −1.95051 + 2.80625i −0.329697 + 0.474342i
\(36\) 0 0
\(37\) −3.09743 + 5.36491i −0.509215 + 0.881986i 0.490728 + 0.871313i \(0.336731\pi\)
−0.999943 + 0.0106735i \(0.996602\pi\)
\(38\) 1.16923 + 2.02517i 0.189675 + 0.328527i
\(39\) 0 0
\(40\) −1.11865 0.645853i −0.176874 0.102118i
\(41\) 2.16639 0.338333 0.169166 0.985588i \(-0.445892\pi\)
0.169166 + 0.985588i \(0.445892\pi\)
\(42\) 0 0
\(43\) −8.44892 −1.28845 −0.644224 0.764837i \(-0.722819\pi\)
−0.644224 + 0.764837i \(0.722819\pi\)
\(44\) −0.866025 0.500000i −0.130558 0.0753778i
\(45\) 0 0
\(46\) −1.63842 2.83782i −0.241571 0.418414i
\(47\) 1.74371 3.02020i 0.254346 0.440541i −0.710371 0.703827i \(-0.751473\pi\)
0.964718 + 0.263286i \(0.0848063\pi\)
\(48\) 0 0
\(49\) 6.90191 + 1.16778i 0.985987 + 0.166825i
\(50\) 3.33150i 0.471145i
\(51\) 0 0
\(52\) −3.28000 + 1.89371i −0.454854 + 0.262610i
\(53\) −2.02952 + 1.17174i −0.278776 + 0.160951i −0.632869 0.774259i \(-0.718123\pi\)
0.354093 + 0.935210i \(0.384790\pi\)
\(54\) 0 0
\(55\) 1.29171i 0.174174i
\(56\) −0.221466 + 2.63647i −0.0295946 + 0.352313i
\(57\) 0 0
\(58\) −1.39274 + 2.41230i −0.182876 + 0.316750i
\(59\) 2.30664 + 3.99523i 0.300300 + 0.520134i 0.976204 0.216855i \(-0.0695800\pi\)
−0.675904 + 0.736989i \(0.736247\pi\)
\(60\) 0 0
\(61\) 1.60176 + 0.924776i 0.205084 + 0.118405i 0.599025 0.800731i \(-0.295555\pi\)
−0.393941 + 0.919136i \(0.628888\pi\)
\(62\) 4.41016 0.560091
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −4.23679 2.44611i −0.525509 0.303403i
\(66\) 0 0
\(67\) 5.79630 + 10.0395i 0.708131 + 1.22652i 0.965550 + 0.260219i \(0.0837946\pi\)
−0.257419 + 0.966300i \(0.582872\pi\)
\(68\) 0.552825 0.957521i 0.0670399 0.116117i
\(69\) 0 0
\(70\) −3.09232 + 1.45503i −0.369603 + 0.173909i
\(71\) 1.96495i 0.233197i 0.993179 + 0.116598i \(0.0371990\pi\)
−0.993179 + 0.116598i \(0.962801\pi\)
\(72\) 0 0
\(73\) 4.98535 2.87829i 0.583491 0.336879i −0.179029 0.983844i \(-0.557295\pi\)
0.762519 + 0.646965i \(0.223962\pi\)
\(74\) −5.36491 + 3.09743i −0.623658 + 0.360069i
\(75\) 0 0
\(76\) 2.33847i 0.268241i
\(77\) −2.39398 + 1.12644i −0.272819 + 0.128370i
\(78\) 0 0
\(79\) 2.49285 4.31774i 0.280467 0.485783i −0.691033 0.722823i \(-0.742844\pi\)
0.971500 + 0.237040i \(0.0761773\pi\)
\(80\) −0.645853 1.11865i −0.0722085 0.125069i
\(81\) 0 0
\(82\) 1.87615 + 1.08319i 0.207186 + 0.119619i
\(83\) −8.95734 −0.983196 −0.491598 0.870822i \(-0.663587\pi\)
−0.491598 + 0.870822i \(0.663587\pi\)
\(84\) 0 0
\(85\) 1.42817 0.154907
\(86\) −7.31698 4.22446i −0.789010 0.455535i
\(87\) 0 0
\(88\) −0.500000 0.866025i −0.0533002 0.0923186i
\(89\) −1.79901 + 3.11598i −0.190695 + 0.330293i −0.945481 0.325678i \(-0.894407\pi\)
0.754786 + 0.655971i \(0.227741\pi\)
\(90\) 0 0
\(91\) −0.838784 + 9.98539i −0.0879285 + 1.04675i
\(92\) 3.27683i 0.341633i
\(93\) 0 0
\(94\) 3.02020 1.74371i 0.311509 0.179850i
\(95\) −2.61593 + 1.51031i −0.268389 + 0.154954i
\(96\) 0 0
\(97\) 15.8884i 1.61322i −0.591085 0.806609i \(-0.701300\pi\)
0.591085 0.806609i \(-0.298700\pi\)
\(98\) 5.39334 + 4.46228i 0.544809 + 0.450758i
\(99\) 0 0
\(100\) −1.66575 + 2.88516i −0.166575 + 0.288516i
\(101\) −1.42778 2.47299i −0.142070 0.246072i 0.786206 0.617964i \(-0.212042\pi\)
−0.928276 + 0.371892i \(0.878709\pi\)
\(102\) 0 0
\(103\) −2.43622 1.40655i −0.240048 0.138592i 0.375151 0.926964i \(-0.377591\pi\)
−0.615199 + 0.788372i \(0.710924\pi\)
\(104\) −3.78742 −0.371387
\(105\) 0 0
\(106\) −2.34349 −0.227620
\(107\) −7.44855 4.30042i −0.720078 0.415737i 0.0947032 0.995506i \(-0.469810\pi\)
−0.814782 + 0.579768i \(0.803143\pi\)
\(108\) 0 0
\(109\) 2.72966 + 4.72792i 0.261454 + 0.452852i 0.966629 0.256182i \(-0.0824646\pi\)
−0.705174 + 0.709034i \(0.749131\pi\)
\(110\) 0.645853 1.11865i 0.0615796 0.106659i
\(111\) 0 0
\(112\) −1.51003 + 2.17251i −0.142684 + 0.205283i
\(113\) 11.7670i 1.10695i 0.832867 + 0.553473i \(0.186698\pi\)
−0.832867 + 0.553473i \(0.813302\pi\)
\(114\) 0 0
\(115\) 3.66563 2.11635i 0.341821 0.197351i
\(116\) −2.41230 + 1.39274i −0.223976 + 0.129313i
\(117\) 0 0
\(118\) 4.61329i 0.424688i
\(119\) −1.24545 2.64690i −0.114170 0.242641i
\(120\) 0 0
\(121\) 0.500000 0.866025i 0.0454545 0.0787296i
\(122\) 0.924776 + 1.60176i 0.0837252 + 0.145016i
\(123\) 0 0
\(124\) 3.81931 + 2.20508i 0.342984 + 0.198022i
\(125\) −10.7618 −0.962568
\(126\) 0 0
\(127\) 13.2680 1.17734 0.588672 0.808372i \(-0.299651\pi\)
0.588672 + 0.808372i \(0.299651\pi\)
\(128\) −0.866025 0.500000i −0.0765466 0.0441942i
\(129\) 0 0
\(130\) −2.44611 4.23679i −0.214538 0.371591i
\(131\) 8.88475 15.3888i 0.776264 1.34453i −0.157817 0.987468i \(-0.550446\pi\)
0.934081 0.357061i \(-0.116221\pi\)
\(132\) 0 0
\(133\) 5.08036 + 3.53115i 0.440523 + 0.306190i
\(134\) 11.5926i 1.00145i
\(135\) 0 0
\(136\) 0.957521 0.552825i 0.0821068 0.0474044i
\(137\) −6.74719 + 3.89549i −0.576451 + 0.332814i −0.759722 0.650248i \(-0.774665\pi\)
0.183270 + 0.983063i \(0.441332\pi\)
\(138\) 0 0
\(139\) 0.342557i 0.0290553i 0.999894 + 0.0145277i \(0.00462446\pi\)
−0.999894 + 0.0145277i \(0.995376\pi\)
\(140\) −3.40554 0.286069i −0.287820 0.0241772i
\(141\) 0 0
\(142\) −0.982475 + 1.70170i −0.0824474 + 0.142803i
\(143\) −1.89371 3.28000i −0.158360 0.274287i
\(144\) 0 0
\(145\) −3.11598 1.79901i −0.258768 0.149400i
\(146\) 5.75658 0.476418
\(147\) 0 0
\(148\) −6.19487 −0.509215
\(149\) 7.16340 + 4.13579i 0.586849 + 0.338817i 0.763850 0.645393i \(-0.223306\pi\)
−0.177002 + 0.984211i \(0.556640\pi\)
\(150\) 0 0
\(151\) 0.880131 + 1.52443i 0.0716241 + 0.124057i 0.899613 0.436688i \(-0.143848\pi\)
−0.827989 + 0.560744i \(0.810515\pi\)
\(152\) −1.16923 + 2.02517i −0.0948375 + 0.164263i
\(153\) 0 0
\(154\) −2.63647 0.221466i −0.212452 0.0178462i
\(155\) 5.69663i 0.457564i
\(156\) 0 0
\(157\) 9.80424 5.66048i 0.782464 0.451756i −0.0548389 0.998495i \(-0.517465\pi\)
0.837303 + 0.546739i \(0.184131\pi\)
\(158\) 4.31774 2.49285i 0.343501 0.198320i
\(159\) 0 0
\(160\) 1.29171i 0.102118i
\(161\) −7.11896 4.94811i −0.561053 0.389965i
\(162\) 0 0
\(163\) 11.1919 19.3850i 0.876618 1.51835i 0.0215899 0.999767i \(-0.493127\pi\)
0.855029 0.518581i \(-0.173539\pi\)
\(164\) 1.08319 + 1.87615i 0.0845832 + 0.146502i
\(165\) 0 0
\(166\) −7.75729 4.47867i −0.602082 0.347612i
\(167\) 24.2239 1.87450 0.937252 0.348652i \(-0.113360\pi\)
0.937252 + 0.348652i \(0.113360\pi\)
\(168\) 0 0
\(169\) −1.34452 −0.103425
\(170\) 1.23684 + 0.714087i 0.0948610 + 0.0547680i
\(171\) 0 0
\(172\) −4.22446 7.31698i −0.322112 0.557914i
\(173\) 7.95025 13.7702i 0.604446 1.04693i −0.387693 0.921789i \(-0.626728\pi\)
0.992139 0.125143i \(-0.0399388\pi\)
\(174\) 0 0
\(175\) 3.75272 + 7.97554i 0.283679 + 0.602894i
\(176\) 1.00000i 0.0753778i
\(177\) 0 0
\(178\) −3.11598 + 1.79901i −0.233553 + 0.134842i
\(179\) 7.64555 4.41416i 0.571455 0.329930i −0.186275 0.982498i \(-0.559642\pi\)
0.757730 + 0.652568i \(0.226308\pi\)
\(180\) 0 0
\(181\) 20.7819i 1.54470i −0.635194 0.772352i \(-0.719080\pi\)
0.635194 0.772352i \(-0.280920\pi\)
\(182\) −5.71911 + 8.22821i −0.423928 + 0.609916i
\(183\) 0 0
\(184\) 1.63842 2.83782i 0.120786 0.209207i
\(185\) −4.00097 6.92989i −0.294157 0.509495i
\(186\) 0 0
\(187\) 0.957521 + 0.552825i 0.0700209 + 0.0404266i
\(188\) 3.48742 0.254346
\(189\) 0 0
\(190\) −3.02061 −0.219138
\(191\) −11.8164 6.82219i −0.855003 0.493636i 0.00733261 0.999973i \(-0.497666\pi\)
−0.862336 + 0.506337i \(0.830999\pi\)
\(192\) 0 0
\(193\) −2.33050 4.03654i −0.167753 0.290556i 0.769877 0.638193i \(-0.220318\pi\)
−0.937629 + 0.347636i \(0.886984\pi\)
\(194\) 7.94418 13.7597i 0.570359 0.987890i
\(195\) 0 0
\(196\) 2.43963 + 6.56111i 0.174259 + 0.468651i
\(197\) 1.92007i 0.136799i 0.997658 + 0.0683997i \(0.0217893\pi\)
−0.997658 + 0.0683997i \(0.978211\pi\)
\(198\) 0 0
\(199\) 5.47439 3.16064i 0.388069 0.224052i −0.293254 0.956035i \(-0.594738\pi\)
0.681323 + 0.731983i \(0.261405\pi\)
\(200\) −2.88516 + 1.66575i −0.204012 + 0.117786i
\(201\) 0 0
\(202\) 2.85557i 0.200917i
\(203\) −0.616890 + 7.34383i −0.0432972 + 0.515436i
\(204\) 0 0
\(205\) −1.39917 + 2.42343i −0.0977220 + 0.169259i
\(206\) −1.40655 2.43622i −0.0979990 0.169739i
\(207\) 0 0
\(208\) −3.28000 1.89371i −0.227427 0.131305i
\(209\) −2.33847 −0.161755
\(210\) 0 0
\(211\) −12.9534 −0.891748 −0.445874 0.895096i \(-0.647107\pi\)
−0.445874 + 0.895096i \(0.647107\pi\)
\(212\) −2.02952 1.17174i −0.139388 0.0804757i
\(213\) 0 0
\(214\) −4.30042 7.44855i −0.293971 0.509172i
\(215\) 5.45676 9.45138i 0.372148 0.644579i
\(216\) 0 0
\(217\) 10.5578 4.96777i 0.716712 0.337234i
\(218\) 5.45933i 0.369752i
\(219\) 0 0
\(220\) 1.11865 0.645853i 0.0754194 0.0435434i
\(221\) 3.62653 2.09378i 0.243947 0.140843i
\(222\) 0 0
\(223\) 9.38102i 0.628200i −0.949390 0.314100i \(-0.898297\pi\)
0.949390 0.314100i \(-0.101703\pi\)
\(224\) −2.39398 + 1.12644i −0.159954 + 0.0752633i
\(225\) 0 0
\(226\) −5.88350 + 10.1905i −0.391365 + 0.677864i
\(227\) 1.26300 + 2.18759i 0.0838285 + 0.145195i 0.904891 0.425643i \(-0.139952\pi\)
−0.821063 + 0.570838i \(0.806619\pi\)
\(228\) 0 0
\(229\) −12.7173 7.34235i −0.840384 0.485196i 0.0170109 0.999855i \(-0.494585\pi\)
−0.857395 + 0.514659i \(0.827918\pi\)
\(230\) 4.23270 0.279096
\(231\) 0 0
\(232\) −2.78548 −0.182876
\(233\) −6.69706 3.86655i −0.438739 0.253306i 0.264324 0.964434i \(-0.414851\pi\)
−0.703062 + 0.711128i \(0.748185\pi\)
\(234\) 0 0
\(235\) 2.25236 + 3.90120i 0.146928 + 0.254486i
\(236\) −2.30664 + 3.99523i −0.150150 + 0.260067i
\(237\) 0 0
\(238\) 0.244864 2.91501i 0.0158722 0.188952i
\(239\) 20.7911i 1.34486i −0.740159 0.672432i \(-0.765250\pi\)
0.740159 0.672432i \(-0.234750\pi\)
\(240\) 0 0
\(241\) −13.3669 + 7.71741i −0.861041 + 0.497122i −0.864361 0.502872i \(-0.832277\pi\)
0.00331988 + 0.999994i \(0.498943\pi\)
\(242\) 0.866025 0.500000i 0.0556702 0.0321412i
\(243\) 0 0
\(244\) 1.84955i 0.118405i
\(245\) −5.76395 + 6.96660i −0.368245 + 0.445080i
\(246\) 0 0
\(247\) −4.42838 + 7.67018i −0.281771 + 0.488042i
\(248\) 2.20508 + 3.81931i 0.140023 + 0.242526i
\(249\) 0 0
\(250\) −9.32003 5.38092i −0.589450 0.340319i
\(251\) 5.10396 0.322159 0.161079 0.986941i \(-0.448502\pi\)
0.161079 + 0.986941i \(0.448502\pi\)
\(252\) 0 0
\(253\) 3.27683 0.206013
\(254\) 11.4904 + 6.63400i 0.720973 + 0.416254i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 13.9547 24.1702i 0.870469 1.50770i 0.00895701 0.999960i \(-0.497149\pi\)
0.861512 0.507737i \(-0.169518\pi\)
\(258\) 0 0
\(259\) −9.35443 + 13.4584i −0.581256 + 0.836266i
\(260\) 4.89223i 0.303403i
\(261\) 0 0
\(262\) 15.3888 8.88475i 0.950726 0.548902i
\(263\) 15.4662 8.92939i 0.953685 0.550610i 0.0594610 0.998231i \(-0.481062\pi\)
0.894224 + 0.447621i \(0.147728\pi\)
\(264\) 0 0
\(265\) 3.02709i 0.185953i
\(266\) 2.63414 + 5.59825i 0.161509 + 0.343251i
\(267\) 0 0
\(268\) −5.79630 + 10.0395i −0.354065 + 0.613259i
\(269\) 10.8042 + 18.7133i 0.658741 + 1.14097i 0.980942 + 0.194302i \(0.0622441\pi\)
−0.322201 + 0.946671i \(0.604423\pi\)
\(270\) 0 0
\(271\) 9.38753 + 5.41989i 0.570252 + 0.329235i 0.757250 0.653125i \(-0.226543\pi\)
−0.186998 + 0.982360i \(0.559876\pi\)
\(272\) 1.10565 0.0670399
\(273\) 0 0
\(274\) −7.79099 −0.470671
\(275\) −2.88516 1.66575i −0.173982 0.100448i
\(276\) 0 0
\(277\) −1.92620 3.33628i −0.115734 0.200458i 0.802339 0.596869i \(-0.203589\pi\)
−0.918073 + 0.396411i \(0.870255\pi\)
\(278\) −0.171279 + 0.296663i −0.0102726 + 0.0177927i
\(279\) 0 0
\(280\) −2.80625 1.95051i −0.167705 0.116565i
\(281\) 15.5841i 0.929669i 0.885398 + 0.464834i \(0.153886\pi\)
−0.885398 + 0.464834i \(0.846114\pi\)
\(282\) 0 0
\(283\) 6.00438 3.46663i 0.356923 0.206070i −0.310807 0.950473i \(-0.600599\pi\)
0.667730 + 0.744403i \(0.267266\pi\)
\(284\) −1.70170 + 0.982475i −0.100977 + 0.0582991i
\(285\) 0 0
\(286\) 3.78742i 0.223955i
\(287\) 5.71160 + 0.479781i 0.337145 + 0.0283206i
\(288\) 0 0
\(289\) 7.88877 13.6637i 0.464045 0.803750i
\(290\) −1.79901 3.11598i −0.105642 0.182977i
\(291\) 0 0
\(292\) 4.98535 + 2.87829i 0.291745 + 0.168439i
\(293\) −6.52214 −0.381028 −0.190514 0.981685i \(-0.561015\pi\)
−0.190514 + 0.981685i \(0.561015\pi\)
\(294\) 0 0
\(295\) −5.95901 −0.346947
\(296\) −5.36491 3.09743i −0.311829 0.180035i
\(297\) 0 0
\(298\) 4.13579 + 7.16340i 0.239580 + 0.414965i
\(299\) 6.20536 10.7480i 0.358865 0.621573i
\(300\) 0 0
\(301\) −22.2753 1.87115i −1.28393 0.107851i
\(302\) 1.76026i 0.101292i
\(303\) 0 0
\(304\) −2.02517 + 1.16923i −0.116152 + 0.0670602i
\(305\) −2.06900 + 1.19454i −0.118471 + 0.0683990i
\(306\) 0 0
\(307\) 14.5303i 0.829286i 0.909984 + 0.414643i \(0.136094\pi\)
−0.909984 + 0.414643i \(0.863906\pi\)
\(308\) −2.17251 1.51003i −0.123790 0.0860418i
\(309\) 0 0
\(310\) −2.84831 + 4.93342i −0.161773 + 0.280200i
\(311\) 9.48405 + 16.4269i 0.537791 + 0.931482i 0.999023 + 0.0442017i \(0.0140744\pi\)
−0.461232 + 0.887280i \(0.652592\pi\)
\(312\) 0 0
\(313\) −14.5397 8.39451i −0.821834 0.474486i 0.0292146 0.999573i \(-0.490699\pi\)
−0.851048 + 0.525087i \(0.824033\pi\)
\(314\) 11.3210 0.638879
\(315\) 0 0
\(316\) 4.98569 0.280467
\(317\) −17.9319 10.3530i −1.00715 0.581481i −0.0967974 0.995304i \(-0.530860\pi\)
−0.910357 + 0.413823i \(0.864193\pi\)
\(318\) 0 0
\(319\) −1.39274 2.41230i −0.0779785 0.135063i
\(320\) 0.645853 1.11865i 0.0361043 0.0625344i
\(321\) 0 0
\(322\) −3.69115 7.84467i −0.205700 0.437166i
\(323\) 2.58553i 0.143863i
\(324\) 0 0
\(325\) −10.9273 + 6.30888i −0.606138 + 0.349954i
\(326\) 19.3850 11.1919i 1.07363 0.619863i
\(327\) 0 0
\(328\) 2.16639i 0.119619i
\(329\) 5.26611 7.57647i 0.290330 0.417704i
\(330\) 0 0
\(331\) −15.9538 + 27.6327i −0.876898 + 1.51883i −0.0221703 + 0.999754i \(0.507058\pi\)
−0.854727 + 0.519077i \(0.826276\pi\)
\(332\) −4.47867 7.75729i −0.245799 0.425736i
\(333\) 0 0
\(334\) 20.9785 + 12.1120i 1.14790 + 0.662738i
\(335\) −14.9742 −0.818129
\(336\) 0 0
\(337\) −27.1316 −1.47795 −0.738977 0.673730i \(-0.764691\pi\)
−0.738977 + 0.673730i \(0.764691\pi\)
\(338\) −1.16439 0.672261i −0.0633345 0.0365662i
\(339\) 0 0
\(340\) 0.714087 + 1.23684i 0.0387268 + 0.0670768i
\(341\) −2.20508 + 3.81931i −0.119412 + 0.206827i
\(342\) 0 0
\(343\) 17.9380 + 4.60734i 0.968562 + 0.248773i
\(344\) 8.44892i 0.455535i
\(345\) 0 0
\(346\) 13.7702 7.95025i 0.740292 0.427408i
\(347\) 28.6515 16.5420i 1.53809 0.888019i 0.539144 0.842213i \(-0.318748\pi\)
0.998950 0.0458058i \(-0.0145855\pi\)
\(348\) 0 0
\(349\) 33.7423i 1.80618i −0.429450 0.903091i \(-0.641292\pi\)
0.429450 0.903091i \(-0.358708\pi\)
\(350\) −0.737813 + 8.78338i −0.0394378 + 0.469491i
\(351\) 0 0
\(352\) 0.500000 0.866025i 0.0266501 0.0461593i
\(353\) 10.8107 + 18.7248i 0.575398 + 0.996618i 0.995998 + 0.0893722i \(0.0284861\pi\)
−0.420601 + 0.907246i \(0.638181\pi\)
\(354\) 0 0
\(355\) −2.19809 1.26907i −0.116663 0.0673551i
\(356\) −3.59802 −0.190695
\(357\) 0 0
\(358\) 8.82832 0.466591
\(359\) 5.27247 + 3.04406i 0.278270 + 0.160659i 0.632640 0.774446i \(-0.281971\pi\)
−0.354370 + 0.935105i \(0.615305\pi\)
\(360\) 0 0
\(361\) −6.76578 11.7187i −0.356094 0.616772i
\(362\) 10.3909 17.9976i 0.546136 0.945934i
\(363\) 0 0
\(364\) −9.06700 + 4.26629i −0.475240 + 0.223614i
\(365\) 7.43581i 0.389208i
\(366\) 0 0
\(367\) −6.38821 + 3.68823i −0.333462 + 0.192524i −0.657377 0.753562i \(-0.728334\pi\)
0.323915 + 0.946086i \(0.395001\pi\)
\(368\) 2.83782 1.63842i 0.147932 0.0854083i
\(369\) 0 0
\(370\) 8.00195i 0.416001i
\(371\) −5.61026 + 2.63979i −0.291270 + 0.137051i
\(372\) 0 0
\(373\) −15.0027 + 25.9855i −0.776812 + 1.34548i 0.156958 + 0.987605i \(0.449831\pi\)
−0.933770 + 0.357873i \(0.883502\pi\)
\(374\) 0.552825 + 0.957521i 0.0285859 + 0.0495122i
\(375\) 0 0
\(376\) 3.02020 + 1.74371i 0.155755 + 0.0899250i
\(377\) −10.5498 −0.543341
\(378\) 0 0
\(379\) 26.8038 1.37682 0.688408 0.725323i \(-0.258310\pi\)
0.688408 + 0.725323i \(0.258310\pi\)
\(380\) −2.61593 1.51031i −0.134194 0.0774771i
\(381\) 0 0
\(382\) −6.82219 11.8164i −0.349054 0.604579i
\(383\) 7.88721 13.6610i 0.403017 0.698047i −0.591071 0.806620i \(-0.701295\pi\)
0.994089 + 0.108573i \(0.0346280\pi\)
\(384\) 0 0
\(385\) 0.286069 3.40554i 0.0145794 0.173562i
\(386\) 4.66099i 0.237238i
\(387\) 0 0
\(388\) 13.7597 7.94418i 0.698544 0.403304i
\(389\) 22.8865 13.2135i 1.16039 0.669951i 0.208992 0.977917i \(-0.432982\pi\)
0.951397 + 0.307966i \(0.0996484\pi\)
\(390\) 0 0
\(391\) 3.62303i 0.183224i
\(392\) −1.16778 + 6.90191i −0.0589816 + 0.348599i
\(393\) 0 0
\(394\) −0.960036 + 1.66283i −0.0483659 + 0.0837722i
\(395\) 3.22002 + 5.57724i 0.162017 + 0.280622i
\(396\) 0 0
\(397\) −4.79107 2.76613i −0.240457 0.138828i 0.374930 0.927053i \(-0.377667\pi\)
−0.615387 + 0.788225i \(0.711000\pi\)
\(398\) 6.32128 0.316857
\(399\) 0 0
\(400\) −3.33150 −0.166575
\(401\) −16.3967 9.46667i −0.818814 0.472743i 0.0311930 0.999513i \(-0.490069\pi\)
−0.850007 + 0.526771i \(0.823403\pi\)
\(402\) 0 0
\(403\) 8.35155 + 14.4653i 0.416020 + 0.720569i
\(404\) 1.42778 2.47299i 0.0710349 0.123036i
\(405\) 0 0
\(406\) −4.20616 + 6.05150i −0.208748 + 0.300331i
\(407\) 6.19487i 0.307068i
\(408\) 0 0
\(409\) −16.4329 + 9.48751i −0.812552 + 0.469127i −0.847841 0.530250i \(-0.822098\pi\)
0.0352892 + 0.999377i \(0.488765\pi\)
\(410\) −2.42343 + 1.39917i −0.119685 + 0.0690999i
\(411\) 0 0
\(412\) 2.81310i 0.138592i
\(413\) 5.19658 + 11.0441i 0.255707 + 0.543446i
\(414\) 0 0
\(415\) 5.78512 10.0201i 0.283981 0.491869i
\(416\) −1.89371 3.28000i −0.0928467 0.160815i
\(417\) 0 0
\(418\) −2.02517 1.16923i −0.0990545 0.0571891i
\(419\) 25.7600 1.25846 0.629229 0.777220i \(-0.283371\pi\)
0.629229 + 0.777220i \(0.283371\pi\)
\(420\) 0 0
\(421\) −10.9714 −0.534715 −0.267357 0.963597i \(-0.586150\pi\)
−0.267357 + 0.963597i \(0.586150\pi\)
\(422\) −11.2180 6.47670i −0.546082 0.315281i
\(423\) 0 0
\(424\) −1.17174 2.02952i −0.0569049 0.0985621i
\(425\) 1.84174 3.18998i 0.0893373 0.154737i
\(426\) 0 0
\(427\) 4.01817 + 2.79287i 0.194453 + 0.135157i
\(428\) 8.60084i 0.415737i
\(429\) 0 0
\(430\) 9.45138 5.45676i 0.455786 0.263148i
\(431\) 14.0938 8.13704i 0.678872 0.391947i −0.120558 0.992706i \(-0.538468\pi\)
0.799430 + 0.600759i \(0.205135\pi\)
\(432\) 0 0
\(433\) 29.7766i 1.43097i −0.698626 0.715487i \(-0.746205\pi\)
0.698626 0.715487i \(-0.253795\pi\)
\(434\) 11.6272 + 0.976700i 0.558125 + 0.0468831i
\(435\) 0 0
\(436\) −2.72966 + 4.72792i −0.130727 + 0.226426i
\(437\) −3.83138 6.63615i −0.183280 0.317450i
\(438\) 0 0
\(439\) −23.1092 13.3421i −1.10294 0.636785i −0.165951 0.986134i \(-0.553070\pi\)
−0.936993 + 0.349349i \(0.886403\pi\)
\(440\) 1.29171 0.0615796
\(441\) 0 0
\(442\) 4.18756 0.199182
\(443\) −22.9075 13.2256i −1.08837 0.628369i −0.155225 0.987879i \(-0.549610\pi\)
−0.933141 + 0.359510i \(0.882944\pi\)
\(444\) 0 0
\(445\) −2.32379 4.02493i −0.110158 0.190800i
\(446\) 4.69051 8.12420i 0.222102 0.384692i
\(447\) 0 0
\(448\) −2.63647 0.221466i −0.124561 0.0104633i
\(449\) 5.34120i 0.252067i 0.992026 + 0.126033i \(0.0402247\pi\)
−0.992026 + 0.126033i \(0.959775\pi\)
\(450\) 0 0
\(451\) −1.87615 + 1.08319i −0.0883442 + 0.0510056i
\(452\) −10.1905 + 5.88350i −0.479322 + 0.276737i
\(453\) 0 0
\(454\) 2.52601i 0.118551i
\(455\) −10.6284 7.38740i −0.498268 0.346327i
\(456\) 0 0
\(457\) −10.9652 + 18.9923i −0.512931 + 0.888423i 0.486956 + 0.873426i \(0.338107\pi\)
−0.999888 + 0.0149966i \(0.995226\pi\)
\(458\) −7.34235 12.7173i −0.343085 0.594241i
\(459\) 0 0
\(460\) 3.66563 + 2.11635i 0.170911 + 0.0986753i
\(461\) 24.3961 1.13624 0.568119 0.822946i \(-0.307671\pi\)
0.568119 + 0.822946i \(0.307671\pi\)
\(462\) 0 0
\(463\) 13.1999 0.613451 0.306726 0.951798i \(-0.400767\pi\)
0.306726 + 0.951798i \(0.400767\pi\)
\(464\) −2.41230 1.39274i −0.111988 0.0646564i
\(465\) 0 0
\(466\) −3.86655 6.69706i −0.179114 0.310235i
\(467\) 0.185827 0.321862i 0.00859906 0.0148940i −0.861694 0.507429i \(-0.830596\pi\)
0.870293 + 0.492535i \(0.163929\pi\)
\(468\) 0 0
\(469\) 13.0583 + 27.7524i 0.602978 + 1.28149i
\(470\) 4.50472i 0.207787i
\(471\) 0 0
\(472\) −3.99523 + 2.30664i −0.183895 + 0.106172i
\(473\) 7.31698 4.22446i 0.336435 0.194241i
\(474\) 0 0
\(475\) 7.79060i 0.357457i
\(476\) 1.66956 2.40204i 0.0765243 0.110097i
\(477\) 0 0
\(478\) 10.3955 18.0056i 0.475481 0.823557i
\(479\) 19.2663 + 33.3702i 0.880298 + 1.52472i 0.851009 + 0.525151i \(0.175991\pi\)
0.0292891 + 0.999571i \(0.490676\pi\)
\(480\) 0 0
\(481\) −20.3192 11.7313i −0.926474 0.534900i
\(482\) −15.4348 −0.703037
\(483\) 0 0
\(484\) 1.00000 0.0454545
\(485\) 17.7735 + 10.2615i 0.807053 + 0.465952i
\(486\) 0 0
\(487\) 9.39671 + 16.2756i 0.425806 + 0.737517i 0.996495 0.0836488i \(-0.0266574\pi\)
−0.570690 + 0.821166i \(0.693324\pi\)
\(488\) −0.924776 + 1.60176i −0.0418626 + 0.0725082i
\(489\) 0 0
\(490\) −8.47503 + 3.15128i −0.382863 + 0.142360i
\(491\) 31.4249i 1.41819i 0.705115 + 0.709093i \(0.250895\pi\)
−0.705115 + 0.709093i \(0.749105\pi\)
\(492\) 0 0
\(493\) 2.66716 1.53988i 0.120123 0.0693529i
\(494\) −7.67018 + 4.42838i −0.345098 + 0.199242i
\(495\) 0 0
\(496\) 4.41016i 0.198022i
\(497\) −0.435170 + 5.18052i −0.0195200 + 0.232378i
\(498\) 0 0
\(499\) −7.87992 + 13.6484i −0.352754 + 0.610987i −0.986731 0.162365i \(-0.948088\pi\)
0.633977 + 0.773352i \(0.281421\pi\)
\(500\) −5.38092 9.32003i −0.240642 0.416804i
\(501\) 0 0
\(502\) 4.42016 + 2.55198i 0.197281 + 0.113900i
\(503\) −23.5500 −1.05004 −0.525021 0.851089i \(-0.675942\pi\)
−0.525021 + 0.851089i \(0.675942\pi\)
\(504\) 0 0
\(505\) 3.68855 0.164138
\(506\) 2.83782 + 1.63842i 0.126156 + 0.0728364i
\(507\) 0 0
\(508\) 6.63400 + 11.4904i 0.294336 + 0.509805i
\(509\) 1.81262 3.13955i 0.0803429 0.139158i −0.823054 0.567963i \(-0.807732\pi\)
0.903397 + 0.428805i \(0.141065\pi\)
\(510\) 0 0
\(511\) 13.7811 6.48443i 0.609642 0.286854i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 24.1702 13.9547i 1.06610 0.615515i
\(515\) 3.14687 1.81685i 0.138668 0.0800599i
\(516\) 0 0
\(517\) 3.48742i 0.153377i
\(518\) −14.8304 + 6.97813i −0.651610 + 0.306602i
\(519\) 0 0
\(520\) 2.44611 4.23679i 0.107269 0.185796i
\(521\) 17.9563 + 31.1012i 0.786680 + 1.36257i 0.927990 + 0.372605i \(0.121535\pi\)
−0.141310 + 0.989965i \(0.545131\pi\)
\(522\) 0 0
\(523\) 15.2893 + 8.82730i 0.668556 + 0.385991i 0.795529 0.605915i \(-0.207193\pi\)
−0.126973 + 0.991906i \(0.540526\pi\)
\(524\) 17.7695 0.776264
\(525\) 0 0
\(526\) 17.8588 0.778680
\(527\) −4.22282 2.43805i −0.183949 0.106203i
\(528\) 0 0
\(529\) −6.13119 10.6195i −0.266574 0.461719i
\(530\) 1.51355 2.62154i 0.0657443 0.113872i
\(531\) 0 0
\(532\) −0.517891 + 6.16529i −0.0224534 + 0.267299i
\(533\) 8.20501i 0.355398i
\(534\) 0 0
\(535\) 9.62133 5.55488i 0.415966 0.240158i
\(536\) −10.0395 + 5.79630i −0.433640 + 0.250362i
\(537\) 0 0
\(538\) 21.6083i 0.931601i
\(539\) −6.56111 + 2.43963i −0.282607 + 0.105082i
\(540\) 0 0
\(541\) −10.2783 + 17.8026i −0.441900 + 0.765393i −0.997830 0.0658357i \(-0.979029\pi\)
0.555931 + 0.831229i \(0.312362\pi\)
\(542\) 5.41989 + 9.38753i 0.232804 + 0.403229i
\(543\) 0 0
\(544\) 0.957521 + 0.552825i 0.0410534 + 0.0237022i
\(545\) −7.05184 −0.302068
\(546\) 0 0
\(547\) 7.83053 0.334809 0.167405 0.985888i \(-0.446461\pi\)
0.167405 + 0.985888i \(0.446461\pi\)
\(548\) −6.74719 3.89549i −0.288226 0.166407i
\(549\) 0 0
\(550\) −1.66575 2.88516i −0.0710278 0.123024i
\(551\) −3.25688 + 5.64109i −0.138748 + 0.240318i
\(552\) 0 0
\(553\) 7.52853 10.8315i 0.320146 0.460601i
\(554\) 3.85240i 0.163673i
\(555\) 0 0
\(556\) −0.296663 + 0.171279i −0.0125813 + 0.00726383i
\(557\) −35.4548 + 20.4698i −1.50227 + 0.867334i −0.502270 + 0.864711i \(0.667502\pi\)
−0.999997 + 0.00262279i \(0.999165\pi\)
\(558\) 0 0
\(559\) 31.9996i 1.35344i
\(560\) −1.45503 3.09232i −0.0614861 0.130674i
\(561\) 0 0
\(562\) −7.79204 + 13.4962i −0.328688 + 0.569303i
\(563\) 21.7611 + 37.6913i 0.917120 + 1.58850i 0.803768 + 0.594943i \(0.202825\pi\)
0.113352 + 0.993555i \(0.463841\pi\)
\(564\) 0 0
\(565\) −13.1632 7.59975i −0.553778 0.319724i
\(566\) 6.93326 0.291426
\(567\) 0 0
\(568\) −1.96495 −0.0824474
\(569\) −33.1929 19.1639i −1.39152 0.803393i −0.398035 0.917370i \(-0.630308\pi\)
−0.993483 + 0.113977i \(0.963641\pi\)
\(570\) 0 0
\(571\) 8.89437 + 15.4055i 0.372218 + 0.644700i 0.989906 0.141723i \(-0.0452641\pi\)
−0.617689 + 0.786423i \(0.711931\pi\)
\(572\) 1.89371 3.28000i 0.0791799 0.137144i
\(573\) 0 0
\(574\) 4.70650 + 3.27130i 0.196446 + 0.136542i
\(575\) 10.9168i 0.455260i
\(576\) 0 0
\(577\) 30.1606 17.4132i 1.25560 0.724921i 0.283385 0.959006i \(-0.408543\pi\)
0.972216 + 0.234085i \(0.0752094\pi\)
\(578\) 13.6637 7.88877i 0.568337 0.328130i
\(579\) 0 0
\(580\) 3.59802i 0.149400i
\(581\) −23.6157 1.98375i −0.979745 0.0822997i
\(582\) 0 0
\(583\) 1.17174 2.02952i 0.0485286 0.0840541i
\(584\) 2.87829 + 4.98535i 0.119105 + 0.206295i
\(585\) 0 0
\(586\) −5.64834 3.26107i −0.233331 0.134714i
\(587\) −31.2081 −1.28809 −0.644047 0.764986i \(-0.722746\pi\)
−0.644047 + 0.764986i \(0.722746\pi\)
\(588\) 0 0
\(589\) 10.3130 0.424941
\(590\) −5.16065 2.97951i −0.212461 0.122664i
\(591\) 0 0
\(592\) −3.09743 5.36491i −0.127304 0.220497i
\(593\) −20.7651 + 35.9663i −0.852722 + 1.47696i 0.0260210 + 0.999661i \(0.491716\pi\)
−0.878743 + 0.477296i \(0.841617\pi\)
\(594\) 0 0
\(595\) 3.76533 + 0.316292i 0.154364 + 0.0129667i
\(596\) 8.27158i 0.338817i
\(597\) 0 0
\(598\) 10.7480 6.20536i 0.439518 0.253756i
\(599\) −18.8698 + 10.8945i −0.770999 + 0.445136i −0.833231 0.552925i \(-0.813511\pi\)
0.0622321 + 0.998062i \(0.480178\pi\)
\(600\) 0 0
\(601\) 10.3578i 0.422502i −0.977432 0.211251i \(-0.932246\pi\)
0.977432 0.211251i \(-0.0677538\pi\)
\(602\) −18.3554 12.7581i −0.748110 0.519981i
\(603\) 0 0
\(604\) −0.880131 + 1.52443i −0.0358120 + 0.0620283i
\(605\) 0.645853 + 1.11865i 0.0262576 + 0.0454796i
\(606\) 0 0
\(607\) 5.22532 + 3.01684i 0.212089 + 0.122450i 0.602282 0.798283i \(-0.294258\pi\)
−0.390193 + 0.920733i \(0.627592\pi\)
\(608\) −2.33847 −0.0948375
\(609\) 0 0
\(610\) −2.38908 −0.0967308
\(611\) 11.4387 + 6.60416i 0.462762 + 0.267176i
\(612\) 0 0
\(613\) −8.89665 15.4094i −0.359332 0.622382i 0.628517 0.777796i \(-0.283662\pi\)
−0.987849 + 0.155414i \(0.950329\pi\)
\(614\) −7.26513 + 12.5836i −0.293197 + 0.507832i
\(615\) 0 0
\(616\) −1.12644 2.39398i −0.0453855 0.0964562i
\(617\) 13.5580i 0.545825i −0.962039 0.272913i \(-0.912013\pi\)
0.962039 0.272913i \(-0.0879870\pi\)
\(618\) 0 0
\(619\) −8.51244 + 4.91466i −0.342144 + 0.197537i −0.661220 0.750192i \(-0.729961\pi\)
0.319076 + 0.947729i \(0.396628\pi\)
\(620\) −4.93342 + 2.84831i −0.198131 + 0.114391i
\(621\) 0 0
\(622\) 18.9681i 0.760551i
\(623\) −5.43312 + 7.81675i −0.217673 + 0.313172i
\(624\) 0 0
\(625\) −1.37818 + 2.38707i −0.0551271 + 0.0954829i
\(626\) −8.39451 14.5397i −0.335512 0.581124i
\(627\) 0 0
\(628\) 9.80424 + 5.66048i 0.391232 + 0.225878i
\(629\) 6.84936 0.273102
\(630\) 0 0
\(631\) −25.4402 −1.01276 −0.506380 0.862310i \(-0.669017\pi\)
−0.506380 + 0.862310i \(0.669017\pi\)
\(632\) 4.31774 + 2.49285i 0.171750 + 0.0991601i
\(633\) 0 0
\(634\) −10.3530 17.9319i −0.411169 0.712166i
\(635\) −8.56917 + 14.8422i −0.340057 + 0.588996i
\(636\) 0 0
\(637\) −4.42285 + 26.1404i −0.175240 + 1.03572i
\(638\) 2.78548i 0.110278i
\(639\) 0 0
\(640\) 1.11865 0.645853i 0.0442185 0.0255296i
\(641\) −26.1275 + 15.0847i −1.03198 + 0.595811i −0.917550 0.397621i \(-0.869836\pi\)
−0.114425 + 0.993432i \(0.536503\pi\)
\(642\) 0 0
\(643\) 13.4197i 0.529223i 0.964355 + 0.264611i \(0.0852436\pi\)
−0.964355 + 0.264611i \(0.914756\pi\)
\(644\) 0.725707 8.63925i 0.0285968 0.340434i
\(645\) 0 0
\(646\) 1.29276 2.23913i 0.0508631 0.0880976i
\(647\) −22.5290 39.0213i −0.885706 1.53409i −0.844902 0.534920i \(-0.820342\pi\)
−0.0408034 0.999167i \(-0.512992\pi\)
\(648\) 0 0
\(649\) −3.99523 2.30664i −0.156826 0.0905437i
\(650\) −12.6178 −0.494909
\(651\) 0 0
\(652\) 22.3838 0.876618
\(653\) 13.0148 + 7.51411i 0.509309 + 0.294050i 0.732550 0.680714i \(-0.238330\pi\)
−0.223240 + 0.974763i \(0.571663\pi\)
\(654\) 0 0
\(655\) 11.4765 + 19.8779i 0.448423 + 0.776692i
\(656\) −1.08319 + 1.87615i −0.0422916 + 0.0732512i
\(657\) 0 0
\(658\) 8.34882 3.92836i 0.325471 0.153144i
\(659\) 1.57672i 0.0614203i 0.999528 + 0.0307101i \(0.00977687\pi\)
−0.999528 + 0.0307101i \(0.990223\pi\)
\(660\) 0 0
\(661\) −6.12555 + 3.53659i −0.238256 + 0.137557i −0.614375 0.789014i \(-0.710592\pi\)
0.376119 + 0.926571i \(0.377258\pi\)
\(662\) −27.6327 + 15.9538i −1.07398 + 0.620060i
\(663\) 0 0
\(664\) 8.95734i 0.347612i
\(665\) −7.23129 + 3.40253i −0.280417 + 0.131945i
\(666\) 0 0
\(667\) 4.56378 7.90469i 0.176710 0.306071i
\(668\) 12.1120 + 20.9785i 0.468626 + 0.811684i
\(669\) 0 0
\(670\) −12.9681 7.48711i −0.501000 0.289252i
\(671\) −1.84955 −0.0714011
\(672\) 0 0
\(673\) −6.98516 −0.269258 −0.134629 0.990896i \(-0.542984\pi\)
−0.134629 + 0.990896i \(0.542984\pi\)
\(674\) −23.4967 13.5658i −0.905059 0.522536i
\(675\) 0 0
\(676\) −0.672261 1.16439i −0.0258562 0.0447842i
\(677\) −9.55841 + 16.5557i −0.367360 + 0.636286i −0.989152 0.146897i \(-0.953072\pi\)
0.621792 + 0.783182i \(0.286405\pi\)
\(678\) 0 0
\(679\) 3.51873 41.8891i 0.135036 1.60756i
\(680\) 1.42817i 0.0547680i
\(681\) 0 0
\(682\) −3.81931 + 2.20508i −0.146249 + 0.0844368i
\(683\) 38.9560 22.4912i 1.49061 0.860604i 0.490667 0.871347i \(-0.336753\pi\)
0.999942 + 0.0107436i \(0.00341986\pi\)
\(684\) 0 0
\(685\) 10.0637i 0.384513i
\(686\) 13.2311 + 12.9591i 0.505166 + 0.494780i
\(687\) 0 0
\(688\) 4.22446 7.31698i 0.161056 0.278957i
\(689\) −4.43788 7.68663i −0.169070 0.292837i
\(690\) 0 0
\(691\) −14.0640 8.11985i −0.535020 0.308894i 0.208038 0.978121i \(-0.433292\pi\)
−0.743058 + 0.669227i \(0.766625\pi\)
\(692\) 15.9005 0.604446
\(693\) 0 0
\(694\) 33.0839 1.25585
\(695\) −0.383202 0.221242i −0.0145357 0.00839217i
\(696\) 0 0
\(697\) −1.19763 2.07436i −0.0453636 0.0785720i
\(698\) 16.8711 29.2217i 0.638582 1.10606i
\(699\) 0 0
\(700\) −5.03065 + 7.23772i −0.190141 + 0.273560i
\(701\) 7.83700i 0.295999i 0.988987 + 0.148000i \(0.0472834\pi\)
−0.988987 + 0.148000i \(0.952717\pi\)
\(702\) 0 0
\(703\) −12.5457 + 7.24325i −0.473169 + 0.273185i
\(704\) 0.866025 0.500000i 0.0326396 0.0188445i
\(705\) 0 0
\(706\) 21.6215i 0.813735i
\(707\) −3.21662 6.83617i −0.120973 0.257101i
\(708\) 0 0
\(709\) −0.595851 + 1.03204i −0.0223776 + 0.0387592i −0.876997 0.480495i \(-0.840457\pi\)
0.854620 + 0.519254i \(0.173790\pi\)
\(710\) −1.26907 2.19809i −0.0476273 0.0824929i
\(711\) 0 0
\(712\) −3.11598 1.79901i −0.116776 0.0674208i
\(713\) −14.4513 −0.541207
\(714\) 0 0
\(715\) 4.89223 0.182959
\(716\) 7.64555 + 4.41416i 0.285728 + 0.164965i
\(717\) 0 0
\(718\) 3.04406 + 5.27247i 0.113603 + 0.196767i
\(719\) 12.6115 21.8438i 0.470330 0.814635i −0.529094 0.848563i \(-0.677468\pi\)
0.999424 + 0.0339277i \(0.0108016\pi\)
\(720\) 0 0
\(721\) −6.11150 4.24786i −0.227604 0.158199i
\(722\) 13.5316i 0.503593i
\(723\) 0 0
\(724\) 17.9976 10.3909i 0.668877 0.386176i
\(725\) −8.03656 + 4.63991i −0.298471 + 0.172322i
\(726\) 0 0
\(727\) 28.1858i 1.04535i 0.852531 + 0.522677i \(0.175067\pi\)
−0.852531 + 0.522677i \(0.824933\pi\)
\(728\) −9.98539 0.838784i −0.370083 0.0310874i
\(729\) 0 0
\(730\) −3.71791 + 6.43960i −0.137606 + 0.238340i
\(731\) 4.67077 + 8.09002i 0.172755 + 0.299220i
\(732\) 0 0
\(733\) −13.4432 7.76146i −0.496538 0.286676i 0.230745 0.973014i \(-0.425884\pi\)
−0.727283 + 0.686338i \(0.759217\pi\)
\(734\) −7.37647 −0.272270
\(735\) 0 0
\(736\) 3.27683 0.120786
\(737\) −10.0395 5.79630i −0.369809 0.213509i
\(738\) 0 0
\(739\) 17.6628 + 30.5929i 0.649738 + 1.12538i 0.983185 + 0.182611i \(0.0584548\pi\)
−0.333447 + 0.942769i \(0.608212\pi\)
\(740\) 4.00097 6.92989i 0.147079 0.254748i
\(741\) 0 0
\(742\) −6.17852 0.519003i −0.226821 0.0190532i
\(743\) 24.9417i 0.915023i 0.889204 + 0.457511i \(0.151259\pi\)
−0.889204 + 0.457511i \(0.848741\pi\)
\(744\) 0 0
\(745\) −9.25301 + 5.34223i −0.339004 + 0.195724i
\(746\) −25.9855 + 15.0027i −0.951397 + 0.549289i
\(747\) 0 0
\(748\) 1.10565i 0.0404266i
\(749\) −18.6854 12.9875i −0.682751 0.474553i
\(750\) 0 0
\(751\) 11.6303 20.1443i 0.424397 0.735078i −0.571967 0.820277i \(-0.693819\pi\)
0.996364 + 0.0851993i \(0.0271527\pi\)
\(752\) 1.74371 + 3.02020i 0.0635866 + 0.110135i
\(753\) 0 0
\(754\) −9.13638 5.27489i −0.332727 0.192100i
\(755\) −2.27374 −0.0827499
\(756\) 0 0
\(757\) 12.5404 0.455788 0.227894 0.973686i \(-0.426816\pi\)
0.227894 + 0.973686i \(0.426816\pi\)
\(758\) 23.2127 + 13.4019i 0.843124 + 0.486778i
\(759\) 0 0
\(760\) −1.51031 2.61593i −0.0547846 0.0948897i
\(761\) 8.53183 14.7776i 0.309279 0.535686i −0.668926 0.743329i \(-0.733246\pi\)
0.978205 + 0.207643i \(0.0665791\pi\)
\(762\) 0 0
\(763\) 6.14959 + 13.0695i 0.222630 + 0.473148i
\(764\) 13.6444i 0.493636i
\(765\) 0 0
\(766\) 13.6610 7.88721i 0.493594 0.284976i
\(767\) −15.1316 + 8.73622i −0.546370 + 0.315447i
\(768\) 0 0
\(769\) 28.4374i 1.02548i 0.858544 + 0.512740i \(0.171370\pi\)
−0.858544 + 0.512740i \(0.828630\pi\)
\(770\) 1.95051 2.80625i 0.0702916 0.101130i
\(771\) 0 0
\(772\) 2.33050 4.03654i 0.0838764 0.145278i
\(773\) 8.37747 + 14.5102i 0.301317 + 0.521896i 0.976434 0.215814i \(-0.0692405\pi\)
−0.675118 + 0.737710i \(0.735907\pi\)
\(774\) 0 0
\(775\) 12.7240 + 7.34621i 0.457060 + 0.263884i
\(776\) 15.8884 0.570359
\(777\) 0 0
\(778\) 26.4270 0.947454
\(779\) 4.38731 + 2.53301i 0.157192 + 0.0907546i
\(780\) 0 0
\(781\) −0.982475 1.70170i −0.0351557 0.0608915i
\(782\) −1.81151 + 3.13764i −0.0647796 + 0.112202i
\(783\) 0 0
\(784\) −4.46228 + 5.39334i −0.159367 + 0.192619i
\(785\) 14.6234i 0.521930i
\(786\) 0 0
\(787\) −20.7410 + 11.9748i −0.739337 + 0.426856i −0.821828 0.569736i \(-0.807046\pi\)
0.0824914 + 0.996592i \(0.473712\pi\)
\(788\) −1.66283 + 0.960036i −0.0592359 + 0.0341999i
\(789\) 0 0
\(790\) 6.44005i 0.229127i
\(791\) −2.60599 + 31.0233i −0.0926584 + 1.10306i
\(792\) 0 0
\(793\) −3.50251 + 6.06653i −0.124378 + 0.215429i
\(794\) −2.76613 4.79107i −0.0981662 0.170029i
\(795\) 0 0
\(796\) 5.47439 + 3.16064i 0.194034 + 0.112026i
\(797\) −25.1833 −0.892037 −0.446018 0.895024i \(-0.647158\pi\)
−0.446018 + 0.895024i \(0.647158\pi\)
\(798\) 0 0
\(799\) −3.85587 −0.136411
\(800\) −2.88516 1.66575i −0.102006 0.0588931i
\(801\) 0 0
\(802\) −9.46667 16.3967i −0.334280 0.578989i
\(803\) −2.87829 + 4.98535i −0.101573 + 0.175929i
\(804\) 0 0
\(805\) 10.1330 4.76787i 0.357141 0.168045i
\(806\) 16.7031i 0.588342i
\(807\) 0 0
\(808\) 2.47299 1.42778i 0.0869996 0.0502292i
\(809\) 20.9986 12.1236i 0.738273 0.426242i −0.0831682 0.996536i \(-0.526504\pi\)
0.821441 + 0.570294i \(0.193171\pi\)
\(810\) 0 0
\(811\) 21.3904i 0.751119i 0.926798 + 0.375560i \(0.122549\pi\)
−0.926798 + 0.375560i \(0.877451\pi\)
\(812\) −6.66839 + 3.13767i −0.234015 + 0.110111i
\(813\) 0 0
\(814\) 3.09743 5.36491i 0.108565 0.188040i
\(815\) 14.4567 + 25.0397i 0.506395 + 0.877101i
\(816\) 0 0
\(817\) −17.1105 9.87877i −0.598621 0.345614i
\(818\) −18.9750 −0.663446
\(819\) 0 0
\(820\) −2.79833 −0.0977220
\(821\) −28.3309 16.3568i −0.988754 0.570858i −0.0838526 0.996478i \(-0.526722\pi\)
−0.904902 + 0.425621i \(0.860056\pi\)
\(822\) 0 0
\(823\) −20.1039 34.8210i −0.700778 1.21378i −0.968194 0.250202i \(-0.919503\pi\)
0.267416 0.963581i \(-0.413830\pi\)
\(824\) 1.40655 2.43622i 0.0489995 0.0848696i
\(825\) 0 0
\(826\) −1.02169 + 12.1628i −0.0355490 + 0.423197i
\(827\) 15.5399i 0.540374i −0.962808 0.270187i \(-0.912914\pi\)
0.962808 0.270187i \(-0.0870855\pi\)
\(828\) 0 0
\(829\) 39.9830 23.0842i 1.38867 0.801747i 0.395502 0.918465i \(-0.370571\pi\)
0.993165 + 0.116718i \(0.0372374\pi\)
\(830\) 10.0201 5.78512i 0.347804 0.200805i
\(831\) 0 0
\(832\) 3.78742i 0.131305i
\(833\) −2.69738 7.25430i −0.0934586 0.251346i
\(834\) 0 0
\(835\) −15.6451 + 27.0981i −0.541421 + 0.937769i
\(836\) −1.16923 2.02517i −0.0404388 0.0700421i
\(837\) 0 0
\(838\) 22.3088 + 12.8800i 0.770645 + 0.444932i
\(839\) 10.6849 0.368882 0.184441 0.982844i \(-0.440953\pi\)
0.184441 + 0.982844i \(0.440953\pi\)
\(840\) 0 0
\(841\) 21.2411 0.732451
\(842\) −9.50154 5.48571i −0.327445 0.189050i
\(843\) 0 0
\(844\) −6.47670 11.2180i −0.222937 0.386138i
\(845\) 0.868363 1.50405i 0.0298726 0.0517409i
\(846\) 0 0
\(847\) 1.51003 2.17251i 0.0518852 0.0746484i
\(848\) 2.34349i 0.0804757i
\(849\) 0 0
\(850\) 3.18998 1.84174i 0.109415 0.0631710i
\(851\) 17.5799 10.1498i 0.602632 0.347930i
\(852\) 0 0
\(853\) 8.36124i 0.286283i −0.989702 0.143142i \(-0.954280\pi\)
0.989702 0.143142i \(-0.0457205\pi\)
\(854\) 2.08340 + 4.42779i 0.0712926 + 0.151516i
\(855\) 0 0
\(856\) 4.30042 7.44855i 0.146985 0.254586i
\(857\) −3.89205 6.74123i −0.132950 0.230276i 0.791863 0.610699i \(-0.209112\pi\)
−0.924812 + 0.380423i \(0.875778\pi\)
\(858\) 0 0
\(859\) −7.94215 4.58540i −0.270983 0.156452i 0.358351 0.933587i \(-0.383339\pi\)
−0.629334 + 0.777135i \(0.716672\pi\)
\(860\) 10.9135 0.372148
\(861\) 0 0
\(862\) 16.2741 0.554297
\(863\) −18.6773 10.7833i −0.635781 0.367069i 0.147206 0.989106i \(-0.452972\pi\)
−0.782988 + 0.622037i \(0.786305\pi\)
\(864\) 0 0
\(865\) 10.2694 + 17.7871i 0.349169 + 0.604779i
\(866\) 14.8883 25.7873i 0.505926 0.876289i
\(867\) 0 0
\(868\) 9.58113 + 6.65946i 0.325205 + 0.226037i
\(869\) 4.98569i 0.169128i
\(870\) 0 0
\(871\) −38.0237 + 21.9530i −1.28838 + 0.743849i
\(872\) −4.72792 + 2.72966i −0.160107 + 0.0924381i
\(873\) 0 0
\(874\) 7.66277i 0.259197i
\(875\) −28.3732 2.38338i −0.959190 0.0805730i
\(876\) 0 0
\(877\) −6.07291 + 10.5186i −0.205068 + 0.355188i −0.950154 0.311780i \(-0.899075\pi\)
0.745087 + 0.666968i \(0.232408\pi\)
\(878\) −13.3421 23.1092i −0.450275 0.779899i
\(879\) 0 0
\(880\) 1.11865 + 0.645853i 0.0377097 + 0.0217717i
\(881\) 38.4236 1.29452 0.647261 0.762268i \(-0.275914\pi\)
0.647261 + 0.762268i \(0.275914\pi\)
\(882\) 0 0
\(883\) −31.9311 −1.07457 −0.537284 0.843401i \(-0.680550\pi\)
−0.537284 + 0.843401i \(0.680550\pi\)
\(884\) 3.62653 + 2.09378i 0.121973 + 0.0704214i
\(885\) 0 0
\(886\) −13.2256 22.9075i −0.444324 0.769591i
\(887\) −10.5840 + 18.3320i −0.355376 + 0.615529i −0.987182 0.159598i \(-0.948980\pi\)
0.631807 + 0.775126i \(0.282314\pi\)
\(888\) 0 0
\(889\) 34.9806 + 2.93841i 1.17321 + 0.0985511i
\(890\) 4.64759i 0.155787i
\(891\) 0 0
\(892\) 8.12420 4.69051i 0.272018 0.157050i
\(893\) 7.06264 4.07761i 0.236342 0.136452i
\(894\) 0 0
\(895\) 11.4036i 0.381180i
\(896\) −2.17251 1.51003i −0.0725786 0.0504465i
\(897\) 0 0
\(898\) −2.67060 + 4.62562i −0.0891191 + 0.154359i
\(899\) 6.14221 + 10.6386i 0.204854 + 0.354818i
\(900\) 0 0
\(901\) 2.24394 + 1.29554i 0.0747564 + 0.0431606i
\(902\) −2.16639 −0.0721328
\(903\) 0 0
\(904\) −11.7670 −0.391365
\(905\) 23.2476 + 13.4220i 0.772778 + 0.446163i
\(906\) 0 0
\(907\) 18.6378 + 32.2816i 0.618857 + 1.07189i 0.989695 + 0.143195i \(0.0457375\pi\)
−0.370837 + 0.928698i \(0.620929\pi\)
\(908\) −1.26300 + 2.18759i −0.0419142 + 0.0725976i
\(909\) 0 0
\(910\) −5.51079 11.7119i −0.182681 0.388245i
\(911\) 19.8401i 0.657333i 0.944446 + 0.328667i \(0.106599\pi\)
−0.944446 + 0.328667i \(0.893401\pi\)
\(912\) 0 0
\(913\) 7.75729 4.47867i 0.256729 0.148222i
\(914\) −18.9923 + 10.9652i −0.628210 + 0.362697i
\(915\) 0 0
\(916\) 14.6847i 0.485196i
\(917\) 26.8324 38.6045i 0.886086 1.27483i
\(918\) 0 0
\(919\) 2.27797 3.94556i 0.0751434 0.130152i −0.826005 0.563662i \(-0.809392\pi\)
0.901149 + 0.433510i \(0.142725\pi\)
\(920\) 2.11635 + 3.66563i 0.0697740 + 0.120852i
\(921\) 0 0
\(922\) 21.1276 + 12.1980i 0.695801 + 0.401721i
\(923\) −7.44208 −0.244959
\(924\) 0 0
\(925\) −20.6382 −0.678579
\(926\) 11.4314 + 6.59995i 0.375661 + 0.216888i
\(927\) 0 0
\(928\) −1.39274 2.41230i −0.0457190 0.0791876i
\(929\) −19.4761 + 33.7336i −0.638991 + 1.10676i 0.346664 + 0.937989i \(0.387314\pi\)
−0.985655 + 0.168775i \(0.946019\pi\)
\(930\) 0 0
\(931\) 12.6122 + 10.4349i 0.413347 + 0.341990i
\(932\) 7.73309i 0.253306i
\(933\) 0 0
\(934\) 0.321862 0.185827i 0.0105317 0.00608046i
\(935\) −1.23684 + 0.714087i −0.0404488 + 0.0233532i
\(936\) 0 0
\(937\) 43.3356i 1.41571i 0.706356 + 0.707856i \(0.250338\pi\)
−0.706356 + 0.707856i \(0.749662\pi\)
\(938\) −2.56737 + 30.5635i −0.0838275 + 0.997934i
\(939\) 0 0
\(940\) −2.25236 + 3.90120i −0.0734639 + 0.127243i
\(941\) −2.69512 4.66808i −0.0878583 0.152175i 0.818747 0.574154i \(-0.194669\pi\)
−0.906606 + 0.421979i \(0.861336\pi\)
\(942\) 0 0
\(943\) −6.14781 3.54944i −0.200200 0.115586i
\(944\) −4.61329 −0.150150
\(945\) 0 0
\(946\) 8.44892 0.274698
\(947\) −26.4568 15.2748i −0.859731 0.496366i 0.00419136 0.999991i \(-0.498666\pi\)
−0.863922 + 0.503625i \(0.831999\pi\)
\(948\) 0 0
\(949\) 10.9013 + 18.8816i 0.353871 + 0.612922i
\(950\) −3.89530 + 6.74686i −0.126380 + 0.218897i
\(951\) 0 0
\(952\) 2.64690 1.24545i 0.0857867 0.0403651i
\(953\) 4.77744i 0.154756i 0.997002 + 0.0773782i \(0.0246549\pi\)
−0.997002 + 0.0773782i \(0.975345\pi\)
\(954\) 0 0
\(955\) 15.2633 8.81226i 0.493908 0.285158i
\(956\) 18.0056 10.3955i 0.582343 0.336216i
\(957\) 0 0
\(958\) 38.5325i 1.24493i
\(959\) −18.6515 + 8.77606i −0.602287 + 0.283394i
\(960\) 0 0
\(961\) −5.77525 + 10.0030i −0.186298 + 0.322678i
\(962\) −11.7313 20.3192i −0.378231 0.655116i
\(963\) 0 0
\(964\) −13.3669 7.71741i −0.430520 0.248561i
\(965\) 6.02063 0.193811
\(966\) 0 0
\(967\) 24.8175 0.798078 0.399039 0.916934i \(-0.369344\pi\)
0.399039 + 0.916934i \(0.369344\pi\)
\(968\) 0.866025 + 0.500000i 0.0278351 + 0.0160706i
\(969\) 0 0
\(970\) 10.2615 + 17.7735i 0.329478 + 0.570673i
\(971\) 5.15562 8.92980i 0.165452 0.286571i −0.771364 0.636394i \(-0.780425\pi\)
0.936816 + 0.349824i \(0.113758\pi\)
\(972\) 0 0
\(973\) −0.0758648 + 0.903141i −0.00243211 + 0.0289534i
\(974\) 18.7934i 0.602180i
\(975\) 0 0
\(976\) −1.60176 + 0.924776i −0.0512710 + 0.0296013i
\(977\) −6.68793 + 3.86128i −0.213966 + 0.123533i −0.603153 0.797625i \(-0.706089\pi\)
0.389187 + 0.921159i \(0.372756\pi\)
\(978\) 0 0
\(979\) 3.59802i 0.114993i
\(980\) −8.91523 1.50842i −0.284787 0.0481848i
\(981\) 0 0
\(982\) −15.7125 + 27.2148i −0.501405 + 0.868458i
\(983\) −0.880590 1.52523i −0.0280865 0.0486472i 0.851641 0.524126i \(-0.175608\pi\)
−0.879727 + 0.475479i \(0.842275\pi\)
\(984\) 0 0
\(985\) −2.14789 1.24008i −0.0684374 0.0395123i
\(986\) 3.07977 0.0980798
\(987\) 0 0
\(988\) −8.85676 −0.281771
\(989\) 23.9765 + 13.8428i 0.762408 + 0.440177i
\(990\) 0 0
\(991\) −22.1534 38.3708i −0.703726 1.21889i −0.967149 0.254209i \(-0.918185\pi\)
0.263423 0.964680i \(-0.415148\pi\)
\(992\) −2.20508 + 3.81931i −0.0700113 + 0.121263i
\(993\) 0 0
\(994\) −2.96713 + 4.26888i −0.0941116 + 0.135401i
\(995\) 8.16523i 0.258855i
\(996\) 0 0
\(997\) −33.6252 + 19.4135i −1.06492 + 0.614832i −0.926789 0.375582i \(-0.877443\pi\)
−0.138131 + 0.990414i \(0.544109\pi\)
\(998\) −13.6484 + 7.87992i −0.432033 + 0.249434i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1386.2.r.d.89.10 yes 24
3.2 odd 2 inner 1386.2.r.d.89.3 24
7.3 odd 6 inner 1386.2.r.d.1277.3 yes 24
21.17 even 6 inner 1386.2.r.d.1277.10 yes 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1386.2.r.d.89.3 24 3.2 odd 2 inner
1386.2.r.d.89.10 yes 24 1.1 even 1 trivial
1386.2.r.d.1277.3 yes 24 7.3 odd 6 inner
1386.2.r.d.1277.10 yes 24 21.17 even 6 inner