Properties

Label 140.1.p.b.79.1
Level 140140
Weight 11
Character 140.79
Analytic conductor 0.0700.070
Analytic rank 00
Dimension 22
Projective image D3D_{3}
CM discriminant -20
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [140,1,Mod(39,140)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(140, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 4]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("140.39");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 140=2257 140 = 2^{2} \cdot 5 \cdot 7
Weight: k k == 1 1
Character orbit: [χ][\chi] == 140.p (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.06986910176860.0698691017686
Analytic rank: 00
Dimension: 22
Coefficient field: Q(ζ6)\Q(\zeta_{6})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D3D_{3}
Projective field: Galois closure of 3.1.980.1
Artin image: C6×S3C_6\times S_3
Artin field: Galois closure of 12.0.153664000000.1

Embedding invariants

Embedding label 79.1
Root 0.5000000.866025i0.500000 - 0.866025i of defining polynomial
Character χ\chi == 140.79
Dual form 140.1.p.b.39.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.5000000.866025i)q2+(0.5000000.866025i)q3+(0.5000000.866025i)q4+(0.500000+0.866025i)q51.00000q6+(0.500000+0.866025i)q71.00000q8+(0.500000+0.866025i)q10+(0.500000+0.866025i)q12+1.00000q14+1.00000q15+(0.500000+0.866025i)q16+1.00000q20+(0.5000000.866025i)q21+(0.500000+0.866025i)q23+(0.500000+0.866025i)q24+(0.5000000.866025i)q251.00000q27+(0.5000000.866025i)q281.00000q29+(0.5000000.866025i)q30+(0.500000+0.866025i)q321.00000q35+(0.5000000.866025i)q401.00000q41+(0.5000000.866025i)q42+1.00000q43+(0.500000+0.866025i)q46+(1.000001.73205i)q47+1.00000q48+(0.500000+0.866025i)q491.00000q50+(0.500000+0.866025i)q54+(0.5000000.866025i)q56+(0.500000+0.866025i)q58+(0.5000000.866025i)q60+(0.5000000.866025i)q61+1.00000q64+(0.5000000.866025i)q67+1.00000q69+(0.500000+0.866025i)q70+(0.500000+0.866025i)q75+(0.5000000.866025i)q80+(0.500000+0.866025i)q81+(0.500000+0.866025i)q82+1.00000q831.00000q84+(0.5000000.866025i)q86+(0.500000+0.866025i)q87+(0.5000000.866025i)q89+1.00000q92+(1.000001.73205i)q94+(0.5000000.866025i)q96+(0.500000+0.866025i)q98+O(q100)q+(0.500000 - 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{4} +(-0.500000 + 0.866025i) q^{5} -1.00000 q^{6} +(0.500000 + 0.866025i) q^{7} -1.00000 q^{8} +(0.500000 + 0.866025i) q^{10} +(-0.500000 + 0.866025i) q^{12} +1.00000 q^{14} +1.00000 q^{15} +(-0.500000 + 0.866025i) q^{16} +1.00000 q^{20} +(0.500000 - 0.866025i) q^{21} +(-0.500000 + 0.866025i) q^{23} +(0.500000 + 0.866025i) q^{24} +(-0.500000 - 0.866025i) q^{25} -1.00000 q^{27} +(0.500000 - 0.866025i) q^{28} -1.00000 q^{29} +(0.500000 - 0.866025i) q^{30} +(0.500000 + 0.866025i) q^{32} -1.00000 q^{35} +(0.500000 - 0.866025i) q^{40} -1.00000 q^{41} +(-0.500000 - 0.866025i) q^{42} +1.00000 q^{43} +(0.500000 + 0.866025i) q^{46} +(1.00000 - 1.73205i) q^{47} +1.00000 q^{48} +(-0.500000 + 0.866025i) q^{49} -1.00000 q^{50} +(-0.500000 + 0.866025i) q^{54} +(-0.500000 - 0.866025i) q^{56} +(-0.500000 + 0.866025i) q^{58} +(-0.500000 - 0.866025i) q^{60} +(0.500000 - 0.866025i) q^{61} +1.00000 q^{64} +(-0.500000 - 0.866025i) q^{67} +1.00000 q^{69} +(-0.500000 + 0.866025i) q^{70} +(-0.500000 + 0.866025i) q^{75} +(-0.500000 - 0.866025i) q^{80} +(0.500000 + 0.866025i) q^{81} +(-0.500000 + 0.866025i) q^{82} +1.00000 q^{83} -1.00000 q^{84} +(0.500000 - 0.866025i) q^{86} +(0.500000 + 0.866025i) q^{87} +(0.500000 - 0.866025i) q^{89} +1.00000 q^{92} +(-1.00000 - 1.73205i) q^{94} +(0.500000 - 0.866025i) q^{96} +(0.500000 + 0.866025i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+q2q3q4q52q6+q72q8+q10q12+2q14+2q15q16+2q20+q21q23+q24q252q27+q282q29++q98+O(q100) 2 q + q^{2} - q^{3} - q^{4} - q^{5} - 2 q^{6} + q^{7} - 2 q^{8} + q^{10} - q^{12} + 2 q^{14} + 2 q^{15} - q^{16} + 2 q^{20} + q^{21} - q^{23} + q^{24} - q^{25} - 2 q^{27} + q^{28} - 2 q^{29}+ \cdots + q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/140Z)×\left(\mathbb{Z}/140\mathbb{Z}\right)^\times.

nn 5757 7171 101101
χ(n)\chi(n) 1-1 1-1 e(13)e\left(\frac{1}{3}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.500000 0.866025i 0.500000 0.866025i
33 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
44 −0.500000 0.866025i −0.500000 0.866025i
55 −0.500000 + 0.866025i −0.500000 + 0.866025i
66 −1.00000 −1.00000
77 0.500000 + 0.866025i 0.500000 + 0.866025i
88 −1.00000 −1.00000
99 0 0
1010 0.500000 + 0.866025i 0.500000 + 0.866025i
1111 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
1212 −0.500000 + 0.866025i −0.500000 + 0.866025i
1313 0 0 1.00000 00
−1.00000 π\pi
1414 1.00000 1.00000
1515 1.00000 1.00000
1616 −0.500000 + 0.866025i −0.500000 + 0.866025i
1717 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
1818 0 0
1919 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
2020 1.00000 1.00000
2121 0.500000 0.866025i 0.500000 0.866025i
2222 0 0
2323 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
2424 0.500000 + 0.866025i 0.500000 + 0.866025i
2525 −0.500000 0.866025i −0.500000 0.866025i
2626 0 0
2727 −1.00000 −1.00000
2828 0.500000 0.866025i 0.500000 0.866025i
2929 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
3030 0.500000 0.866025i 0.500000 0.866025i
3131 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
3232 0.500000 + 0.866025i 0.500000 + 0.866025i
3333 0 0
3434 0 0
3535 −1.00000 −1.00000
3636 0 0
3737 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
3838 0 0
3939 0 0
4040 0.500000 0.866025i 0.500000 0.866025i
4141 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
4242 −0.500000 0.866025i −0.500000 0.866025i
4343 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
4444 0 0
4545 0 0
4646 0.500000 + 0.866025i 0.500000 + 0.866025i
4747 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
4848 1.00000 1.00000
4949 −0.500000 + 0.866025i −0.500000 + 0.866025i
5050 −1.00000 −1.00000
5151 0 0
5252 0 0
5353 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
5454 −0.500000 + 0.866025i −0.500000 + 0.866025i
5555 0 0
5656 −0.500000 0.866025i −0.500000 0.866025i
5757 0 0
5858 −0.500000 + 0.866025i −0.500000 + 0.866025i
5959 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
6060 −0.500000 0.866025i −0.500000 0.866025i
6161 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
6262 0 0
6363 0 0
6464 1.00000 1.00000
6565 0 0
6666 0 0
6767 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
6868 0 0
6969 1.00000 1.00000
7070 −0.500000 + 0.866025i −0.500000 + 0.866025i
7171 0 0 1.00000 00
−1.00000 π\pi
7272 0 0
7373 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
7474 0 0
7575 −0.500000 + 0.866025i −0.500000 + 0.866025i
7676 0 0
7777 0 0
7878 0 0
7979 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
8080 −0.500000 0.866025i −0.500000 0.866025i
8181 0.500000 + 0.866025i 0.500000 + 0.866025i
8282 −0.500000 + 0.866025i −0.500000 + 0.866025i
8383 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
8484 −1.00000 −1.00000
8585 0 0
8686 0.500000 0.866025i 0.500000 0.866025i
8787 0.500000 + 0.866025i 0.500000 + 0.866025i
8888 0 0
8989 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
9090 0 0
9191 0 0
9292 1.00000 1.00000
9393 0 0
9494 −1.00000 1.73205i −1.00000 1.73205i
9595 0 0
9696 0.500000 0.866025i 0.500000 0.866025i
9797 0 0 1.00000 00
−1.00000 π\pi
9898 0.500000 + 0.866025i 0.500000 + 0.866025i
9999 0 0
100100 −0.500000 + 0.866025i −0.500000 + 0.866025i
101101 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
102102 0 0
103103 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
104104 0 0
105105 0.500000 + 0.866025i 0.500000 + 0.866025i
106106 0 0
107107 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
108108 0.500000 + 0.866025i 0.500000 + 0.866025i
109109 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
110110 0 0
111111 0 0
112112 −1.00000 −1.00000
113113 0 0 1.00000 00
−1.00000 π\pi
114114 0 0
115115 −0.500000 0.866025i −0.500000 0.866025i
116116 0.500000 + 0.866025i 0.500000 + 0.866025i
117117 0 0
118118 0 0
119119 0 0
120120 −1.00000 −1.00000
121121 −0.500000 + 0.866025i −0.500000 + 0.866025i
122122 −0.500000 0.866025i −0.500000 0.866025i
123123 0.500000 + 0.866025i 0.500000 + 0.866025i
124124 0 0
125125 1.00000 1.00000
126126 0 0
127127 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
128128 0.500000 0.866025i 0.500000 0.866025i
129129 −0.500000 0.866025i −0.500000 0.866025i
130130 0 0
131131 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
132132 0 0
133133 0 0
134134 −1.00000 −1.00000
135135 0.500000 0.866025i 0.500000 0.866025i
136136 0 0
137137 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
138138 0.500000 0.866025i 0.500000 0.866025i
139139 0 0 1.00000 00
−1.00000 π\pi
140140 0.500000 + 0.866025i 0.500000 + 0.866025i
141141 −2.00000 −2.00000
142142 0 0
143143 0 0
144144 0 0
145145 0.500000 0.866025i 0.500000 0.866025i
146146 0 0
147147 1.00000 1.00000
148148 0 0
149149 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
150150 0.500000 + 0.866025i 0.500000 + 0.866025i
151151 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
152152 0 0
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
158158 0 0
159159 0 0
160160 −1.00000 −1.00000
161161 −1.00000 −1.00000
162162 1.00000 1.00000
163163 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
164164 0.500000 + 0.866025i 0.500000 + 0.866025i
165165 0 0
166166 0.500000 0.866025i 0.500000 0.866025i
167167 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
168168 −0.500000 + 0.866025i −0.500000 + 0.866025i
169169 1.00000 1.00000
170170 0 0
171171 0 0
172172 −0.500000 0.866025i −0.500000 0.866025i
173173 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
174174 1.00000 1.00000
175175 0.500000 0.866025i 0.500000 0.866025i
176176 0 0
177177 0 0
178178 −0.500000 0.866025i −0.500000 0.866025i
179179 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
180180 0 0
181181 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
182182 0 0
183183 −1.00000 −1.00000
184184 0.500000 0.866025i 0.500000 0.866025i
185185 0 0
186186 0 0
187187 0 0
188188 −2.00000 −2.00000
189189 −0.500000 0.866025i −0.500000 0.866025i
190190 0 0
191191 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
192192 −0.500000 0.866025i −0.500000 0.866025i
193193 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
194194 0 0
195195 0 0
196196 1.00000 1.00000
197197 0 0 1.00000 00
−1.00000 π\pi
198198 0 0
199199 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
200200 0.500000 + 0.866025i 0.500000 + 0.866025i
201201 −0.500000 + 0.866025i −0.500000 + 0.866025i
202202 1.00000 1.00000
203203 −0.500000 0.866025i −0.500000 0.866025i
204204 0 0
205205 0.500000 0.866025i 0.500000 0.866025i
206206 0.500000 + 0.866025i 0.500000 + 0.866025i
207207 0 0
208208 0 0
209209 0 0
210210 1.00000 1.00000
211211 0 0 1.00000 00
−1.00000 π\pi
212212 0 0
213213 0 0
214214 0.500000 + 0.866025i 0.500000 + 0.866025i
215215 −0.500000 + 0.866025i −0.500000 + 0.866025i
216216 1.00000 1.00000
217217 0 0
218218 1.00000 1.00000
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
224224 −0.500000 + 0.866025i −0.500000 + 0.866025i
225225 0 0
226226 0 0
227227 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
228228 0 0
229229 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
230230 −1.00000 −1.00000
231231 0 0
232232 1.00000 1.00000
233233 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
234234 0 0
235235 1.00000 + 1.73205i 1.00000 + 1.73205i
236236 0 0
237237 0 0
238238 0 0
239239 0 0 1.00000 00
−1.00000 π\pi
240240 −0.500000 + 0.866025i −0.500000 + 0.866025i
241241 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
242242 0.500000 + 0.866025i 0.500000 + 0.866025i
243243 0 0
244244 −1.00000 −1.00000
245245 −0.500000 0.866025i −0.500000 0.866025i
246246 1.00000 1.00000
247247 0 0
248248 0 0
249249 −0.500000 0.866025i −0.500000 0.866025i
250250 0.500000 0.866025i 0.500000 0.866025i
251251 0 0 1.00000 00
−1.00000 π\pi
252252 0 0
253253 0 0
254254 −1.00000 + 1.73205i −1.00000 + 1.73205i
255255 0 0
256256 −0.500000 0.866025i −0.500000 0.866025i
257257 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
258258 −1.00000 −1.00000
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
264264 0 0
265265 0 0
266266 0 0
267267 −1.00000 −1.00000
268268 −0.500000 + 0.866025i −0.500000 + 0.866025i
269269 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
270270 −0.500000 0.866025i −0.500000 0.866025i
271271 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
272272 0 0
273273 0 0
274274 0 0
275275 0 0
276276 −0.500000 0.866025i −0.500000 0.866025i
277277 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
278278 0 0
279279 0 0
280280 1.00000 1.00000
281281 2.00000 2.00000 1.00000 00
1.00000 00
282282 −1.00000 + 1.73205i −1.00000 + 1.73205i
283283 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
284284 0 0
285285 0 0
286286 0 0
287287 −0.500000 0.866025i −0.500000 0.866025i
288288 0 0
289289 −0.500000 + 0.866025i −0.500000 + 0.866025i
290290 −0.500000 0.866025i −0.500000 0.866025i
291291 0 0
292292 0 0
293293 0 0 1.00000 00
−1.00000 π\pi
294294 0.500000 0.866025i 0.500000 0.866025i
295295 0 0
296296 0 0
297297 0 0
298298 −0.500000 0.866025i −0.500000 0.866025i
299299 0 0
300300 1.00000 1.00000
301301 0.500000 + 0.866025i 0.500000 + 0.866025i
302302 0 0
303303 0.500000 0.866025i 0.500000 0.866025i
304304 0 0
305305 0.500000 + 0.866025i 0.500000 + 0.866025i
306306 0 0
307307 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
308308 0 0
309309 1.00000 1.00000
310310 0 0
311311 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
312312 0 0
313313 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
314314 0 0
315315 0 0
316316 0 0
317317 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
318318 0 0
319319 0 0
320320 −0.500000 + 0.866025i −0.500000 + 0.866025i
321321 1.00000 1.00000
322322 −0.500000 + 0.866025i −0.500000 + 0.866025i
323323 0 0
324324 0.500000 0.866025i 0.500000 0.866025i
325325 0 0
326326 −1.00000 1.73205i −1.00000 1.73205i
327327 0.500000 0.866025i 0.500000 0.866025i
328328 1.00000 1.00000
329329 2.00000 2.00000
330330 0 0
331331 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
332332 −0.500000 0.866025i −0.500000 0.866025i
333333 0 0
334334 0.500000 0.866025i 0.500000 0.866025i
335335 1.00000 1.00000
336336 0.500000 + 0.866025i 0.500000 + 0.866025i
337337 0 0 1.00000 00
−1.00000 π\pi
338338 0.500000 0.866025i 0.500000 0.866025i
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 −1.00000 −1.00000
344344 −1.00000 −1.00000
345345 −0.500000 + 0.866025i −0.500000 + 0.866025i
346346 0 0
347347 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
348348 0.500000 0.866025i 0.500000 0.866025i
349349 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
350350 −0.500000 0.866025i −0.500000 0.866025i
351351 0 0
352352 0 0
353353 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
354354 0 0
355355 0 0
356356 −1.00000 −1.00000
357357 0 0
358358 0 0
359359 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
360360 0 0
361361 −0.500000 0.866025i −0.500000 0.866025i
362362 −0.500000 + 0.866025i −0.500000 + 0.866025i
363363 1.00000 1.00000
364364 0 0
365365 0 0
366366 −0.500000 + 0.866025i −0.500000 + 0.866025i
367367 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
368368 −0.500000 0.866025i −0.500000 0.866025i
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
374374 0 0
375375 −0.500000 0.866025i −0.500000 0.866025i
376376 −1.00000 + 1.73205i −1.00000 + 1.73205i
377377 0 0
378378 −1.00000 −1.00000
379379 0 0 1.00000 00
−1.00000 π\pi
380380 0 0
381381 1.00000 + 1.73205i 1.00000 + 1.73205i
382382 0 0
383383 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
384384 −1.00000 −1.00000
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
390390 0 0
391391 0 0
392392 0.500000 0.866025i 0.500000 0.866025i
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
398398 0 0
399399 0 0
400400 1.00000 1.00000
401401 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
402402 0.500000 + 0.866025i 0.500000 + 0.866025i
403403 0 0
404404 0.500000 0.866025i 0.500000 0.866025i
405405 −1.00000 −1.00000
406406 −1.00000 −1.00000
407407 0 0
408408 0 0
409409 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
410410 −0.500000 0.866025i −0.500000 0.866025i
411411 0 0
412412 1.00000 1.00000
413413 0 0
414414 0 0
415415 −0.500000 + 0.866025i −0.500000 + 0.866025i
416416 0 0
417417 0 0
418418 0 0
419419 0 0 1.00000 00
−1.00000 π\pi
420420 0.500000 0.866025i 0.500000 0.866025i
421421 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
422422 0 0
423423 0 0
424424 0 0
425425 0 0
426426 0 0
427427 1.00000 1.00000
428428 1.00000 1.00000
429429 0 0
430430 0.500000 + 0.866025i 0.500000 + 0.866025i
431431 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
432432 0.500000 0.866025i 0.500000 0.866025i
433433 0 0 1.00000 00
−1.00000 π\pi
434434 0 0
435435 −1.00000 −1.00000
436436 0.500000 0.866025i 0.500000 0.866025i
437437 0 0
438438 0 0
439439 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
440440 0 0
441441 0 0
442442 0 0
443443 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
444444 0 0
445445 0.500000 + 0.866025i 0.500000 + 0.866025i
446446 −1.00000 + 1.73205i −1.00000 + 1.73205i
447447 −1.00000 −1.00000
448448 0.500000 + 0.866025i 0.500000 + 0.866025i
449449 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
450450 0 0
451451 0 0
452452 0 0
453453 0 0
454454 2.00000 2.00000
455455 0 0
456456 0 0
457457 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
458458 1.00000 + 1.73205i 1.00000 + 1.73205i
459459 0 0
460460 −0.500000 + 0.866025i −0.500000 + 0.866025i
461461 2.00000 2.00000 1.00000 00
1.00000 00
462462 0 0
463463 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
464464 0.500000 0.866025i 0.500000 0.866025i
465465 0 0
466466 0 0
467467 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
468468 0 0
469469 0.500000 0.866025i 0.500000 0.866025i
470470 2.00000 2.00000
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 0 0
479479 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
480480 0.500000 + 0.866025i 0.500000 + 0.866025i
481481 0 0
482482 −2.00000 −2.00000
483483 0.500000 + 0.866025i 0.500000 + 0.866025i
484484 1.00000 1.00000
485485 0 0
486486 0 0
487487 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
488488 −0.500000 + 0.866025i −0.500000 + 0.866025i
489489 −2.00000 −2.00000
490490 −1.00000 −1.00000
491491 0 0 1.00000 00
−1.00000 π\pi
492492 0.500000 0.866025i 0.500000 0.866025i
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 −1.00000 −1.00000
499499 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
500500 −0.500000 0.866025i −0.500000 0.866025i
501501 −0.500000 0.866025i −0.500000 0.866025i
502502 0 0
503503 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
504504 0 0
505505 −1.00000 −1.00000
506506 0 0
507507 −0.500000 0.866025i −0.500000 0.866025i
508508 1.00000 + 1.73205i 1.00000 + 1.73205i
509509 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
510510 0 0
511511 0 0
512512 −1.00000 −1.00000
513513 0 0
514514 0 0
515515 −0.500000 0.866025i −0.500000 0.866025i
516516 −0.500000 + 0.866025i −0.500000 + 0.866025i
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
522522 0 0
523523 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
524524 0 0
525525 −1.00000 −1.00000
526526 −1.00000 −1.00000
527527 0 0
528528 0 0
529529 0 0
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 −0.500000 + 0.866025i −0.500000 + 0.866025i
535535 −0.500000 0.866025i −0.500000 0.866025i
536536 0.500000 + 0.866025i 0.500000 + 0.866025i
537537 0 0
538538 1.00000 1.00000
539539 0 0
540540 −1.00000 −1.00000
541541 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
542542 0 0
543543 0.500000 + 0.866025i 0.500000 + 0.866025i
544544 0 0
545545 −1.00000 −1.00000
546546 0 0
547547 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
548548 0 0
549549 0 0
550550 0 0
551551 0 0
552552 −1.00000 −1.00000
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
558558 0 0
559559 0 0
560560 0.500000 0.866025i 0.500000 0.866025i
561561 0 0
562562 1.00000 1.73205i 1.00000 1.73205i
563563 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
564564 1.00000 + 1.73205i 1.00000 + 1.73205i
565565 0 0
566566 2.00000 2.00000
567567 −0.500000 + 0.866025i −0.500000 + 0.866025i
568568 0 0
569569 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
570570 0 0
571571 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
572572 0 0
573573 0 0
574574 −1.00000 −1.00000
575575 1.00000 1.00000
576576 0 0
577577 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
578578 0.500000 + 0.866025i 0.500000 + 0.866025i
579579 0 0
580580 −1.00000 −1.00000
581581 0.500000 + 0.866025i 0.500000 + 0.866025i
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
588588 −0.500000 0.866025i −0.500000 0.866025i
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
594594 0 0
595595 0 0
596596 −1.00000 −1.00000
597597 0 0
598598 0 0
599599 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
600600 0.500000 0.866025i 0.500000 0.866025i
601601 2.00000 2.00000 1.00000 00
1.00000 00
602602 1.00000 1.00000
603603 0 0
604604 0 0
605605 −0.500000 0.866025i −0.500000 0.866025i
606606 −0.500000 0.866025i −0.500000 0.866025i
607607 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
608608 0 0
609609 −0.500000 + 0.866025i −0.500000 + 0.866025i
610610 1.00000 1.00000
611611 0 0
612612 0 0
613613 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
614614 0.500000 0.866025i 0.500000 0.866025i
615615 −1.00000 −1.00000
616616 0 0
617617 0 0 1.00000 00
−1.00000 π\pi
618618 0.500000 0.866025i 0.500000 0.866025i
619619 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
620620 0 0
621621 0.500000 0.866025i 0.500000 0.866025i
622622 0 0
623623 1.00000 1.00000
624624 0 0
625625 −0.500000 + 0.866025i −0.500000 + 0.866025i
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 0 0 1.00000 00
−1.00000 π\pi
632632 0 0
633633 0 0
634634 0 0
635635 1.00000 1.73205i 1.00000 1.73205i
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 0.500000 + 0.866025i 0.500000 + 0.866025i
641641 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
642642 0.500000 0.866025i 0.500000 0.866025i
643643 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
644644 0.500000 + 0.866025i 0.500000 + 0.866025i
645645 1.00000 1.00000
646646 0 0
647647 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
648648 −0.500000 0.866025i −0.500000 0.866025i
649649 0 0
650650 0 0
651651 0 0
652652 −2.00000 −2.00000
653653 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
654654 −0.500000 0.866025i −0.500000 0.866025i
655655 0 0
656656 0.500000 0.866025i 0.500000 0.866025i
657657 0 0
658658 1.00000 1.73205i 1.00000 1.73205i
659659 0 0 1.00000 00
−1.00000 π\pi
660660 0 0
661661 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
662662 0 0
663663 0 0
664664 −1.00000 −1.00000
665665 0 0
666666 0 0
667667 0.500000 0.866025i 0.500000 0.866025i
668668 −0.500000 0.866025i −0.500000 0.866025i
669669 1.00000 + 1.73205i 1.00000 + 1.73205i
670670 0.500000 0.866025i 0.500000 0.866025i
671671 0 0
672672 1.00000 1.00000
673673 0 0 1.00000 00
−1.00000 π\pi
674674 0 0
675675 0.500000 + 0.866025i 0.500000 + 0.866025i
676676 −0.500000 0.866025i −0.500000 0.866025i
677677 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
678678 0 0
679679 0 0
680680 0 0
681681 1.00000 1.73205i 1.00000 1.73205i
682682 0 0
683683 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
684684 0 0
685685 0 0
686686 −0.500000 + 0.866025i −0.500000 + 0.866025i
687687 2.00000 2.00000
688688 −0.500000 + 0.866025i −0.500000 + 0.866025i
689689 0 0
690690 0.500000 + 0.866025i 0.500000 + 0.866025i
691691 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
692692 0 0
693693 0 0
694694 −1.00000 −1.00000
695695 0 0
696696 −0.500000 0.866025i −0.500000 0.866025i
697697 0 0
698698 −0.500000 + 0.866025i −0.500000 + 0.866025i
699699 0 0
700700 −1.00000 −1.00000
701701 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
702702 0 0
703703 0 0
704704 0 0
705705 1.00000 1.73205i 1.00000 1.73205i
706706 0 0
707707 −0.500000 + 0.866025i −0.500000 + 0.866025i
708708 0 0
709709 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
710710 0 0
711711 0 0
712712 −0.500000 + 0.866025i −0.500000 + 0.866025i
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
720720 0 0
721721 −1.00000 −1.00000
722722 −1.00000 −1.00000
723723 −1.00000 + 1.73205i −1.00000 + 1.73205i
724724 0.500000 + 0.866025i 0.500000 + 0.866025i
725725 0.500000 + 0.866025i 0.500000 + 0.866025i
726726 0.500000 0.866025i 0.500000 0.866025i
727727 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
728728 0 0
729729 1.00000 1.00000
730730 0 0
731731 0 0
732732 0.500000 + 0.866025i 0.500000 + 0.866025i
733733 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
734734 −1.00000 −1.00000
735735 −0.500000 + 0.866025i −0.500000 + 0.866025i
736736 −1.00000 −1.00000
737737 0 0
738738 0 0
739739 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
740740 0 0
741741 0 0
742742 0 0
743743 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
744744 0 0
745745 0.500000 + 0.866025i 0.500000 + 0.866025i
746746 0 0
747747 0 0
748748 0 0
749749 −1.00000 −1.00000
750750 −1.00000 −1.00000
751751 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
752752 1.00000 + 1.73205i 1.00000 + 1.73205i
753753 0 0
754754 0 0
755755 0 0
756756 −0.500000 + 0.866025i −0.500000 + 0.866025i
757757 0 0 1.00000 00
−1.00000 π\pi
758758 0 0
759759 0 0
760760 0 0
761761 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
762762 2.00000 2.00000
763763 −0.500000 + 0.866025i −0.500000 + 0.866025i
764764 0 0
765765 0 0
766766 0.500000 + 0.866025i 0.500000 + 0.866025i
767767 0 0
768768 −0.500000 + 0.866025i −0.500000 + 0.866025i
769769 2.00000 2.00000 1.00000 00
1.00000 00
770770 0 0
771771 0 0
772772 0 0
773773 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 −2.00000 −2.00000
779779 0 0
780780 0 0
781781 0 0
782782 0 0
783783 1.00000 1.00000
784784 −0.500000 0.866025i −0.500000 0.866025i
785785 0 0
786786 0 0
787787 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
788788 0 0
789789 −0.500000 + 0.866025i −0.500000 + 0.866025i
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 0 0 1.00000 00
−1.00000 π\pi
798798 0 0
799799 0 0
800800 0.500000 0.866025i 0.500000 0.866025i
801801 0 0
802802 −0.500000 0.866025i −0.500000 0.866025i
803803 0 0
804804 1.00000 1.00000
805805 0.500000 0.866025i 0.500000 0.866025i
806806 0 0
807807 0.500000 0.866025i 0.500000 0.866025i
808808 −0.500000 0.866025i −0.500000 0.866025i
809809 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
810810 −0.500000 + 0.866025i −0.500000 + 0.866025i
811811 0 0 1.00000 00
−1.00000 π\pi
812812 −0.500000 + 0.866025i −0.500000 + 0.866025i
813813 0 0
814814 0 0
815815 1.00000 + 1.73205i 1.00000 + 1.73205i
816816 0 0
817817 0 0
818818 1.00000 1.00000
819819 0 0
820820 −1.00000 −1.00000
821821 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
822822 0 0
823823 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
824824 0.500000 0.866025i 0.500000 0.866025i
825825 0 0
826826 0 0
827827 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
828828 0 0
829829 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
830830 0.500000 + 0.866025i 0.500000 + 0.866025i
831831 0 0
832832 0 0
833833 0 0
834834 0 0
835835 −0.500000 + 0.866025i −0.500000 + 0.866025i
836836 0 0
837837 0 0
838838 0 0
839839 0 0 1.00000 00
−1.00000 π\pi
840840 −0.500000 0.866025i −0.500000 0.866025i
841841 0 0
842842 −0.500000 + 0.866025i −0.500000 + 0.866025i
843843 −1.00000 1.73205i −1.00000 1.73205i
844844 0 0
845845 −0.500000 + 0.866025i −0.500000 + 0.866025i
846846 0 0
847847 −1.00000 −1.00000
848848 0 0
849849 1.00000 1.73205i 1.00000 1.73205i
850850 0 0
851851 0 0
852852 0 0
853853 0 0 1.00000 00
−1.00000 π\pi
854854 0.500000 0.866025i 0.500000 0.866025i
855855 0 0
856856 0.500000 0.866025i 0.500000 0.866025i
857857 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
858858 0 0
859859 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
860860 1.00000 1.00000
861861 −0.500000 + 0.866025i −0.500000 + 0.866025i
862862 0 0
863863 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
864864 −0.500000 0.866025i −0.500000 0.866025i
865865 0 0
866866 0 0
867867 1.00000 1.00000
868868 0 0
869869 0 0
870870 −0.500000 + 0.866025i −0.500000 + 0.866025i
871871 0 0
872872 −0.500000 0.866025i −0.500000 0.866025i
873873 0 0
874874 0 0
875875 0.500000 + 0.866025i 0.500000 + 0.866025i
876876 0 0
877877 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
878878 0 0
879879 0 0
880880 0 0
881881 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
882882 0 0
883883 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
884884 0 0
885885 0 0
886886 0.500000 + 0.866025i 0.500000 + 0.866025i
887887 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
888888 0 0
889889 −1.00000 1.73205i −1.00000 1.73205i
890890 1.00000 1.00000
891891 0 0
892892 1.00000 + 1.73205i 1.00000 + 1.73205i
893893 0 0
894894 −0.500000 + 0.866025i −0.500000 + 0.866025i
895895 0 0
896896 1.00000 1.00000
897897 0 0
898898 −0.500000 + 0.866025i −0.500000 + 0.866025i
899899 0 0
900900 0 0
901901 0 0
902902 0 0
903903 0.500000 0.866025i 0.500000 0.866025i
904904 0 0
905905 0.500000 0.866025i 0.500000 0.866025i
906906 0 0
907907 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
908908 1.00000 1.73205i 1.00000 1.73205i
909909 0 0
910910 0 0
911911 0 0 1.00000 00
−1.00000 π\pi
912912 0 0
913913 0 0
914914 0 0
915915 0.500000 0.866025i 0.500000 0.866025i
916916 2.00000 2.00000
917917 0 0
918918 0 0
919919 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
920920 0.500000 + 0.866025i 0.500000 + 0.866025i
921921 −0.500000 0.866025i −0.500000 0.866025i
922922 1.00000 1.73205i 1.00000 1.73205i
923923 0 0
924924 0 0
925925 0 0
926926 0.500000 0.866025i 0.500000 0.866025i
927927 0 0
928928 −0.500000 0.866025i −0.500000 0.866025i
929929 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 0.500000 + 0.866025i 0.500000 + 0.866025i
935935 0 0
936936 0 0
937937 0 0 1.00000 00
−1.00000 π\pi
938938 −0.500000 0.866025i −0.500000 0.866025i
939939 0 0
940940 1.00000 1.73205i 1.00000 1.73205i
941941 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
942942 0 0
943943 0.500000 0.866025i 0.500000 0.866025i
944944 0 0
945945 1.00000 1.00000
946946 0 0
947947 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 0 0 1.00000 00
−1.00000 π\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 1.00000 1.00000
961961 −0.500000 + 0.866025i −0.500000 + 0.866025i
962962 0 0
963963 0 0
964964 −1.00000 + 1.73205i −1.00000 + 1.73205i
965965 0 0
966966 1.00000 1.00000
967967 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
968968 0.500000 0.866025i 0.500000 0.866025i
969969 0 0
970970 0 0
971971 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
972972 0 0
973973 0 0
974974 2.00000 2.00000
975975 0 0
976976 0.500000 + 0.866025i 0.500000 + 0.866025i
977977 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
978978 −1.00000 + 1.73205i −1.00000 + 1.73205i
979979 0 0
980980 −0.500000 + 0.866025i −0.500000 + 0.866025i
981981 0 0
982982 0 0
983983 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
984984 −0.500000 0.866025i −0.500000 0.866025i
985985 0 0
986986 0 0
987987 −1.00000 1.73205i −1.00000 1.73205i
988988 0 0
989989 −0.500000 + 0.866025i −0.500000 + 0.866025i
990990 0 0
991991 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 −0.500000 + 0.866025i −0.500000 + 0.866025i
997997 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 140.1.p.b.79.1 yes 2
3.2 odd 2 1260.1.ci.a.919.1 2
4.3 odd 2 140.1.p.a.79.1 yes 2
5.2 odd 4 700.1.u.a.51.2 4
5.3 odd 4 700.1.u.a.51.1 4
5.4 even 2 140.1.p.a.79.1 yes 2
7.2 even 3 980.1.f.b.99.1 1
7.3 odd 6 980.1.p.b.459.1 2
7.4 even 3 inner 140.1.p.b.39.1 yes 2
7.5 odd 6 980.1.f.a.99.1 1
7.6 odd 2 980.1.p.b.79.1 2
8.3 odd 2 2240.1.bt.a.639.1 2
8.5 even 2 2240.1.bt.b.639.1 2
12.11 even 2 1260.1.ci.b.919.1 2
15.14 odd 2 1260.1.ci.b.919.1 2
20.3 even 4 700.1.u.a.51.2 4
20.7 even 4 700.1.u.a.51.1 4
20.19 odd 2 CM 140.1.p.b.79.1 yes 2
21.11 odd 6 1260.1.ci.a.739.1 2
28.3 even 6 980.1.p.a.459.1 2
28.11 odd 6 140.1.p.a.39.1 2
28.19 even 6 980.1.f.d.99.1 1
28.23 odd 6 980.1.f.c.99.1 1
28.27 even 2 980.1.p.a.79.1 2
35.4 even 6 140.1.p.a.39.1 2
35.9 even 6 980.1.f.c.99.1 1
35.18 odd 12 700.1.u.a.151.2 4
35.19 odd 6 980.1.f.d.99.1 1
35.24 odd 6 980.1.p.a.459.1 2
35.32 odd 12 700.1.u.a.151.1 4
35.34 odd 2 980.1.p.a.79.1 2
40.19 odd 2 2240.1.bt.b.639.1 2
40.29 even 2 2240.1.bt.a.639.1 2
56.11 odd 6 2240.1.bt.a.319.1 2
56.53 even 6 2240.1.bt.b.319.1 2
60.59 even 2 1260.1.ci.a.919.1 2
84.11 even 6 1260.1.ci.b.739.1 2
105.74 odd 6 1260.1.ci.b.739.1 2
140.19 even 6 980.1.f.a.99.1 1
140.39 odd 6 inner 140.1.p.b.39.1 yes 2
140.59 even 6 980.1.p.b.459.1 2
140.67 even 12 700.1.u.a.151.2 4
140.79 odd 6 980.1.f.b.99.1 1
140.123 even 12 700.1.u.a.151.1 4
140.139 even 2 980.1.p.b.79.1 2
280.109 even 6 2240.1.bt.a.319.1 2
280.179 odd 6 2240.1.bt.b.319.1 2
420.179 even 6 1260.1.ci.a.739.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
140.1.p.a.39.1 2 28.11 odd 6
140.1.p.a.39.1 2 35.4 even 6
140.1.p.a.79.1 yes 2 4.3 odd 2
140.1.p.a.79.1 yes 2 5.4 even 2
140.1.p.b.39.1 yes 2 7.4 even 3 inner
140.1.p.b.39.1 yes 2 140.39 odd 6 inner
140.1.p.b.79.1 yes 2 1.1 even 1 trivial
140.1.p.b.79.1 yes 2 20.19 odd 2 CM
700.1.u.a.51.1 4 5.3 odd 4
700.1.u.a.51.1 4 20.7 even 4
700.1.u.a.51.2 4 5.2 odd 4
700.1.u.a.51.2 4 20.3 even 4
700.1.u.a.151.1 4 35.32 odd 12
700.1.u.a.151.1 4 140.123 even 12
700.1.u.a.151.2 4 35.18 odd 12
700.1.u.a.151.2 4 140.67 even 12
980.1.f.a.99.1 1 7.5 odd 6
980.1.f.a.99.1 1 140.19 even 6
980.1.f.b.99.1 1 7.2 even 3
980.1.f.b.99.1 1 140.79 odd 6
980.1.f.c.99.1 1 28.23 odd 6
980.1.f.c.99.1 1 35.9 even 6
980.1.f.d.99.1 1 28.19 even 6
980.1.f.d.99.1 1 35.19 odd 6
980.1.p.a.79.1 2 28.27 even 2
980.1.p.a.79.1 2 35.34 odd 2
980.1.p.a.459.1 2 28.3 even 6
980.1.p.a.459.1 2 35.24 odd 6
980.1.p.b.79.1 2 7.6 odd 2
980.1.p.b.79.1 2 140.139 even 2
980.1.p.b.459.1 2 7.3 odd 6
980.1.p.b.459.1 2 140.59 even 6
1260.1.ci.a.739.1 2 21.11 odd 6
1260.1.ci.a.739.1 2 420.179 even 6
1260.1.ci.a.919.1 2 3.2 odd 2
1260.1.ci.a.919.1 2 60.59 even 2
1260.1.ci.b.739.1 2 84.11 even 6
1260.1.ci.b.739.1 2 105.74 odd 6
1260.1.ci.b.919.1 2 12.11 even 2
1260.1.ci.b.919.1 2 15.14 odd 2
2240.1.bt.a.319.1 2 56.11 odd 6
2240.1.bt.a.319.1 2 280.109 even 6
2240.1.bt.a.639.1 2 8.3 odd 2
2240.1.bt.a.639.1 2 40.29 even 2
2240.1.bt.b.319.1 2 56.53 even 6
2240.1.bt.b.319.1 2 280.179 odd 6
2240.1.bt.b.639.1 2 8.5 even 2
2240.1.bt.b.639.1 2 40.19 odd 2