Properties

Label 140.6.a.a
Level $140$
Weight $6$
Character orbit 140.a
Self dual yes
Analytic conductor $22.454$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [140,6,Mod(1,140)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(140, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("140.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 140 = 2^{2} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 140.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(22.4537347738\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{1009}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 252 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \frac{1}{2}(1 + \sqrt{1009})\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta - 11) q^{3} - 25 q^{5} + 49 q^{7} + (23 \beta + 130) q^{9} + ( - 9 \beta + 441) q^{11} + (21 \beta - 103) q^{13} + (25 \beta + 275) q^{15} + (63 \beta - 1041) q^{17} + (6 \beta - 310) q^{19}+ \cdots + (8766 \beta + 5166) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 23 q^{3} - 50 q^{5} + 98 q^{7} + 283 q^{9} + 873 q^{11} - 185 q^{13} + 575 q^{15} - 2019 q^{17} - 614 q^{19} - 1127 q^{21} - 1350 q^{23} + 1250 q^{25} - 9269 q^{27} - 999 q^{29} - 9020 q^{31} - 5499 q^{33}+ \cdots + 19098 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
16.3824
−15.3824
0 −27.3824 0 −25.0000 0 49.0000 0 506.795 0
1.2 0 4.38238 0 −25.0000 0 49.0000 0 −223.795 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 140.6.a.a 2
4.b odd 2 1 560.6.a.p 2
5.b even 2 1 700.6.a.h 2
5.c odd 4 2 700.6.e.e 4
7.b odd 2 1 980.6.a.g 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
140.6.a.a 2 1.a even 1 1 trivial
560.6.a.p 2 4.b odd 2 1
700.6.a.h 2 5.b even 2 1
700.6.e.e 4 5.c odd 4 2
980.6.a.g 2 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 23T_{3} - 120 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(140))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 23T - 120 \) Copy content Toggle raw display
$5$ \( (T + 25)^{2} \) Copy content Toggle raw display
$7$ \( (T - 49)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 873T + 170100 \) Copy content Toggle raw display
$13$ \( T^{2} + 185T - 102686 \) Copy content Toggle raw display
$17$ \( T^{2} + 2019T + 17910 \) Copy content Toggle raw display
$19$ \( T^{2} + 614T + 85168 \) Copy content Toggle raw display
$23$ \( T^{2} + 1350 T - 4348224 \) Copy content Toggle raw display
$29$ \( T^{2} + 999 T - 52894782 \) Copy content Toggle raw display
$31$ \( T^{2} + 9020 T + 20303776 \) Copy content Toggle raw display
$37$ \( T^{2} + 9032 T - 19162580 \) Copy content Toggle raw display
$41$ \( T^{2} + 18330 T + 80718984 \) Copy content Toggle raw display
$43$ \( T^{2} + 3974 T - 39286472 \) Copy content Toggle raw display
$47$ \( T^{2} + 21759 T - 95605272 \) Copy content Toggle raw display
$53$ \( T^{2} + \cdots - 1195434360 \) Copy content Toggle raw display
$59$ \( T^{2} + 28704 T + 196680960 \) Copy content Toggle raw display
$61$ \( T^{2} - 12394 T - 932619440 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots + 2351048560 \) Copy content Toggle raw display
$71$ \( T^{2} + \cdots + 1466196480 \) Copy content Toggle raw display
$73$ \( T^{2} + 35996 T - 905857340 \) Copy content Toggle raw display
$79$ \( T^{2} + 10001 T - 203130152 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 1475487360 \) Copy content Toggle raw display
$89$ \( T^{2} + \cdots - 1180708920 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots + 1347423694 \) Copy content Toggle raw display
show more
show less