Properties

Label 1400.4.g.e.449.1
Level $1400$
Weight $4$
Character 1400.449
Analytic conductor $82.603$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1400,4,Mod(449,1400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1400.449");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1400 = 2^{3} \cdot 5^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1400.g (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(82.6026740080\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 280)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 449.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1400.449
Dual form 1400.4.g.e.449.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000i q^{3} -7.00000i q^{7} +11.0000 q^{9} +20.0000 q^{11} -10.0000i q^{13} +14.0000i q^{17} -12.0000 q^{19} -28.0000 q^{21} +104.000i q^{23} -152.000i q^{27} +122.000 q^{29} +224.000 q^{31} -80.0000i q^{33} -158.000i q^{37} -40.0000 q^{39} +378.000 q^{41} +404.000i q^{43} -112.000i q^{47} -49.0000 q^{49} +56.0000 q^{51} +270.000i q^{53} +48.0000i q^{57} -324.000 q^{59} -186.000 q^{61} -77.0000i q^{63} -156.000i q^{67} +416.000 q^{69} -360.000 q^{71} -102.000i q^{73} -140.000i q^{77} +912.000 q^{79} -311.000 q^{81} +1068.00i q^{83} -488.000i q^{87} +1590.00 q^{89} -70.0000 q^{91} -896.000i q^{93} -866.000i q^{97} +220.000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 22 q^{9} + 40 q^{11} - 24 q^{19} - 56 q^{21} + 244 q^{29} + 448 q^{31} - 80 q^{39} + 756 q^{41} - 98 q^{49} + 112 q^{51} - 648 q^{59} - 372 q^{61} + 832 q^{69} - 720 q^{71} + 1824 q^{79} - 622 q^{81}+ \cdots + 440 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1400\mathbb{Z}\right)^\times\).

\(n\) \(351\) \(701\) \(801\) \(1177\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 4.00000i − 0.769800i −0.922958 0.384900i \(-0.874236\pi\)
0.922958 0.384900i \(-0.125764\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) − 7.00000i − 0.377964i
\(8\) 0 0
\(9\) 11.0000 0.407407
\(10\) 0 0
\(11\) 20.0000 0.548202 0.274101 0.961701i \(-0.411620\pi\)
0.274101 + 0.961701i \(0.411620\pi\)
\(12\) 0 0
\(13\) − 10.0000i − 0.213346i −0.994294 0.106673i \(-0.965980\pi\)
0.994294 0.106673i \(-0.0340198\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 14.0000i 0.199735i 0.995001 + 0.0998676i \(0.0318419\pi\)
−0.995001 + 0.0998676i \(0.968158\pi\)
\(18\) 0 0
\(19\) −12.0000 −0.144894 −0.0724471 0.997372i \(-0.523081\pi\)
−0.0724471 + 0.997372i \(0.523081\pi\)
\(20\) 0 0
\(21\) −28.0000 −0.290957
\(22\) 0 0
\(23\) 104.000i 0.942848i 0.881907 + 0.471424i \(0.156260\pi\)
−0.881907 + 0.471424i \(0.843740\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) − 152.000i − 1.08342i
\(28\) 0 0
\(29\) 122.000 0.781201 0.390601 0.920560i \(-0.372267\pi\)
0.390601 + 0.920560i \(0.372267\pi\)
\(30\) 0 0
\(31\) 224.000 1.29779 0.648897 0.760877i \(-0.275231\pi\)
0.648897 + 0.760877i \(0.275231\pi\)
\(32\) 0 0
\(33\) − 80.0000i − 0.422006i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 158.000i − 0.702028i −0.936370 0.351014i \(-0.885837\pi\)
0.936370 0.351014i \(-0.114163\pi\)
\(38\) 0 0
\(39\) −40.0000 −0.164234
\(40\) 0 0
\(41\) 378.000 1.43985 0.719923 0.694054i \(-0.244177\pi\)
0.719923 + 0.694054i \(0.244177\pi\)
\(42\) 0 0
\(43\) 404.000i 1.43278i 0.697701 + 0.716389i \(0.254206\pi\)
−0.697701 + 0.716389i \(0.745794\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 112.000i − 0.347593i −0.984782 0.173797i \(-0.944396\pi\)
0.984782 0.173797i \(-0.0556035\pi\)
\(48\) 0 0
\(49\) −49.0000 −0.142857
\(50\) 0 0
\(51\) 56.0000 0.153756
\(52\) 0 0
\(53\) 270.000i 0.699761i 0.936794 + 0.349881i \(0.113778\pi\)
−0.936794 + 0.349881i \(0.886222\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 48.0000i 0.111540i
\(58\) 0 0
\(59\) −324.000 −0.714936 −0.357468 0.933925i \(-0.616360\pi\)
−0.357468 + 0.933925i \(0.616360\pi\)
\(60\) 0 0
\(61\) −186.000 −0.390408 −0.195204 0.980763i \(-0.562537\pi\)
−0.195204 + 0.980763i \(0.562537\pi\)
\(62\) 0 0
\(63\) − 77.0000i − 0.153986i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 156.000i − 0.284454i −0.989834 0.142227i \(-0.954574\pi\)
0.989834 0.142227i \(-0.0454263\pi\)
\(68\) 0 0
\(69\) 416.000 0.725805
\(70\) 0 0
\(71\) −360.000 −0.601748 −0.300874 0.953664i \(-0.597278\pi\)
−0.300874 + 0.953664i \(0.597278\pi\)
\(72\) 0 0
\(73\) − 102.000i − 0.163537i −0.996651 0.0817685i \(-0.973943\pi\)
0.996651 0.0817685i \(-0.0260568\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 140.000i − 0.207201i
\(78\) 0 0
\(79\) 912.000 1.29884 0.649418 0.760432i \(-0.275013\pi\)
0.649418 + 0.760432i \(0.275013\pi\)
\(80\) 0 0
\(81\) −311.000 −0.426612
\(82\) 0 0
\(83\) 1068.00i 1.41239i 0.708018 + 0.706194i \(0.249589\pi\)
−0.708018 + 0.706194i \(0.750411\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) − 488.000i − 0.601369i
\(88\) 0 0
\(89\) 1590.00 1.89370 0.946852 0.321669i \(-0.104244\pi\)
0.946852 + 0.321669i \(0.104244\pi\)
\(90\) 0 0
\(91\) −70.0000 −0.0806373
\(92\) 0 0
\(93\) − 896.000i − 0.999042i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 866.000i − 0.906484i −0.891387 0.453242i \(-0.850267\pi\)
0.891387 0.453242i \(-0.149733\pi\)
\(98\) 0 0
\(99\) 220.000 0.223342
\(100\) 0 0
\(101\) 702.000 0.691600 0.345800 0.938308i \(-0.387608\pi\)
0.345800 + 0.938308i \(0.387608\pi\)
\(102\) 0 0
\(103\) − 296.000i − 0.283163i −0.989927 0.141581i \(-0.954781\pi\)
0.989927 0.141581i \(-0.0452187\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 44.0000i 0.0397537i 0.999802 + 0.0198768i \(0.00632741\pi\)
−0.999802 + 0.0198768i \(0.993673\pi\)
\(108\) 0 0
\(109\) 650.000 0.571181 0.285590 0.958352i \(-0.407810\pi\)
0.285590 + 0.958352i \(0.407810\pi\)
\(110\) 0 0
\(111\) −632.000 −0.540421
\(112\) 0 0
\(113\) − 942.000i − 0.784212i −0.919920 0.392106i \(-0.871747\pi\)
0.919920 0.392106i \(-0.128253\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 110.000i − 0.0869188i
\(118\) 0 0
\(119\) 98.0000 0.0754928
\(120\) 0 0
\(121\) −931.000 −0.699474
\(122\) 0 0
\(123\) − 1512.00i − 1.10839i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 736.000i − 0.514248i −0.966378 0.257124i \(-0.917225\pi\)
0.966378 0.257124i \(-0.0827748\pi\)
\(128\) 0 0
\(129\) 1616.00 1.10295
\(130\) 0 0
\(131\) 924.000 0.616261 0.308131 0.951344i \(-0.400297\pi\)
0.308131 + 0.951344i \(0.400297\pi\)
\(132\) 0 0
\(133\) 84.0000i 0.0547648i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 474.000i − 0.295595i −0.989018 0.147798i \(-0.952782\pi\)
0.989018 0.147798i \(-0.0472184\pi\)
\(138\) 0 0
\(139\) −1012.00 −0.617530 −0.308765 0.951138i \(-0.599916\pi\)
−0.308765 + 0.951138i \(0.599916\pi\)
\(140\) 0 0
\(141\) −448.000 −0.267577
\(142\) 0 0
\(143\) − 200.000i − 0.116957i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 196.000i 0.109971i
\(148\) 0 0
\(149\) −302.000 −0.166046 −0.0830228 0.996548i \(-0.526457\pi\)
−0.0830228 + 0.996548i \(0.526457\pi\)
\(150\) 0 0
\(151\) −2104.00 −1.13391 −0.566957 0.823747i \(-0.691880\pi\)
−0.566957 + 0.823747i \(0.691880\pi\)
\(152\) 0 0
\(153\) 154.000i 0.0813736i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 1190.00i − 0.604919i −0.953162 0.302460i \(-0.902192\pi\)
0.953162 0.302460i \(-0.0978078\pi\)
\(158\) 0 0
\(159\) 1080.00 0.538677
\(160\) 0 0
\(161\) 728.000 0.356363
\(162\) 0 0
\(163\) − 1732.00i − 0.832274i −0.909302 0.416137i \(-0.863384\pi\)
0.909302 0.416137i \(-0.136616\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 2264.00i − 1.04906i −0.851391 0.524532i \(-0.824240\pi\)
0.851391 0.524532i \(-0.175760\pi\)
\(168\) 0 0
\(169\) 2097.00 0.954483
\(170\) 0 0
\(171\) −132.000 −0.0590309
\(172\) 0 0
\(173\) − 1066.00i − 0.468477i −0.972179 0.234238i \(-0.924740\pi\)
0.972179 0.234238i \(-0.0752596\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 1296.00i 0.550358i
\(178\) 0 0
\(179\) 2356.00 0.983775 0.491887 0.870659i \(-0.336307\pi\)
0.491887 + 0.870659i \(0.336307\pi\)
\(180\) 0 0
\(181\) 2158.00 0.886204 0.443102 0.896471i \(-0.353878\pi\)
0.443102 + 0.896471i \(0.353878\pi\)
\(182\) 0 0
\(183\) 744.000i 0.300536i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 280.000i 0.109495i
\(188\) 0 0
\(189\) −1064.00 −0.409495
\(190\) 0 0
\(191\) −2688.00 −1.01831 −0.509154 0.860675i \(-0.670042\pi\)
−0.509154 + 0.860675i \(0.670042\pi\)
\(192\) 0 0
\(193\) − 4414.00i − 1.64625i −0.567859 0.823126i \(-0.692228\pi\)
0.567859 0.823126i \(-0.307772\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 3774.00i − 1.36491i −0.730930 0.682453i \(-0.760913\pi\)
0.730930 0.682453i \(-0.239087\pi\)
\(198\) 0 0
\(199\) −664.000 −0.236531 −0.118266 0.992982i \(-0.537733\pi\)
−0.118266 + 0.992982i \(0.537733\pi\)
\(200\) 0 0
\(201\) −624.000 −0.218973
\(202\) 0 0
\(203\) − 854.000i − 0.295266i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 1144.00i 0.384123i
\(208\) 0 0
\(209\) −240.000 −0.0794313
\(210\) 0 0
\(211\) 1260.00 0.411099 0.205550 0.978647i \(-0.434102\pi\)
0.205550 + 0.978647i \(0.434102\pi\)
\(212\) 0 0
\(213\) 1440.00i 0.463226i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 1568.00i − 0.490520i
\(218\) 0 0
\(219\) −408.000 −0.125891
\(220\) 0 0
\(221\) 140.000 0.0426128
\(222\) 0 0
\(223\) − 1152.00i − 0.345936i −0.984927 0.172968i \(-0.944664\pi\)
0.984927 0.172968i \(-0.0553356\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 2588.00i − 0.756703i −0.925662 0.378352i \(-0.876491\pi\)
0.925662 0.378352i \(-0.123509\pi\)
\(228\) 0 0
\(229\) −766.000 −0.221042 −0.110521 0.993874i \(-0.535252\pi\)
−0.110521 + 0.993874i \(0.535252\pi\)
\(230\) 0 0
\(231\) −560.000 −0.159503
\(232\) 0 0
\(233\) 6138.00i 1.72581i 0.505366 + 0.862905i \(0.331357\pi\)
−0.505366 + 0.862905i \(0.668643\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 3648.00i − 0.999844i
\(238\) 0 0
\(239\) −3856.00 −1.04361 −0.521807 0.853063i \(-0.674742\pi\)
−0.521807 + 0.853063i \(0.674742\pi\)
\(240\) 0 0
\(241\) 2578.00 0.689060 0.344530 0.938775i \(-0.388038\pi\)
0.344530 + 0.938775i \(0.388038\pi\)
\(242\) 0 0
\(243\) − 2860.00i − 0.755017i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 120.000i 0.0309126i
\(248\) 0 0
\(249\) 4272.00 1.08726
\(250\) 0 0
\(251\) −1404.00 −0.353067 −0.176533 0.984295i \(-0.556488\pi\)
−0.176533 + 0.984295i \(0.556488\pi\)
\(252\) 0 0
\(253\) 2080.00i 0.516871i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 2946.00i − 0.715044i −0.933905 0.357522i \(-0.883622\pi\)
0.933905 0.357522i \(-0.116378\pi\)
\(258\) 0 0
\(259\) −1106.00 −0.265342
\(260\) 0 0
\(261\) 1342.00 0.318267
\(262\) 0 0
\(263\) − 3080.00i − 0.722133i −0.932540 0.361066i \(-0.882413\pi\)
0.932540 0.361066i \(-0.117587\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 6360.00i − 1.45777i
\(268\) 0 0
\(269\) −2294.00 −0.519954 −0.259977 0.965615i \(-0.583715\pi\)
−0.259977 + 0.965615i \(0.583715\pi\)
\(270\) 0 0
\(271\) −3728.00 −0.835645 −0.417823 0.908529i \(-0.637207\pi\)
−0.417823 + 0.908529i \(0.637207\pi\)
\(272\) 0 0
\(273\) 280.000i 0.0620746i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 2734.00i − 0.593033i −0.955028 0.296516i \(-0.904175\pi\)
0.955028 0.296516i \(-0.0958250\pi\)
\(278\) 0 0
\(279\) 2464.00 0.528731
\(280\) 0 0
\(281\) 1034.00 0.219513 0.109757 0.993958i \(-0.464993\pi\)
0.109757 + 0.993958i \(0.464993\pi\)
\(282\) 0 0
\(283\) − 5180.00i − 1.08805i −0.839068 0.544027i \(-0.816899\pi\)
0.839068 0.544027i \(-0.183101\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 2646.00i − 0.544211i
\(288\) 0 0
\(289\) 4717.00 0.960106
\(290\) 0 0
\(291\) −3464.00 −0.697812
\(292\) 0 0
\(293\) 7934.00i 1.58194i 0.611853 + 0.790971i \(0.290424\pi\)
−0.611853 + 0.790971i \(0.709576\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) − 3040.00i − 0.593935i
\(298\) 0 0
\(299\) 1040.00 0.201153
\(300\) 0 0
\(301\) 2828.00 0.541539
\(302\) 0 0
\(303\) − 2808.00i − 0.532394i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 3444.00i 0.640259i 0.947374 + 0.320129i \(0.103726\pi\)
−0.947374 + 0.320129i \(0.896274\pi\)
\(308\) 0 0
\(309\) −1184.00 −0.217979
\(310\) 0 0
\(311\) 7656.00 1.39592 0.697961 0.716135i \(-0.254091\pi\)
0.697961 + 0.716135i \(0.254091\pi\)
\(312\) 0 0
\(313\) − 3798.00i − 0.685865i −0.939360 0.342932i \(-0.888580\pi\)
0.939360 0.342932i \(-0.111420\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 6822.00i − 1.20871i −0.796714 0.604356i \(-0.793430\pi\)
0.796714 0.604356i \(-0.206570\pi\)
\(318\) 0 0
\(319\) 2440.00 0.428256
\(320\) 0 0
\(321\) 176.000 0.0306024
\(322\) 0 0
\(323\) − 168.000i − 0.0289405i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 2600.00i − 0.439695i
\(328\) 0 0
\(329\) −784.000 −0.131378
\(330\) 0 0
\(331\) −6572.00 −1.09133 −0.545664 0.838004i \(-0.683723\pi\)
−0.545664 + 0.838004i \(0.683723\pi\)
\(332\) 0 0
\(333\) − 1738.00i − 0.286011i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 11022.0i 1.78162i 0.454374 + 0.890811i \(0.349863\pi\)
−0.454374 + 0.890811i \(0.650137\pi\)
\(338\) 0 0
\(339\) −3768.00 −0.603686
\(340\) 0 0
\(341\) 4480.00 0.711453
\(342\) 0 0
\(343\) 343.000i 0.0539949i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 10908.0i 1.68753i 0.536715 + 0.843764i \(0.319665\pi\)
−0.536715 + 0.843764i \(0.680335\pi\)
\(348\) 0 0
\(349\) 12058.0 1.84943 0.924713 0.380664i \(-0.124305\pi\)
0.924713 + 0.380664i \(0.124305\pi\)
\(350\) 0 0
\(351\) −1520.00 −0.231144
\(352\) 0 0
\(353\) 1570.00i 0.236721i 0.992971 + 0.118361i \(0.0377639\pi\)
−0.992971 + 0.118361i \(0.962236\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 392.000i − 0.0581144i
\(358\) 0 0
\(359\) −120.000 −0.0176417 −0.00882083 0.999961i \(-0.502808\pi\)
−0.00882083 + 0.999961i \(0.502808\pi\)
\(360\) 0 0
\(361\) −6715.00 −0.979006
\(362\) 0 0
\(363\) 3724.00i 0.538455i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) − 4336.00i − 0.616723i −0.951269 0.308362i \(-0.900219\pi\)
0.951269 0.308362i \(-0.0997806\pi\)
\(368\) 0 0
\(369\) 4158.00 0.586604
\(370\) 0 0
\(371\) 1890.00 0.264485
\(372\) 0 0
\(373\) 7758.00i 1.07693i 0.842649 + 0.538464i \(0.180995\pi\)
−0.842649 + 0.538464i \(0.819005\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 1220.00i − 0.166666i
\(378\) 0 0
\(379\) −10660.0 −1.44477 −0.722384 0.691492i \(-0.756954\pi\)
−0.722384 + 0.691492i \(0.756954\pi\)
\(380\) 0 0
\(381\) −2944.00 −0.395868
\(382\) 0 0
\(383\) − 14304.0i − 1.90836i −0.299240 0.954178i \(-0.596733\pi\)
0.299240 0.954178i \(-0.403267\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 4444.00i 0.583724i
\(388\) 0 0
\(389\) 11970.0 1.56016 0.780081 0.625678i \(-0.215178\pi\)
0.780081 + 0.625678i \(0.215178\pi\)
\(390\) 0 0
\(391\) −1456.00 −0.188320
\(392\) 0 0
\(393\) − 3696.00i − 0.474398i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 4106.00i 0.519079i 0.965733 + 0.259539i \(0.0835707\pi\)
−0.965733 + 0.259539i \(0.916429\pi\)
\(398\) 0 0
\(399\) 336.000 0.0421580
\(400\) 0 0
\(401\) −3790.00 −0.471979 −0.235989 0.971756i \(-0.575833\pi\)
−0.235989 + 0.971756i \(0.575833\pi\)
\(402\) 0 0
\(403\) − 2240.00i − 0.276879i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 3160.00i − 0.384854i
\(408\) 0 0
\(409\) 13366.0 1.61591 0.807954 0.589246i \(-0.200575\pi\)
0.807954 + 0.589246i \(0.200575\pi\)
\(410\) 0 0
\(411\) −1896.00 −0.227549
\(412\) 0 0
\(413\) 2268.00i 0.270220i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 4048.00i 0.475375i
\(418\) 0 0
\(419\) −6524.00 −0.760664 −0.380332 0.924850i \(-0.624190\pi\)
−0.380332 + 0.924850i \(0.624190\pi\)
\(420\) 0 0
\(421\) −2978.00 −0.344748 −0.172374 0.985032i \(-0.555144\pi\)
−0.172374 + 0.985032i \(0.555144\pi\)
\(422\) 0 0
\(423\) − 1232.00i − 0.141612i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1302.00i 0.147560i
\(428\) 0 0
\(429\) −800.000 −0.0900335
\(430\) 0 0
\(431\) 15760.0 1.76133 0.880664 0.473741i \(-0.157097\pi\)
0.880664 + 0.473741i \(0.157097\pi\)
\(432\) 0 0
\(433\) 10322.0i 1.14560i 0.819696 + 0.572799i \(0.194142\pi\)
−0.819696 + 0.572799i \(0.805858\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 1248.00i − 0.136613i
\(438\) 0 0
\(439\) 344.000 0.0373991 0.0186996 0.999825i \(-0.494047\pi\)
0.0186996 + 0.999825i \(0.494047\pi\)
\(440\) 0 0
\(441\) −539.000 −0.0582011
\(442\) 0 0
\(443\) − 252.000i − 0.0270268i −0.999909 0.0135134i \(-0.995698\pi\)
0.999909 0.0135134i \(-0.00430158\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 1208.00i 0.127822i
\(448\) 0 0
\(449\) 11966.0 1.25771 0.628854 0.777524i \(-0.283525\pi\)
0.628854 + 0.777524i \(0.283525\pi\)
\(450\) 0 0
\(451\) 7560.00 0.789327
\(452\) 0 0
\(453\) 8416.00i 0.872888i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 15846.0i 1.62198i 0.585060 + 0.810990i \(0.301071\pi\)
−0.585060 + 0.810990i \(0.698929\pi\)
\(458\) 0 0
\(459\) 2128.00 0.216398
\(460\) 0 0
\(461\) 5430.00 0.548591 0.274295 0.961645i \(-0.411555\pi\)
0.274295 + 0.961645i \(0.411555\pi\)
\(462\) 0 0
\(463\) 8912.00i 0.894548i 0.894397 + 0.447274i \(0.147605\pi\)
−0.894397 + 0.447274i \(0.852395\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 11028.0i 1.09275i 0.837540 + 0.546376i \(0.183993\pi\)
−0.837540 + 0.546376i \(0.816007\pi\)
\(468\) 0 0
\(469\) −1092.00 −0.107514
\(470\) 0 0
\(471\) −4760.00 −0.465667
\(472\) 0 0
\(473\) 8080.00i 0.785452i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 2970.00i 0.285088i
\(478\) 0 0
\(479\) −5856.00 −0.558596 −0.279298 0.960204i \(-0.590102\pi\)
−0.279298 + 0.960204i \(0.590102\pi\)
\(480\) 0 0
\(481\) −1580.00 −0.149775
\(482\) 0 0
\(483\) − 2912.00i − 0.274328i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 10264.0i − 0.955044i −0.878620 0.477522i \(-0.841535\pi\)
0.878620 0.477522i \(-0.158465\pi\)
\(488\) 0 0
\(489\) −6928.00 −0.640685
\(490\) 0 0
\(491\) 2804.00 0.257725 0.128862 0.991663i \(-0.458867\pi\)
0.128862 + 0.991663i \(0.458867\pi\)
\(492\) 0 0
\(493\) 1708.00i 0.156033i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 2520.00i 0.227440i
\(498\) 0 0
\(499\) −8716.00 −0.781927 −0.390964 0.920406i \(-0.627858\pi\)
−0.390964 + 0.920406i \(0.627858\pi\)
\(500\) 0 0
\(501\) −9056.00 −0.807569
\(502\) 0 0
\(503\) 2504.00i 0.221964i 0.993822 + 0.110982i \(0.0353996\pi\)
−0.993822 + 0.110982i \(0.964600\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) − 8388.00i − 0.734762i
\(508\) 0 0
\(509\) −17094.0 −1.48856 −0.744281 0.667866i \(-0.767208\pi\)
−0.744281 + 0.667866i \(0.767208\pi\)
\(510\) 0 0
\(511\) −714.000 −0.0618112
\(512\) 0 0
\(513\) 1824.00i 0.156982i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 2240.00i − 0.190551i
\(518\) 0 0
\(519\) −4264.00 −0.360634
\(520\) 0 0
\(521\) 9882.00 0.830976 0.415488 0.909599i \(-0.363611\pi\)
0.415488 + 0.909599i \(0.363611\pi\)
\(522\) 0 0
\(523\) − 7532.00i − 0.629735i −0.949136 0.314867i \(-0.898040\pi\)
0.949136 0.314867i \(-0.101960\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3136.00i 0.259215i
\(528\) 0 0
\(529\) 1351.00 0.111038
\(530\) 0 0
\(531\) −3564.00 −0.291270
\(532\) 0 0
\(533\) − 3780.00i − 0.307186i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) − 9424.00i − 0.757310i
\(538\) 0 0
\(539\) −980.000 −0.0783146
\(540\) 0 0
\(541\) −17338.0 −1.37785 −0.688927 0.724831i \(-0.741918\pi\)
−0.688927 + 0.724831i \(0.741918\pi\)
\(542\) 0 0
\(543\) − 8632.00i − 0.682200i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 764.000i − 0.0597190i −0.999554 0.0298595i \(-0.990494\pi\)
0.999554 0.0298595i \(-0.00950598\pi\)
\(548\) 0 0
\(549\) −2046.00 −0.159055
\(550\) 0 0
\(551\) −1464.00 −0.113191
\(552\) 0 0
\(553\) − 6384.00i − 0.490914i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 2442.00i 0.185765i 0.995677 + 0.0928823i \(0.0296080\pi\)
−0.995677 + 0.0928823i \(0.970392\pi\)
\(558\) 0 0
\(559\) 4040.00 0.305678
\(560\) 0 0
\(561\) 1120.00 0.0842895
\(562\) 0 0
\(563\) 8972.00i 0.671625i 0.941929 + 0.335812i \(0.109011\pi\)
−0.941929 + 0.335812i \(0.890989\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 2177.00i 0.161244i
\(568\) 0 0
\(569\) −8682.00 −0.639663 −0.319832 0.947474i \(-0.603626\pi\)
−0.319832 + 0.947474i \(0.603626\pi\)
\(570\) 0 0
\(571\) 15524.0 1.13776 0.568878 0.822422i \(-0.307377\pi\)
0.568878 + 0.822422i \(0.307377\pi\)
\(572\) 0 0
\(573\) 10752.0i 0.783894i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 19774.0i 1.42669i 0.700811 + 0.713347i \(0.252822\pi\)
−0.700811 + 0.713347i \(0.747178\pi\)
\(578\) 0 0
\(579\) −17656.0 −1.26729
\(580\) 0 0
\(581\) 7476.00 0.533833
\(582\) 0 0
\(583\) 5400.00i 0.383611i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 6700.00i 0.471105i 0.971862 + 0.235552i \(0.0756899\pi\)
−0.971862 + 0.235552i \(0.924310\pi\)
\(588\) 0 0
\(589\) −2688.00 −0.188043
\(590\) 0 0
\(591\) −15096.0 −1.05070
\(592\) 0 0
\(593\) − 1294.00i − 0.0896091i −0.998996 0.0448046i \(-0.985733\pi\)
0.998996 0.0448046i \(-0.0142665\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 2656.00i 0.182082i
\(598\) 0 0
\(599\) −19720.0 −1.34514 −0.672569 0.740035i \(-0.734809\pi\)
−0.672569 + 0.740035i \(0.734809\pi\)
\(600\) 0 0
\(601\) 21450.0 1.45585 0.727923 0.685659i \(-0.240486\pi\)
0.727923 + 0.685659i \(0.240486\pi\)
\(602\) 0 0
\(603\) − 1716.00i − 0.115889i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 19264.0i 1.28814i 0.764966 + 0.644071i \(0.222756\pi\)
−0.764966 + 0.644071i \(0.777244\pi\)
\(608\) 0 0
\(609\) −3416.00 −0.227296
\(610\) 0 0
\(611\) −1120.00 −0.0741577
\(612\) 0 0
\(613\) 13150.0i 0.866433i 0.901290 + 0.433217i \(0.142621\pi\)
−0.901290 + 0.433217i \(0.857379\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 15238.0i 0.994261i 0.867676 + 0.497130i \(0.165613\pi\)
−0.867676 + 0.497130i \(0.834387\pi\)
\(618\) 0 0
\(619\) −23764.0 −1.54306 −0.771531 0.636191i \(-0.780509\pi\)
−0.771531 + 0.636191i \(0.780509\pi\)
\(620\) 0 0
\(621\) 15808.0 1.02150
\(622\) 0 0
\(623\) − 11130.0i − 0.715753i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 960.000i 0.0611463i
\(628\) 0 0
\(629\) 2212.00 0.140220
\(630\) 0 0
\(631\) −2008.00 −0.126683 −0.0633417 0.997992i \(-0.520176\pi\)
−0.0633417 + 0.997992i \(0.520176\pi\)
\(632\) 0 0
\(633\) − 5040.00i − 0.316464i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 490.000i 0.0304780i
\(638\) 0 0
\(639\) −3960.00 −0.245157
\(640\) 0 0
\(641\) 13058.0 0.804618 0.402309 0.915504i \(-0.368208\pi\)
0.402309 + 0.915504i \(0.368208\pi\)
\(642\) 0 0
\(643\) 24188.0i 1.48349i 0.670684 + 0.741743i \(0.266001\pi\)
−0.670684 + 0.741743i \(0.733999\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 6648.00i − 0.403956i −0.979390 0.201978i \(-0.935263\pi\)
0.979390 0.201978i \(-0.0647370\pi\)
\(648\) 0 0
\(649\) −6480.00 −0.391930
\(650\) 0 0
\(651\) −6272.00 −0.377602
\(652\) 0 0
\(653\) 9814.00i 0.588134i 0.955785 + 0.294067i \(0.0950089\pi\)
−0.955785 + 0.294067i \(0.904991\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 1122.00i − 0.0666262i
\(658\) 0 0
\(659\) −26540.0 −1.56882 −0.784409 0.620243i \(-0.787034\pi\)
−0.784409 + 0.620243i \(0.787034\pi\)
\(660\) 0 0
\(661\) −1330.00 −0.0782617 −0.0391309 0.999234i \(-0.512459\pi\)
−0.0391309 + 0.999234i \(0.512459\pi\)
\(662\) 0 0
\(663\) − 560.000i − 0.0328033i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 12688.0i 0.736554i
\(668\) 0 0
\(669\) −4608.00 −0.266301
\(670\) 0 0
\(671\) −3720.00 −0.214022
\(672\) 0 0
\(673\) − 17950.0i − 1.02812i −0.857756 0.514058i \(-0.828142\pi\)
0.857756 0.514058i \(-0.171858\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 23742.0i − 1.34783i −0.738810 0.673914i \(-0.764612\pi\)
0.738810 0.673914i \(-0.235388\pi\)
\(678\) 0 0
\(679\) −6062.00 −0.342619
\(680\) 0 0
\(681\) −10352.0 −0.582510
\(682\) 0 0
\(683\) 6356.00i 0.356084i 0.984023 + 0.178042i \(0.0569763\pi\)
−0.984023 + 0.178042i \(0.943024\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 3064.00i 0.170159i
\(688\) 0 0
\(689\) 2700.00 0.149291
\(690\) 0 0
\(691\) −3156.00 −0.173748 −0.0868740 0.996219i \(-0.527688\pi\)
−0.0868740 + 0.996219i \(0.527688\pi\)
\(692\) 0 0
\(693\) − 1540.00i − 0.0844152i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 5292.00i 0.287588i
\(698\) 0 0
\(699\) 24552.0 1.32853
\(700\) 0 0
\(701\) −18330.0 −0.987610 −0.493805 0.869573i \(-0.664394\pi\)
−0.493805 + 0.869573i \(0.664394\pi\)
\(702\) 0 0
\(703\) 1896.00i 0.101720i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 4914.00i − 0.261400i
\(708\) 0 0
\(709\) −19070.0 −1.01014 −0.505070 0.863079i \(-0.668533\pi\)
−0.505070 + 0.863079i \(0.668533\pi\)
\(710\) 0 0
\(711\) 10032.0 0.529155
\(712\) 0 0
\(713\) 23296.0i 1.22362i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 15424.0i 0.803375i
\(718\) 0 0
\(719\) 4176.00 0.216604 0.108302 0.994118i \(-0.465459\pi\)
0.108302 + 0.994118i \(0.465459\pi\)
\(720\) 0 0
\(721\) −2072.00 −0.107025
\(722\) 0 0
\(723\) − 10312.0i − 0.530439i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 10520.0i 0.536678i 0.963324 + 0.268339i \(0.0864748\pi\)
−0.963324 + 0.268339i \(0.913525\pi\)
\(728\) 0 0
\(729\) −19837.0 −1.00782
\(730\) 0 0
\(731\) −5656.00 −0.286176
\(732\) 0 0
\(733\) − 6874.00i − 0.346381i −0.984888 0.173190i \(-0.944592\pi\)
0.984888 0.173190i \(-0.0554076\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 3120.00i − 0.155939i
\(738\) 0 0
\(739\) −11804.0 −0.587574 −0.293787 0.955871i \(-0.594916\pi\)
−0.293787 + 0.955871i \(0.594916\pi\)
\(740\) 0 0
\(741\) 480.000 0.0237965
\(742\) 0 0
\(743\) − 20648.0i − 1.01952i −0.860317 0.509759i \(-0.829735\pi\)
0.860317 0.509759i \(-0.170265\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 11748.0i 0.575417i
\(748\) 0 0
\(749\) 308.000 0.0150255
\(750\) 0 0
\(751\) 1232.00 0.0598619 0.0299310 0.999552i \(-0.490471\pi\)
0.0299310 + 0.999552i \(0.490471\pi\)
\(752\) 0 0
\(753\) 5616.00i 0.271791i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 11250.0i 0.540143i 0.962840 + 0.270071i \(0.0870473\pi\)
−0.962840 + 0.270071i \(0.912953\pi\)
\(758\) 0 0
\(759\) 8320.00 0.397888
\(760\) 0 0
\(761\) 14698.0 0.700134 0.350067 0.936725i \(-0.386159\pi\)
0.350067 + 0.936725i \(0.386159\pi\)
\(762\) 0 0
\(763\) − 4550.00i − 0.215886i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3240.00i 0.152529i
\(768\) 0 0
\(769\) 30014.0 1.40745 0.703727 0.710470i \(-0.251518\pi\)
0.703727 + 0.710470i \(0.251518\pi\)
\(770\) 0 0
\(771\) −11784.0 −0.550441
\(772\) 0 0
\(773\) − 34018.0i − 1.58285i −0.611267 0.791425i \(-0.709340\pi\)
0.611267 0.791425i \(-0.290660\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 4424.00i 0.204260i
\(778\) 0 0
\(779\) −4536.00 −0.208625
\(780\) 0 0
\(781\) −7200.00 −0.329880
\(782\) 0 0
\(783\) − 18544.0i − 0.846371i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 18516.0i 0.838658i 0.907834 + 0.419329i \(0.137735\pi\)
−0.907834 + 0.419329i \(0.862265\pi\)
\(788\) 0 0
\(789\) −12320.0 −0.555898
\(790\) 0 0
\(791\) −6594.00 −0.296404
\(792\) 0 0
\(793\) 1860.00i 0.0832920i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 38618.0i 1.71634i 0.513369 + 0.858168i \(0.328397\pi\)
−0.513369 + 0.858168i \(0.671603\pi\)
\(798\) 0 0
\(799\) 1568.00 0.0694266
\(800\) 0 0
\(801\) 17490.0 0.771509
\(802\) 0 0
\(803\) − 2040.00i − 0.0896514i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 9176.00i 0.400261i
\(808\) 0 0
\(809\) −19514.0 −0.848054 −0.424027 0.905650i \(-0.639384\pi\)
−0.424027 + 0.905650i \(0.639384\pi\)
\(810\) 0 0
\(811\) −31020.0 −1.34311 −0.671553 0.740956i \(-0.734373\pi\)
−0.671553 + 0.740956i \(0.734373\pi\)
\(812\) 0 0
\(813\) 14912.0i 0.643280i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 4848.00i − 0.207601i
\(818\) 0 0
\(819\) −770.000 −0.0328522
\(820\) 0 0
\(821\) 3726.00 0.158390 0.0791951 0.996859i \(-0.474765\pi\)
0.0791951 + 0.996859i \(0.474765\pi\)
\(822\) 0 0
\(823\) 32904.0i 1.39363i 0.717249 + 0.696817i \(0.245401\pi\)
−0.717249 + 0.696817i \(0.754599\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 39868.0i 1.67636i 0.545397 + 0.838178i \(0.316379\pi\)
−0.545397 + 0.838178i \(0.683621\pi\)
\(828\) 0 0
\(829\) 26810.0 1.12322 0.561610 0.827402i \(-0.310182\pi\)
0.561610 + 0.827402i \(0.310182\pi\)
\(830\) 0 0
\(831\) −10936.0 −0.456517
\(832\) 0 0
\(833\) − 686.000i − 0.0285336i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 34048.0i − 1.40606i
\(838\) 0 0
\(839\) 37096.0 1.52646 0.763228 0.646130i \(-0.223613\pi\)
0.763228 + 0.646130i \(0.223613\pi\)
\(840\) 0 0
\(841\) −9505.00 −0.389725
\(842\) 0 0
\(843\) − 4136.00i − 0.168982i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 6517.00i 0.264376i
\(848\) 0 0
\(849\) −20720.0 −0.837584
\(850\) 0 0
\(851\) 16432.0 0.661906
\(852\) 0 0
\(853\) − 14386.0i − 0.577453i −0.957412 0.288726i \(-0.906768\pi\)
0.957412 0.288726i \(-0.0932318\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 118.000i 0.00470339i 0.999997 + 0.00235169i \(0.000748568\pi\)
−0.999997 + 0.00235169i \(0.999251\pi\)
\(858\) 0 0
\(859\) 25116.0 0.997610 0.498805 0.866714i \(-0.333772\pi\)
0.498805 + 0.866714i \(0.333772\pi\)
\(860\) 0 0
\(861\) −10584.0 −0.418934
\(862\) 0 0
\(863\) − 11776.0i − 0.464496i −0.972657 0.232248i \(-0.925392\pi\)
0.972657 0.232248i \(-0.0746080\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 18868.0i − 0.739090i
\(868\) 0 0
\(869\) 18240.0 0.712025
\(870\) 0 0
\(871\) −1560.00 −0.0606872
\(872\) 0 0
\(873\) − 9526.00i − 0.369308i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 24694.0i − 0.950806i −0.879768 0.475403i \(-0.842302\pi\)
0.879768 0.475403i \(-0.157698\pi\)
\(878\) 0 0
\(879\) 31736.0 1.21778
\(880\) 0 0
\(881\) 32850.0 1.25624 0.628118 0.778118i \(-0.283825\pi\)
0.628118 + 0.778118i \(0.283825\pi\)
\(882\) 0 0
\(883\) 47340.0i 1.80421i 0.431516 + 0.902105i \(0.357979\pi\)
−0.431516 + 0.902105i \(0.642021\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 1992.00i − 0.0754057i −0.999289 0.0377028i \(-0.987996\pi\)
0.999289 0.0377028i \(-0.0120040\pi\)
\(888\) 0 0
\(889\) −5152.00 −0.194367
\(890\) 0 0
\(891\) −6220.00 −0.233870
\(892\) 0 0
\(893\) 1344.00i 0.0503642i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) − 4160.00i − 0.154848i
\(898\) 0 0
\(899\) 27328.0 1.01384
\(900\) 0 0
\(901\) −3780.00 −0.139767
\(902\) 0 0
\(903\) − 11312.0i − 0.416877i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 13516.0i 0.494809i 0.968912 + 0.247404i \(0.0795776\pi\)
−0.968912 + 0.247404i \(0.920422\pi\)
\(908\) 0 0
\(909\) 7722.00 0.281763
\(910\) 0 0
\(911\) −3408.00 −0.123943 −0.0619715 0.998078i \(-0.519739\pi\)
−0.0619715 + 0.998078i \(0.519739\pi\)
\(912\) 0 0
\(913\) 21360.0i 0.774275i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 6468.00i − 0.232925i
\(918\) 0 0
\(919\) −39240.0 −1.40850 −0.704248 0.709954i \(-0.748716\pi\)
−0.704248 + 0.709954i \(0.748716\pi\)
\(920\) 0 0
\(921\) 13776.0 0.492871
\(922\) 0 0
\(923\) 3600.00i 0.128381i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 3256.00i − 0.115363i
\(928\) 0 0
\(929\) −21922.0 −0.774206 −0.387103 0.922036i \(-0.626524\pi\)
−0.387103 + 0.922036i \(0.626524\pi\)
\(930\) 0 0
\(931\) 588.000 0.0206992
\(932\) 0 0
\(933\) − 30624.0i − 1.07458i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 186.000i − 0.00648490i −0.999995 0.00324245i \(-0.998968\pi\)
0.999995 0.00324245i \(-0.00103211\pi\)
\(938\) 0 0
\(939\) −15192.0 −0.527979
\(940\) 0 0
\(941\) −18282.0 −0.633343 −0.316672 0.948535i \(-0.602565\pi\)
−0.316672 + 0.948535i \(0.602565\pi\)
\(942\) 0 0
\(943\) 39312.0i 1.35756i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 16980.0i 0.582657i 0.956623 + 0.291328i \(0.0940972\pi\)
−0.956623 + 0.291328i \(0.905903\pi\)
\(948\) 0 0
\(949\) −1020.00 −0.0348900
\(950\) 0 0
\(951\) −27288.0 −0.930467
\(952\) 0 0
\(953\) − 44310.0i − 1.50613i −0.657946 0.753065i \(-0.728575\pi\)
0.657946 0.753065i \(-0.271425\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 9760.00i − 0.329672i
\(958\) 0 0
\(959\) −3318.00 −0.111725
\(960\) 0 0
\(961\) 20385.0 0.684267
\(962\) 0 0
\(963\) 484.000i 0.0161959i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) − 51512.0i − 1.71304i −0.516110 0.856522i \(-0.672620\pi\)
0.516110 0.856522i \(-0.327380\pi\)
\(968\) 0 0
\(969\) −672.000 −0.0222784
\(970\) 0 0
\(971\) 1844.00 0.0609442 0.0304721 0.999536i \(-0.490299\pi\)
0.0304721 + 0.999536i \(0.490299\pi\)
\(972\) 0 0
\(973\) 7084.00i 0.233405i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 34162.0i − 1.11867i −0.828942 0.559334i \(-0.811057\pi\)
0.828942 0.559334i \(-0.188943\pi\)
\(978\) 0 0
\(979\) 31800.0 1.03813
\(980\) 0 0
\(981\) 7150.00 0.232703
\(982\) 0 0
\(983\) − 216.000i − 0.00700847i −0.999994 0.00350424i \(-0.998885\pi\)
0.999994 0.00350424i \(-0.00111544\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 3136.00i 0.101135i
\(988\) 0 0
\(989\) −42016.0 −1.35089
\(990\) 0 0
\(991\) 52832.0 1.69351 0.846753 0.531987i \(-0.178554\pi\)
0.846753 + 0.531987i \(0.178554\pi\)
\(992\) 0 0
\(993\) 26288.0i 0.840105i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 5054.00i − 0.160543i −0.996773 0.0802717i \(-0.974421\pi\)
0.996773 0.0802717i \(-0.0255788\pi\)
\(998\) 0 0
\(999\) −24016.0 −0.760593
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1400.4.g.e.449.1 2
5.2 odd 4 280.4.a.a.1.1 1
5.3 odd 4 1400.4.a.g.1.1 1
5.4 even 2 inner 1400.4.g.e.449.2 2
20.7 even 4 560.4.a.l.1.1 1
35.27 even 4 1960.4.a.g.1.1 1
40.27 even 4 2240.4.a.l.1.1 1
40.37 odd 4 2240.4.a.z.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
280.4.a.a.1.1 1 5.2 odd 4
560.4.a.l.1.1 1 20.7 even 4
1400.4.a.g.1.1 1 5.3 odd 4
1400.4.g.e.449.1 2 1.1 even 1 trivial
1400.4.g.e.449.2 2 5.4 even 2 inner
1960.4.a.g.1.1 1 35.27 even 4
2240.4.a.l.1.1 1 40.27 even 4
2240.4.a.z.1.1 1 40.37 odd 4