Properties

Label 1960.4.a.g.1.1
Level $1960$
Weight $4$
Character 1960.1
Self dual yes
Analytic conductor $115.644$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1960,4,Mod(1,1960)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1960, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1960.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1960 = 2^{3} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 1960.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(115.643743611\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 280)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 1960.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.00000 q^{3} -5.00000 q^{5} -11.0000 q^{9} +20.0000 q^{11} +10.0000 q^{13} -20.0000 q^{15} +14.0000 q^{17} -12.0000 q^{19} +104.000 q^{23} +25.0000 q^{25} -152.000 q^{27} -122.000 q^{29} -224.000 q^{31} +80.0000 q^{33} +158.000 q^{37} +40.0000 q^{39} -378.000 q^{41} +404.000 q^{43} +55.0000 q^{45} -112.000 q^{47} +56.0000 q^{51} +270.000 q^{53} -100.000 q^{55} -48.0000 q^{57} -324.000 q^{59} +186.000 q^{61} -50.0000 q^{65} +156.000 q^{67} +416.000 q^{69} -360.000 q^{71} +102.000 q^{73} +100.000 q^{75} -912.000 q^{79} -311.000 q^{81} -1068.00 q^{83} -70.0000 q^{85} -488.000 q^{87} +1590.00 q^{89} -896.000 q^{93} +60.0000 q^{95} -866.000 q^{97} -220.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 4.00000 0.769800 0.384900 0.922958i \(-0.374236\pi\)
0.384900 + 0.922958i \(0.374236\pi\)
\(4\) 0 0
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −11.0000 −0.407407
\(10\) 0 0
\(11\) 20.0000 0.548202 0.274101 0.961701i \(-0.411620\pi\)
0.274101 + 0.961701i \(0.411620\pi\)
\(12\) 0 0
\(13\) 10.0000 0.213346 0.106673 0.994294i \(-0.465980\pi\)
0.106673 + 0.994294i \(0.465980\pi\)
\(14\) 0 0
\(15\) −20.0000 −0.344265
\(16\) 0 0
\(17\) 14.0000 0.199735 0.0998676 0.995001i \(-0.468158\pi\)
0.0998676 + 0.995001i \(0.468158\pi\)
\(18\) 0 0
\(19\) −12.0000 −0.144894 −0.0724471 0.997372i \(-0.523081\pi\)
−0.0724471 + 0.997372i \(0.523081\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 104.000 0.942848 0.471424 0.881907i \(-0.343740\pi\)
0.471424 + 0.881907i \(0.343740\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) −152.000 −1.08342
\(28\) 0 0
\(29\) −122.000 −0.781201 −0.390601 0.920560i \(-0.627733\pi\)
−0.390601 + 0.920560i \(0.627733\pi\)
\(30\) 0 0
\(31\) −224.000 −1.29779 −0.648897 0.760877i \(-0.724769\pi\)
−0.648897 + 0.760877i \(0.724769\pi\)
\(32\) 0 0
\(33\) 80.0000 0.422006
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 158.000 0.702028 0.351014 0.936370i \(-0.385837\pi\)
0.351014 + 0.936370i \(0.385837\pi\)
\(38\) 0 0
\(39\) 40.0000 0.164234
\(40\) 0 0
\(41\) −378.000 −1.43985 −0.719923 0.694054i \(-0.755823\pi\)
−0.719923 + 0.694054i \(0.755823\pi\)
\(42\) 0 0
\(43\) 404.000 1.43278 0.716389 0.697701i \(-0.245794\pi\)
0.716389 + 0.697701i \(0.245794\pi\)
\(44\) 0 0
\(45\) 55.0000 0.182198
\(46\) 0 0
\(47\) −112.000 −0.347593 −0.173797 0.984782i \(-0.555604\pi\)
−0.173797 + 0.984782i \(0.555604\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 56.0000 0.153756
\(52\) 0 0
\(53\) 270.000 0.699761 0.349881 0.936794i \(-0.386222\pi\)
0.349881 + 0.936794i \(0.386222\pi\)
\(54\) 0 0
\(55\) −100.000 −0.245164
\(56\) 0 0
\(57\) −48.0000 −0.111540
\(58\) 0 0
\(59\) −324.000 −0.714936 −0.357468 0.933925i \(-0.616360\pi\)
−0.357468 + 0.933925i \(0.616360\pi\)
\(60\) 0 0
\(61\) 186.000 0.390408 0.195204 0.980763i \(-0.437463\pi\)
0.195204 + 0.980763i \(0.437463\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −50.0000 −0.0954113
\(66\) 0 0
\(67\) 156.000 0.284454 0.142227 0.989834i \(-0.454574\pi\)
0.142227 + 0.989834i \(0.454574\pi\)
\(68\) 0 0
\(69\) 416.000 0.725805
\(70\) 0 0
\(71\) −360.000 −0.601748 −0.300874 0.953664i \(-0.597278\pi\)
−0.300874 + 0.953664i \(0.597278\pi\)
\(72\) 0 0
\(73\) 102.000 0.163537 0.0817685 0.996651i \(-0.473943\pi\)
0.0817685 + 0.996651i \(0.473943\pi\)
\(74\) 0 0
\(75\) 100.000 0.153960
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −912.000 −1.29884 −0.649418 0.760432i \(-0.724987\pi\)
−0.649418 + 0.760432i \(0.724987\pi\)
\(80\) 0 0
\(81\) −311.000 −0.426612
\(82\) 0 0
\(83\) −1068.00 −1.41239 −0.706194 0.708018i \(-0.749589\pi\)
−0.706194 + 0.708018i \(0.749589\pi\)
\(84\) 0 0
\(85\) −70.0000 −0.0893243
\(86\) 0 0
\(87\) −488.000 −0.601369
\(88\) 0 0
\(89\) 1590.00 1.89370 0.946852 0.321669i \(-0.104244\pi\)
0.946852 + 0.321669i \(0.104244\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −896.000 −0.999042
\(94\) 0 0
\(95\) 60.0000 0.0647986
\(96\) 0 0
\(97\) −866.000 −0.906484 −0.453242 0.891387i \(-0.649733\pi\)
−0.453242 + 0.891387i \(0.649733\pi\)
\(98\) 0 0
\(99\) −220.000 −0.223342
\(100\) 0 0
\(101\) −702.000 −0.691600 −0.345800 0.938308i \(-0.612392\pi\)
−0.345800 + 0.938308i \(0.612392\pi\)
\(102\) 0 0
\(103\) 296.000 0.283163 0.141581 0.989927i \(-0.454781\pi\)
0.141581 + 0.989927i \(0.454781\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −44.0000 −0.0397537 −0.0198768 0.999802i \(-0.506327\pi\)
−0.0198768 + 0.999802i \(0.506327\pi\)
\(108\) 0 0
\(109\) −650.000 −0.571181 −0.285590 0.958352i \(-0.592190\pi\)
−0.285590 + 0.958352i \(0.592190\pi\)
\(110\) 0 0
\(111\) 632.000 0.540421
\(112\) 0 0
\(113\) −942.000 −0.784212 −0.392106 0.919920i \(-0.628253\pi\)
−0.392106 + 0.919920i \(0.628253\pi\)
\(114\) 0 0
\(115\) −520.000 −0.421654
\(116\) 0 0
\(117\) −110.000 −0.0869188
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −931.000 −0.699474
\(122\) 0 0
\(123\) −1512.00 −1.10839
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 736.000 0.514248 0.257124 0.966378i \(-0.417225\pi\)
0.257124 + 0.966378i \(0.417225\pi\)
\(128\) 0 0
\(129\) 1616.00 1.10295
\(130\) 0 0
\(131\) −924.000 −0.616261 −0.308131 0.951344i \(-0.599703\pi\)
−0.308131 + 0.951344i \(0.599703\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 760.000 0.484521
\(136\) 0 0
\(137\) 474.000 0.295595 0.147798 0.989018i \(-0.452782\pi\)
0.147798 + 0.989018i \(0.452782\pi\)
\(138\) 0 0
\(139\) −1012.00 −0.617530 −0.308765 0.951138i \(-0.599916\pi\)
−0.308765 + 0.951138i \(0.599916\pi\)
\(140\) 0 0
\(141\) −448.000 −0.267577
\(142\) 0 0
\(143\) 200.000 0.116957
\(144\) 0 0
\(145\) 610.000 0.349364
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 302.000 0.166046 0.0830228 0.996548i \(-0.473543\pi\)
0.0830228 + 0.996548i \(0.473543\pi\)
\(150\) 0 0
\(151\) −2104.00 −1.13391 −0.566957 0.823747i \(-0.691880\pi\)
−0.566957 + 0.823747i \(0.691880\pi\)
\(152\) 0 0
\(153\) −154.000 −0.0813736
\(154\) 0 0
\(155\) 1120.00 0.580391
\(156\) 0 0
\(157\) −1190.00 −0.604919 −0.302460 0.953162i \(-0.597808\pi\)
−0.302460 + 0.953162i \(0.597808\pi\)
\(158\) 0 0
\(159\) 1080.00 0.538677
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −1732.00 −0.832274 −0.416137 0.909302i \(-0.636616\pi\)
−0.416137 + 0.909302i \(0.636616\pi\)
\(164\) 0 0
\(165\) −400.000 −0.188727
\(166\) 0 0
\(167\) −2264.00 −1.04906 −0.524532 0.851391i \(-0.675760\pi\)
−0.524532 + 0.851391i \(0.675760\pi\)
\(168\) 0 0
\(169\) −2097.00 −0.954483
\(170\) 0 0
\(171\) 132.000 0.0590309
\(172\) 0 0
\(173\) 1066.00 0.468477 0.234238 0.972179i \(-0.424740\pi\)
0.234238 + 0.972179i \(0.424740\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −1296.00 −0.550358
\(178\) 0 0
\(179\) −2356.00 −0.983775 −0.491887 0.870659i \(-0.663693\pi\)
−0.491887 + 0.870659i \(0.663693\pi\)
\(180\) 0 0
\(181\) −2158.00 −0.886204 −0.443102 0.896471i \(-0.646122\pi\)
−0.443102 + 0.896471i \(0.646122\pi\)
\(182\) 0 0
\(183\) 744.000 0.300536
\(184\) 0 0
\(185\) −790.000 −0.313957
\(186\) 0 0
\(187\) 280.000 0.109495
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2688.00 −1.01831 −0.509154 0.860675i \(-0.670042\pi\)
−0.509154 + 0.860675i \(0.670042\pi\)
\(192\) 0 0
\(193\) −4414.00 −1.64625 −0.823126 0.567859i \(-0.807772\pi\)
−0.823126 + 0.567859i \(0.807772\pi\)
\(194\) 0 0
\(195\) −200.000 −0.0734477
\(196\) 0 0
\(197\) 3774.00 1.36491 0.682453 0.730930i \(-0.260913\pi\)
0.682453 + 0.730930i \(0.260913\pi\)
\(198\) 0 0
\(199\) −664.000 −0.236531 −0.118266 0.992982i \(-0.537733\pi\)
−0.118266 + 0.992982i \(0.537733\pi\)
\(200\) 0 0
\(201\) 624.000 0.218973
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 1890.00 0.643919
\(206\) 0 0
\(207\) −1144.00 −0.384123
\(208\) 0 0
\(209\) −240.000 −0.0794313
\(210\) 0 0
\(211\) 1260.00 0.411099 0.205550 0.978647i \(-0.434102\pi\)
0.205550 + 0.978647i \(0.434102\pi\)
\(212\) 0 0
\(213\) −1440.00 −0.463226
\(214\) 0 0
\(215\) −2020.00 −0.640757
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 408.000 0.125891
\(220\) 0 0
\(221\) 140.000 0.0426128
\(222\) 0 0
\(223\) 1152.00 0.345936 0.172968 0.984927i \(-0.444664\pi\)
0.172968 + 0.984927i \(0.444664\pi\)
\(224\) 0 0
\(225\) −275.000 −0.0814815
\(226\) 0 0
\(227\) −2588.00 −0.756703 −0.378352 0.925662i \(-0.623509\pi\)
−0.378352 + 0.925662i \(0.623509\pi\)
\(228\) 0 0
\(229\) −766.000 −0.221042 −0.110521 0.993874i \(-0.535252\pi\)
−0.110521 + 0.993874i \(0.535252\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6138.00 1.72581 0.862905 0.505366i \(-0.168643\pi\)
0.862905 + 0.505366i \(0.168643\pi\)
\(234\) 0 0
\(235\) 560.000 0.155448
\(236\) 0 0
\(237\) −3648.00 −0.999844
\(238\) 0 0
\(239\) 3856.00 1.04361 0.521807 0.853063i \(-0.325258\pi\)
0.521807 + 0.853063i \(0.325258\pi\)
\(240\) 0 0
\(241\) −2578.00 −0.689060 −0.344530 0.938775i \(-0.611962\pi\)
−0.344530 + 0.938775i \(0.611962\pi\)
\(242\) 0 0
\(243\) 2860.00 0.755017
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −120.000 −0.0309126
\(248\) 0 0
\(249\) −4272.00 −1.08726
\(250\) 0 0
\(251\) 1404.00 0.353067 0.176533 0.984295i \(-0.443512\pi\)
0.176533 + 0.984295i \(0.443512\pi\)
\(252\) 0 0
\(253\) 2080.00 0.516871
\(254\) 0 0
\(255\) −280.000 −0.0687619
\(256\) 0 0
\(257\) −2946.00 −0.715044 −0.357522 0.933905i \(-0.616378\pi\)
−0.357522 + 0.933905i \(0.616378\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 1342.00 0.318267
\(262\) 0 0
\(263\) −3080.00 −0.722133 −0.361066 0.932540i \(-0.617587\pi\)
−0.361066 + 0.932540i \(0.617587\pi\)
\(264\) 0 0
\(265\) −1350.00 −0.312943
\(266\) 0 0
\(267\) 6360.00 1.45777
\(268\) 0 0
\(269\) −2294.00 −0.519954 −0.259977 0.965615i \(-0.583715\pi\)
−0.259977 + 0.965615i \(0.583715\pi\)
\(270\) 0 0
\(271\) 3728.00 0.835645 0.417823 0.908529i \(-0.362793\pi\)
0.417823 + 0.908529i \(0.362793\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 500.000 0.109640
\(276\) 0 0
\(277\) 2734.00 0.593033 0.296516 0.955028i \(-0.404175\pi\)
0.296516 + 0.955028i \(0.404175\pi\)
\(278\) 0 0
\(279\) 2464.00 0.528731
\(280\) 0 0
\(281\) 1034.00 0.219513 0.109757 0.993958i \(-0.464993\pi\)
0.109757 + 0.993958i \(0.464993\pi\)
\(282\) 0 0
\(283\) 5180.00 1.08805 0.544027 0.839068i \(-0.316899\pi\)
0.544027 + 0.839068i \(0.316899\pi\)
\(284\) 0 0
\(285\) 240.000 0.0498820
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −4717.00 −0.960106
\(290\) 0 0
\(291\) −3464.00 −0.697812
\(292\) 0 0
\(293\) −7934.00 −1.58194 −0.790971 0.611853i \(-0.790424\pi\)
−0.790971 + 0.611853i \(0.790424\pi\)
\(294\) 0 0
\(295\) 1620.00 0.319729
\(296\) 0 0
\(297\) −3040.00 −0.593935
\(298\) 0 0
\(299\) 1040.00 0.201153
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −2808.00 −0.532394
\(304\) 0 0
\(305\) −930.000 −0.174596
\(306\) 0 0
\(307\) 3444.00 0.640259 0.320129 0.947374i \(-0.396274\pi\)
0.320129 + 0.947374i \(0.396274\pi\)
\(308\) 0 0
\(309\) 1184.00 0.217979
\(310\) 0 0
\(311\) −7656.00 −1.39592 −0.697961 0.716135i \(-0.745909\pi\)
−0.697961 + 0.716135i \(0.745909\pi\)
\(312\) 0 0
\(313\) 3798.00 0.685865 0.342932 0.939360i \(-0.388580\pi\)
0.342932 + 0.939360i \(0.388580\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 6822.00 1.20871 0.604356 0.796714i \(-0.293430\pi\)
0.604356 + 0.796714i \(0.293430\pi\)
\(318\) 0 0
\(319\) −2440.00 −0.428256
\(320\) 0 0
\(321\) −176.000 −0.0306024
\(322\) 0 0
\(323\) −168.000 −0.0289405
\(324\) 0 0
\(325\) 250.000 0.0426692
\(326\) 0 0
\(327\) −2600.00 −0.439695
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −6572.00 −1.09133 −0.545664 0.838004i \(-0.683723\pi\)
−0.545664 + 0.838004i \(0.683723\pi\)
\(332\) 0 0
\(333\) −1738.00 −0.286011
\(334\) 0 0
\(335\) −780.000 −0.127212
\(336\) 0 0
\(337\) −11022.0 −1.78162 −0.890811 0.454374i \(-0.849863\pi\)
−0.890811 + 0.454374i \(0.849863\pi\)
\(338\) 0 0
\(339\) −3768.00 −0.603686
\(340\) 0 0
\(341\) −4480.00 −0.711453
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −2080.00 −0.324590
\(346\) 0 0
\(347\) −10908.0 −1.68753 −0.843764 0.536715i \(-0.819665\pi\)
−0.843764 + 0.536715i \(0.819665\pi\)
\(348\) 0 0
\(349\) 12058.0 1.84943 0.924713 0.380664i \(-0.124305\pi\)
0.924713 + 0.380664i \(0.124305\pi\)
\(350\) 0 0
\(351\) −1520.00 −0.231144
\(352\) 0 0
\(353\) −1570.00 −0.236721 −0.118361 0.992971i \(-0.537764\pi\)
−0.118361 + 0.992971i \(0.537764\pi\)
\(354\) 0 0
\(355\) 1800.00 0.269110
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 120.000 0.0176417 0.00882083 0.999961i \(-0.497192\pi\)
0.00882083 + 0.999961i \(0.497192\pi\)
\(360\) 0 0
\(361\) −6715.00 −0.979006
\(362\) 0 0
\(363\) −3724.00 −0.538455
\(364\) 0 0
\(365\) −510.000 −0.0731359
\(366\) 0 0
\(367\) −4336.00 −0.616723 −0.308362 0.951269i \(-0.599781\pi\)
−0.308362 + 0.951269i \(0.599781\pi\)
\(368\) 0 0
\(369\) 4158.00 0.586604
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 7758.00 1.07693 0.538464 0.842649i \(-0.319005\pi\)
0.538464 + 0.842649i \(0.319005\pi\)
\(374\) 0 0
\(375\) −500.000 −0.0688530
\(376\) 0 0
\(377\) −1220.00 −0.166666
\(378\) 0 0
\(379\) 10660.0 1.44477 0.722384 0.691492i \(-0.243046\pi\)
0.722384 + 0.691492i \(0.243046\pi\)
\(380\) 0 0
\(381\) 2944.00 0.395868
\(382\) 0 0
\(383\) 14304.0 1.90836 0.954178 0.299240i \(-0.0967331\pi\)
0.954178 + 0.299240i \(0.0967331\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −4444.00 −0.583724
\(388\) 0 0
\(389\) −11970.0 −1.56016 −0.780081 0.625678i \(-0.784822\pi\)
−0.780081 + 0.625678i \(0.784822\pi\)
\(390\) 0 0
\(391\) 1456.00 0.188320
\(392\) 0 0
\(393\) −3696.00 −0.474398
\(394\) 0 0
\(395\) 4560.00 0.580857
\(396\) 0 0
\(397\) 4106.00 0.519079 0.259539 0.965733i \(-0.416429\pi\)
0.259539 + 0.965733i \(0.416429\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3790.00 −0.471979 −0.235989 0.971756i \(-0.575833\pi\)
−0.235989 + 0.971756i \(0.575833\pi\)
\(402\) 0 0
\(403\) −2240.00 −0.276879
\(404\) 0 0
\(405\) 1555.00 0.190787
\(406\) 0 0
\(407\) 3160.00 0.384854
\(408\) 0 0
\(409\) 13366.0 1.61591 0.807954 0.589246i \(-0.200575\pi\)
0.807954 + 0.589246i \(0.200575\pi\)
\(410\) 0 0
\(411\) 1896.00 0.227549
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 5340.00 0.631639
\(416\) 0 0
\(417\) −4048.00 −0.475375
\(418\) 0 0
\(419\) −6524.00 −0.760664 −0.380332 0.924850i \(-0.624190\pi\)
−0.380332 + 0.924850i \(0.624190\pi\)
\(420\) 0 0
\(421\) −2978.00 −0.344748 −0.172374 0.985032i \(-0.555144\pi\)
−0.172374 + 0.985032i \(0.555144\pi\)
\(422\) 0 0
\(423\) 1232.00 0.141612
\(424\) 0 0
\(425\) 350.000 0.0399470
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 800.000 0.0900335
\(430\) 0 0
\(431\) 15760.0 1.76133 0.880664 0.473741i \(-0.157097\pi\)
0.880664 + 0.473741i \(0.157097\pi\)
\(432\) 0 0
\(433\) −10322.0 −1.14560 −0.572799 0.819696i \(-0.694142\pi\)
−0.572799 + 0.819696i \(0.694142\pi\)
\(434\) 0 0
\(435\) 2440.00 0.268940
\(436\) 0 0
\(437\) −1248.00 −0.136613
\(438\) 0 0
\(439\) 344.000 0.0373991 0.0186996 0.999825i \(-0.494047\pi\)
0.0186996 + 0.999825i \(0.494047\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −252.000 −0.0270268 −0.0135134 0.999909i \(-0.504302\pi\)
−0.0135134 + 0.999909i \(0.504302\pi\)
\(444\) 0 0
\(445\) −7950.00 −0.846890
\(446\) 0 0
\(447\) 1208.00 0.127822
\(448\) 0 0
\(449\) −11966.0 −1.25771 −0.628854 0.777524i \(-0.716475\pi\)
−0.628854 + 0.777524i \(0.716475\pi\)
\(450\) 0 0
\(451\) −7560.00 −0.789327
\(452\) 0 0
\(453\) −8416.00 −0.872888
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −15846.0 −1.62198 −0.810990 0.585060i \(-0.801071\pi\)
−0.810990 + 0.585060i \(0.801071\pi\)
\(458\) 0 0
\(459\) −2128.00 −0.216398
\(460\) 0 0
\(461\) −5430.00 −0.548591 −0.274295 0.961645i \(-0.588445\pi\)
−0.274295 + 0.961645i \(0.588445\pi\)
\(462\) 0 0
\(463\) 8912.00 0.894548 0.447274 0.894397i \(-0.352395\pi\)
0.447274 + 0.894397i \(0.352395\pi\)
\(464\) 0 0
\(465\) 4480.00 0.446785
\(466\) 0 0
\(467\) 11028.0 1.09275 0.546376 0.837540i \(-0.316007\pi\)
0.546376 + 0.837540i \(0.316007\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −4760.00 −0.465667
\(472\) 0 0
\(473\) 8080.00 0.785452
\(474\) 0 0
\(475\) −300.000 −0.0289788
\(476\) 0 0
\(477\) −2970.00 −0.285088
\(478\) 0 0
\(479\) −5856.00 −0.558596 −0.279298 0.960204i \(-0.590102\pi\)
−0.279298 + 0.960204i \(0.590102\pi\)
\(480\) 0 0
\(481\) 1580.00 0.149775
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4330.00 0.405392
\(486\) 0 0
\(487\) 10264.0 0.955044 0.477522 0.878620i \(-0.341535\pi\)
0.477522 + 0.878620i \(0.341535\pi\)
\(488\) 0 0
\(489\) −6928.00 −0.640685
\(490\) 0 0
\(491\) 2804.00 0.257725 0.128862 0.991663i \(-0.458867\pi\)
0.128862 + 0.991663i \(0.458867\pi\)
\(492\) 0 0
\(493\) −1708.00 −0.156033
\(494\) 0 0
\(495\) 1100.00 0.0998815
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 8716.00 0.781927 0.390964 0.920406i \(-0.372142\pi\)
0.390964 + 0.920406i \(0.372142\pi\)
\(500\) 0 0
\(501\) −9056.00 −0.807569
\(502\) 0 0
\(503\) −2504.00 −0.221964 −0.110982 0.993822i \(-0.535400\pi\)
−0.110982 + 0.993822i \(0.535400\pi\)
\(504\) 0 0
\(505\) 3510.00 0.309293
\(506\) 0 0
\(507\) −8388.00 −0.734762
\(508\) 0 0
\(509\) −17094.0 −1.48856 −0.744281 0.667866i \(-0.767208\pi\)
−0.744281 + 0.667866i \(0.767208\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 1824.00 0.156982
\(514\) 0 0
\(515\) −1480.00 −0.126634
\(516\) 0 0
\(517\) −2240.00 −0.190551
\(518\) 0 0
\(519\) 4264.00 0.360634
\(520\) 0 0
\(521\) −9882.00 −0.830976 −0.415488 0.909599i \(-0.636389\pi\)
−0.415488 + 0.909599i \(0.636389\pi\)
\(522\) 0 0
\(523\) 7532.00 0.629735 0.314867 0.949136i \(-0.398040\pi\)
0.314867 + 0.949136i \(0.398040\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3136.00 −0.259215
\(528\) 0 0
\(529\) −1351.00 −0.111038
\(530\) 0 0
\(531\) 3564.00 0.291270
\(532\) 0 0
\(533\) −3780.00 −0.307186
\(534\) 0 0
\(535\) 220.000 0.0177784
\(536\) 0 0
\(537\) −9424.00 −0.757310
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −17338.0 −1.37785 −0.688927 0.724831i \(-0.741918\pi\)
−0.688927 + 0.724831i \(0.741918\pi\)
\(542\) 0 0
\(543\) −8632.00 −0.682200
\(544\) 0 0
\(545\) 3250.00 0.255440
\(546\) 0 0
\(547\) 764.000 0.0597190 0.0298595 0.999554i \(-0.490494\pi\)
0.0298595 + 0.999554i \(0.490494\pi\)
\(548\) 0 0
\(549\) −2046.00 −0.159055
\(550\) 0 0
\(551\) 1464.00 0.113191
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −3160.00 −0.241684
\(556\) 0 0
\(557\) −2442.00 −0.185765 −0.0928823 0.995677i \(-0.529608\pi\)
−0.0928823 + 0.995677i \(0.529608\pi\)
\(558\) 0 0
\(559\) 4040.00 0.305678
\(560\) 0 0
\(561\) 1120.00 0.0842895
\(562\) 0 0
\(563\) −8972.00 −0.671625 −0.335812 0.941929i \(-0.609011\pi\)
−0.335812 + 0.941929i \(0.609011\pi\)
\(564\) 0 0
\(565\) 4710.00 0.350710
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 8682.00 0.639663 0.319832 0.947474i \(-0.396374\pi\)
0.319832 + 0.947474i \(0.396374\pi\)
\(570\) 0 0
\(571\) 15524.0 1.13776 0.568878 0.822422i \(-0.307377\pi\)
0.568878 + 0.822422i \(0.307377\pi\)
\(572\) 0 0
\(573\) −10752.0 −0.783894
\(574\) 0 0
\(575\) 2600.00 0.188570
\(576\) 0 0
\(577\) 19774.0 1.42669 0.713347 0.700811i \(-0.247178\pi\)
0.713347 + 0.700811i \(0.247178\pi\)
\(578\) 0 0
\(579\) −17656.0 −1.26729
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 5400.00 0.383611
\(584\) 0 0
\(585\) 550.000 0.0388713
\(586\) 0 0
\(587\) 6700.00 0.471105 0.235552 0.971862i \(-0.424310\pi\)
0.235552 + 0.971862i \(0.424310\pi\)
\(588\) 0 0
\(589\) 2688.00 0.188043
\(590\) 0 0
\(591\) 15096.0 1.05070
\(592\) 0 0
\(593\) 1294.00 0.0896091 0.0448046 0.998996i \(-0.485733\pi\)
0.0448046 + 0.998996i \(0.485733\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −2656.00 −0.182082
\(598\) 0 0
\(599\) 19720.0 1.34514 0.672569 0.740035i \(-0.265191\pi\)
0.672569 + 0.740035i \(0.265191\pi\)
\(600\) 0 0
\(601\) −21450.0 −1.45585 −0.727923 0.685659i \(-0.759514\pi\)
−0.727923 + 0.685659i \(0.759514\pi\)
\(602\) 0 0
\(603\) −1716.00 −0.115889
\(604\) 0 0
\(605\) 4655.00 0.312814
\(606\) 0 0
\(607\) 19264.0 1.28814 0.644071 0.764966i \(-0.277244\pi\)
0.644071 + 0.764966i \(0.277244\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1120.00 −0.0741577
\(612\) 0 0
\(613\) 13150.0 0.866433 0.433217 0.901290i \(-0.357379\pi\)
0.433217 + 0.901290i \(0.357379\pi\)
\(614\) 0 0
\(615\) 7560.00 0.495689
\(616\) 0 0
\(617\) −15238.0 −0.994261 −0.497130 0.867676i \(-0.665613\pi\)
−0.497130 + 0.867676i \(0.665613\pi\)
\(618\) 0 0
\(619\) −23764.0 −1.54306 −0.771531 0.636191i \(-0.780509\pi\)
−0.771531 + 0.636191i \(0.780509\pi\)
\(620\) 0 0
\(621\) −15808.0 −1.02150
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) −960.000 −0.0611463
\(628\) 0 0
\(629\) 2212.00 0.140220
\(630\) 0 0
\(631\) −2008.00 −0.126683 −0.0633417 0.997992i \(-0.520176\pi\)
−0.0633417 + 0.997992i \(0.520176\pi\)
\(632\) 0 0
\(633\) 5040.00 0.316464
\(634\) 0 0
\(635\) −3680.00 −0.229978
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 3960.00 0.245157
\(640\) 0 0
\(641\) 13058.0 0.804618 0.402309 0.915504i \(-0.368208\pi\)
0.402309 + 0.915504i \(0.368208\pi\)
\(642\) 0 0
\(643\) −24188.0 −1.48349 −0.741743 0.670684i \(-0.766001\pi\)
−0.741743 + 0.670684i \(0.766001\pi\)
\(644\) 0 0
\(645\) −8080.00 −0.493255
\(646\) 0 0
\(647\) −6648.00 −0.403956 −0.201978 0.979390i \(-0.564737\pi\)
−0.201978 + 0.979390i \(0.564737\pi\)
\(648\) 0 0
\(649\) −6480.00 −0.391930
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 9814.00 0.588134 0.294067 0.955785i \(-0.404991\pi\)
0.294067 + 0.955785i \(0.404991\pi\)
\(654\) 0 0
\(655\) 4620.00 0.275601
\(656\) 0 0
\(657\) −1122.00 −0.0666262
\(658\) 0 0
\(659\) 26540.0 1.56882 0.784409 0.620243i \(-0.212966\pi\)
0.784409 + 0.620243i \(0.212966\pi\)
\(660\) 0 0
\(661\) 1330.00 0.0782617 0.0391309 0.999234i \(-0.487541\pi\)
0.0391309 + 0.999234i \(0.487541\pi\)
\(662\) 0 0
\(663\) 560.000 0.0328033
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −12688.0 −0.736554
\(668\) 0 0
\(669\) 4608.00 0.266301
\(670\) 0 0
\(671\) 3720.00 0.214022
\(672\) 0 0
\(673\) −17950.0 −1.02812 −0.514058 0.857756i \(-0.671858\pi\)
−0.514058 + 0.857756i \(0.671858\pi\)
\(674\) 0 0
\(675\) −3800.00 −0.216685
\(676\) 0 0
\(677\) −23742.0 −1.34783 −0.673914 0.738810i \(-0.735388\pi\)
−0.673914 + 0.738810i \(0.735388\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −10352.0 −0.582510
\(682\) 0 0
\(683\) 6356.00 0.356084 0.178042 0.984023i \(-0.443024\pi\)
0.178042 + 0.984023i \(0.443024\pi\)
\(684\) 0 0
\(685\) −2370.00 −0.132194
\(686\) 0 0
\(687\) −3064.00 −0.170159
\(688\) 0 0
\(689\) 2700.00 0.149291
\(690\) 0 0
\(691\) 3156.00 0.173748 0.0868740 0.996219i \(-0.472312\pi\)
0.0868740 + 0.996219i \(0.472312\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 5060.00 0.276168
\(696\) 0 0
\(697\) −5292.00 −0.287588
\(698\) 0 0
\(699\) 24552.0 1.32853
\(700\) 0 0
\(701\) −18330.0 −0.987610 −0.493805 0.869573i \(-0.664394\pi\)
−0.493805 + 0.869573i \(0.664394\pi\)
\(702\) 0 0
\(703\) −1896.00 −0.101720
\(704\) 0 0
\(705\) 2240.00 0.119664
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 19070.0 1.01014 0.505070 0.863079i \(-0.331467\pi\)
0.505070 + 0.863079i \(0.331467\pi\)
\(710\) 0 0
\(711\) 10032.0 0.529155
\(712\) 0 0
\(713\) −23296.0 −1.22362
\(714\) 0 0
\(715\) −1000.00 −0.0523047
\(716\) 0 0
\(717\) 15424.0 0.803375
\(718\) 0 0
\(719\) 4176.00 0.216604 0.108302 0.994118i \(-0.465459\pi\)
0.108302 + 0.994118i \(0.465459\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −10312.0 −0.530439
\(724\) 0 0
\(725\) −3050.00 −0.156240
\(726\) 0 0
\(727\) 10520.0 0.536678 0.268339 0.963324i \(-0.413525\pi\)
0.268339 + 0.963324i \(0.413525\pi\)
\(728\) 0 0
\(729\) 19837.0 1.00782
\(730\) 0 0
\(731\) 5656.00 0.286176
\(732\) 0 0
\(733\) 6874.00 0.346381 0.173190 0.984888i \(-0.444592\pi\)
0.173190 + 0.984888i \(0.444592\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3120.00 0.155939
\(738\) 0 0
\(739\) 11804.0 0.587574 0.293787 0.955871i \(-0.405084\pi\)
0.293787 + 0.955871i \(0.405084\pi\)
\(740\) 0 0
\(741\) −480.000 −0.0237965
\(742\) 0 0
\(743\) −20648.0 −1.01952 −0.509759 0.860317i \(-0.670265\pi\)
−0.509759 + 0.860317i \(0.670265\pi\)
\(744\) 0 0
\(745\) −1510.00 −0.0742579
\(746\) 0 0
\(747\) 11748.0 0.575417
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 1232.00 0.0598619 0.0299310 0.999552i \(-0.490471\pi\)
0.0299310 + 0.999552i \(0.490471\pi\)
\(752\) 0 0
\(753\) 5616.00 0.271791
\(754\) 0 0
\(755\) 10520.0 0.507102
\(756\) 0 0
\(757\) −11250.0 −0.540143 −0.270071 0.962840i \(-0.587047\pi\)
−0.270071 + 0.962840i \(0.587047\pi\)
\(758\) 0 0
\(759\) 8320.00 0.397888
\(760\) 0 0
\(761\) −14698.0 −0.700134 −0.350067 0.936725i \(-0.613841\pi\)
−0.350067 + 0.936725i \(0.613841\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 770.000 0.0363914
\(766\) 0 0
\(767\) −3240.00 −0.152529
\(768\) 0 0
\(769\) 30014.0 1.40745 0.703727 0.710470i \(-0.251518\pi\)
0.703727 + 0.710470i \(0.251518\pi\)
\(770\) 0 0
\(771\) −11784.0 −0.550441
\(772\) 0 0
\(773\) 34018.0 1.58285 0.791425 0.611267i \(-0.209340\pi\)
0.791425 + 0.611267i \(0.209340\pi\)
\(774\) 0 0
\(775\) −5600.00 −0.259559
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 4536.00 0.208625
\(780\) 0 0
\(781\) −7200.00 −0.329880
\(782\) 0 0
\(783\) 18544.0 0.846371
\(784\) 0 0
\(785\) 5950.00 0.270528
\(786\) 0 0
\(787\) 18516.0 0.838658 0.419329 0.907834i \(-0.362265\pi\)
0.419329 + 0.907834i \(0.362265\pi\)
\(788\) 0 0
\(789\) −12320.0 −0.555898
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 1860.00 0.0832920
\(794\) 0 0
\(795\) −5400.00 −0.240903
\(796\) 0 0
\(797\) 38618.0 1.71634 0.858168 0.513369i \(-0.171603\pi\)
0.858168 + 0.513369i \(0.171603\pi\)
\(798\) 0 0
\(799\) −1568.00 −0.0694266
\(800\) 0 0
\(801\) −17490.0 −0.771509
\(802\) 0 0
\(803\) 2040.00 0.0896514
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −9176.00 −0.400261
\(808\) 0 0
\(809\) 19514.0 0.848054 0.424027 0.905650i \(-0.360616\pi\)
0.424027 + 0.905650i \(0.360616\pi\)
\(810\) 0 0
\(811\) 31020.0 1.34311 0.671553 0.740956i \(-0.265627\pi\)
0.671553 + 0.740956i \(0.265627\pi\)
\(812\) 0 0
\(813\) 14912.0 0.643280
\(814\) 0 0
\(815\) 8660.00 0.372204
\(816\) 0 0
\(817\) −4848.00 −0.207601
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 3726.00 0.158390 0.0791951 0.996859i \(-0.474765\pi\)
0.0791951 + 0.996859i \(0.474765\pi\)
\(822\) 0 0
\(823\) 32904.0 1.39363 0.696817 0.717249i \(-0.254599\pi\)
0.696817 + 0.717249i \(0.254599\pi\)
\(824\) 0 0
\(825\) 2000.00 0.0844013
\(826\) 0 0
\(827\) −39868.0 −1.67636 −0.838178 0.545397i \(-0.816379\pi\)
−0.838178 + 0.545397i \(0.816379\pi\)
\(828\) 0 0
\(829\) 26810.0 1.12322 0.561610 0.827402i \(-0.310182\pi\)
0.561610 + 0.827402i \(0.310182\pi\)
\(830\) 0 0
\(831\) 10936.0 0.456517
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 11320.0 0.469155
\(836\) 0 0
\(837\) 34048.0 1.40606
\(838\) 0 0
\(839\) 37096.0 1.52646 0.763228 0.646130i \(-0.223613\pi\)
0.763228 + 0.646130i \(0.223613\pi\)
\(840\) 0 0
\(841\) −9505.00 −0.389725
\(842\) 0 0
\(843\) 4136.00 0.168982
\(844\) 0 0
\(845\) 10485.0 0.426858
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 20720.0 0.837584
\(850\) 0 0
\(851\) 16432.0 0.661906
\(852\) 0 0
\(853\) 14386.0 0.577453 0.288726 0.957412i \(-0.406768\pi\)
0.288726 + 0.957412i \(0.406768\pi\)
\(854\) 0 0
\(855\) −660.000 −0.0263994
\(856\) 0 0
\(857\) 118.000 0.00470339 0.00235169 0.999997i \(-0.499251\pi\)
0.00235169 + 0.999997i \(0.499251\pi\)
\(858\) 0 0
\(859\) 25116.0 0.997610 0.498805 0.866714i \(-0.333772\pi\)
0.498805 + 0.866714i \(0.333772\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −11776.0 −0.464496 −0.232248 0.972657i \(-0.574608\pi\)
−0.232248 + 0.972657i \(0.574608\pi\)
\(864\) 0 0
\(865\) −5330.00 −0.209509
\(866\) 0 0
\(867\) −18868.0 −0.739090
\(868\) 0 0
\(869\) −18240.0 −0.712025
\(870\) 0 0
\(871\) 1560.00 0.0606872
\(872\) 0 0
\(873\) 9526.00 0.369308
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 24694.0 0.950806 0.475403 0.879768i \(-0.342302\pi\)
0.475403 + 0.879768i \(0.342302\pi\)
\(878\) 0 0
\(879\) −31736.0 −1.21778
\(880\) 0 0
\(881\) −32850.0 −1.25624 −0.628118 0.778118i \(-0.716175\pi\)
−0.628118 + 0.778118i \(0.716175\pi\)
\(882\) 0 0
\(883\) 47340.0 1.80421 0.902105 0.431516i \(-0.142021\pi\)
0.902105 + 0.431516i \(0.142021\pi\)
\(884\) 0 0
\(885\) 6480.00 0.246127
\(886\) 0 0
\(887\) −1992.00 −0.0754057 −0.0377028 0.999289i \(-0.512004\pi\)
−0.0377028 + 0.999289i \(0.512004\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −6220.00 −0.233870
\(892\) 0 0
\(893\) 1344.00 0.0503642
\(894\) 0 0
\(895\) 11780.0 0.439958
\(896\) 0 0
\(897\) 4160.00 0.154848
\(898\) 0 0
\(899\) 27328.0 1.01384
\(900\) 0 0
\(901\) 3780.00 0.139767
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 10790.0 0.396322
\(906\) 0 0
\(907\) −13516.0 −0.494809 −0.247404 0.968912i \(-0.579578\pi\)
−0.247404 + 0.968912i \(0.579578\pi\)
\(908\) 0 0
\(909\) 7722.00 0.281763
\(910\) 0 0
\(911\) −3408.00 −0.123943 −0.0619715 0.998078i \(-0.519739\pi\)
−0.0619715 + 0.998078i \(0.519739\pi\)
\(912\) 0 0
\(913\) −21360.0 −0.774275
\(914\) 0 0
\(915\) −3720.00 −0.134404
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 39240.0 1.40850 0.704248 0.709954i \(-0.251284\pi\)
0.704248 + 0.709954i \(0.251284\pi\)
\(920\) 0 0
\(921\) 13776.0 0.492871
\(922\) 0 0
\(923\) −3600.00 −0.128381
\(924\) 0 0
\(925\) 3950.00 0.140406
\(926\) 0 0
\(927\) −3256.00 −0.115363
\(928\) 0 0
\(929\) −21922.0 −0.774206 −0.387103 0.922036i \(-0.626524\pi\)
−0.387103 + 0.922036i \(0.626524\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −30624.0 −1.07458
\(934\) 0 0
\(935\) −1400.00 −0.0489678
\(936\) 0 0
\(937\) −186.000 −0.00648490 −0.00324245 0.999995i \(-0.501032\pi\)
−0.00324245 + 0.999995i \(0.501032\pi\)
\(938\) 0 0
\(939\) 15192.0 0.527979
\(940\) 0 0
\(941\) 18282.0 0.633343 0.316672 0.948535i \(-0.397435\pi\)
0.316672 + 0.948535i \(0.397435\pi\)
\(942\) 0 0
\(943\) −39312.0 −1.35756
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −16980.0 −0.582657 −0.291328 0.956623i \(-0.594097\pi\)
−0.291328 + 0.956623i \(0.594097\pi\)
\(948\) 0 0
\(949\) 1020.00 0.0348900
\(950\) 0 0
\(951\) 27288.0 0.930467
\(952\) 0 0
\(953\) −44310.0 −1.50613 −0.753065 0.657946i \(-0.771425\pi\)
−0.753065 + 0.657946i \(0.771425\pi\)
\(954\) 0 0
\(955\) 13440.0 0.455401
\(956\) 0 0
\(957\) −9760.00 −0.329672
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 20385.0 0.684267
\(962\) 0 0
\(963\) 484.000 0.0161959
\(964\) 0 0
\(965\) 22070.0 0.736226
\(966\) 0 0
\(967\) 51512.0 1.71304 0.856522 0.516110i \(-0.172620\pi\)
0.856522 + 0.516110i \(0.172620\pi\)
\(968\) 0 0
\(969\) −672.000 −0.0222784
\(970\) 0 0
\(971\) −1844.00 −0.0609442 −0.0304721 0.999536i \(-0.509701\pi\)
−0.0304721 + 0.999536i \(0.509701\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 1000.00 0.0328468
\(976\) 0 0
\(977\) 34162.0 1.11867 0.559334 0.828942i \(-0.311057\pi\)
0.559334 + 0.828942i \(0.311057\pi\)
\(978\) 0 0
\(979\) 31800.0 1.03813
\(980\) 0 0
\(981\) 7150.00 0.232703
\(982\) 0 0
\(983\) 216.000 0.00700847 0.00350424 0.999994i \(-0.498885\pi\)
0.00350424 + 0.999994i \(0.498885\pi\)
\(984\) 0 0
\(985\) −18870.0 −0.610404
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 42016.0 1.35089
\(990\) 0 0
\(991\) 52832.0 1.69351 0.846753 0.531987i \(-0.178554\pi\)
0.846753 + 0.531987i \(0.178554\pi\)
\(992\) 0 0
\(993\) −26288.0 −0.840105
\(994\) 0 0
\(995\) 3320.00 0.105780
\(996\) 0 0
\(997\) −5054.00 −0.160543 −0.0802717 0.996773i \(-0.525579\pi\)
−0.0802717 + 0.996773i \(0.525579\pi\)
\(998\) 0 0
\(999\) −24016.0 −0.760593
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1960.4.a.g.1.1 1
7.6 odd 2 280.4.a.a.1.1 1
28.27 even 2 560.4.a.l.1.1 1
35.13 even 4 1400.4.g.e.449.1 2
35.27 even 4 1400.4.g.e.449.2 2
35.34 odd 2 1400.4.a.g.1.1 1
56.13 odd 2 2240.4.a.z.1.1 1
56.27 even 2 2240.4.a.l.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
280.4.a.a.1.1 1 7.6 odd 2
560.4.a.l.1.1 1 28.27 even 2
1400.4.a.g.1.1 1 35.34 odd 2
1400.4.g.e.449.1 2 35.13 even 4
1400.4.g.e.449.2 2 35.27 even 4
1960.4.a.g.1.1 1 1.1 even 1 trivial
2240.4.a.l.1.1 1 56.27 even 2
2240.4.a.z.1.1 1 56.13 odd 2