Properties

Label 144.2.k.b.109.1
Level $144$
Weight $2$
Character 144.109
Analytic conductor $1.150$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [144,2,Mod(37,144)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(144, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("144.37");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 144.k (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.14984578911\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.18939904.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 14x^{6} - 28x^{5} + 43x^{4} - 44x^{3} + 30x^{2} - 12x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 48)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 109.1
Root \(0.500000 + 0.0297061i\) of defining polynomial
Character \(\chi\) \(=\) 144.109
Dual form 144.2.k.b.37.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.874559 - 1.11137i) q^{2} +(-0.470294 + 1.94392i) q^{4} +(0.334904 - 0.334904i) q^{5} -4.55765i q^{7} +(2.57172 - 1.17740i) q^{8} +(-0.665096 - 0.0793096i) q^{10} +(2.47363 - 2.47363i) q^{11} +(-0.0594122 - 0.0594122i) q^{13} +(-5.06524 + 3.98593i) q^{14} +(-3.55765 - 1.82843i) q^{16} -3.61706 q^{17} +(2.55765 + 2.55765i) q^{19} +(0.493523 + 0.808530i) q^{20} +(-4.91245 - 0.585786i) q^{22} -2.82843i q^{23} +4.77568i q^{25} +(-0.0140696 + 0.117988i) q^{26} +(8.85970 + 2.14343i) q^{28} +(5.16333 + 5.16333i) q^{29} -0.557647 q^{31} +(1.07931 + 5.55294i) q^{32} +(3.16333 + 4.01990i) q^{34} +(-1.52637 - 1.52637i) q^{35} +(4.38607 - 4.38607i) q^{37} +(0.605684 - 5.07931i) q^{38} +(0.466962 - 1.25559i) q^{40} +9.27391i q^{41} +(-1.61040 + 1.61040i) q^{43} +(3.64520 + 5.97186i) q^{44} +(-3.14343 + 2.47363i) q^{46} -2.82843 q^{47} -13.7721 q^{49} +(5.30755 - 4.17661i) q^{50} +(0.143434 - 0.0875513i) q^{52} +(0.493523 - 0.493523i) q^{53} -1.65685i q^{55} +(-5.36618 - 11.7210i) q^{56} +(1.22274 - 10.2540i) q^{58} +(-4.00000 + 4.00000i) q^{59} +(2.72922 + 2.72922i) q^{61} +(0.487695 + 0.619753i) q^{62} +(5.22746 - 6.05588i) q^{64} -0.0397948 q^{65} +(3.77568 + 3.77568i) q^{67} +(1.70108 - 7.03127i) q^{68} +(-0.361465 + 3.03127i) q^{70} -9.11529i q^{71} -0.541560i q^{73} +(-8.71044 - 1.03868i) q^{74} +(-6.17471 + 3.76901i) q^{76} +(-11.2739 - 11.2739i) q^{77} -10.9937 q^{79} +(-1.80382 + 0.579123i) q^{80} +(10.3068 - 8.11058i) q^{82} +(10.6417 + 10.6417i) q^{83} +(-1.21137 + 1.21137i) q^{85} +(3.19813 + 0.381362i) q^{86} +(3.44902 - 9.27391i) q^{88} -14.6533i q^{89} +(-0.270780 + 0.270780i) q^{91} +(5.49824 + 1.33019i) q^{92} +(2.47363 + 3.14343i) q^{94} +1.71313 q^{95} +4.31724 q^{97} +(12.0446 + 15.3060i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{4} + 12 q^{8} - 8 q^{10} + 8 q^{11} - 12 q^{14} - 8 q^{19} - 16 q^{20} - 20 q^{26} + 8 q^{28} + 16 q^{29} + 24 q^{31} - 24 q^{35} - 16 q^{37} + 8 q^{38} + 16 q^{40} - 8 q^{43} + 40 q^{44} - 8 q^{46}+ \cdots + 40 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/144\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.874559 1.11137i −0.618406 0.785858i
\(3\) 0 0
\(4\) −0.470294 + 1.94392i −0.235147 + 0.971960i
\(5\) 0.334904 0.334904i 0.149774 0.149774i −0.628243 0.778017i \(-0.716226\pi\)
0.778017 + 0.628243i \(0.216226\pi\)
\(6\) 0 0
\(7\) 4.55765i 1.72263i −0.508072 0.861314i \(-0.669642\pi\)
0.508072 0.861314i \(-0.330358\pi\)
\(8\) 2.57172 1.17740i 0.909239 0.416274i
\(9\) 0 0
\(10\) −0.665096 0.0793096i −0.210322 0.0250799i
\(11\) 2.47363 2.47363i 0.745826 0.745826i −0.227866 0.973692i \(-0.573175\pi\)
0.973692 + 0.227866i \(0.0731749\pi\)
\(12\) 0 0
\(13\) −0.0594122 0.0594122i −0.0164780 0.0164780i 0.698820 0.715298i \(-0.253709\pi\)
−0.715298 + 0.698820i \(0.753709\pi\)
\(14\) −5.06524 + 3.98593i −1.35374 + 1.06528i
\(15\) 0 0
\(16\) −3.55765 1.82843i −0.889412 0.457107i
\(17\) −3.61706 −0.877266 −0.438633 0.898666i \(-0.644537\pi\)
−0.438633 + 0.898666i \(0.644537\pi\)
\(18\) 0 0
\(19\) 2.55765 + 2.55765i 0.586765 + 0.586765i 0.936754 0.349989i \(-0.113815\pi\)
−0.349989 + 0.936754i \(0.613815\pi\)
\(20\) 0.493523 + 0.808530i 0.110355 + 0.180793i
\(21\) 0 0
\(22\) −4.91245 0.585786i −1.04734 0.124890i
\(23\) 2.82843i 0.589768i −0.955533 0.294884i \(-0.904719\pi\)
0.955533 0.294884i \(-0.0952810\pi\)
\(24\) 0 0
\(25\) 4.77568i 0.955136i
\(26\) −0.0140696 + 0.117988i −0.00275927 + 0.0231394i
\(27\) 0 0
\(28\) 8.85970 + 2.14343i 1.67433 + 0.405071i
\(29\) 5.16333 + 5.16333i 0.958807 + 0.958807i 0.999184 0.0403780i \(-0.0128562\pi\)
−0.0403780 + 0.999184i \(0.512856\pi\)
\(30\) 0 0
\(31\) −0.557647 −0.100156 −0.0500782 0.998745i \(-0.515947\pi\)
−0.0500782 + 0.998745i \(0.515947\pi\)
\(32\) 1.07931 + 5.55294i 0.190797 + 0.981630i
\(33\) 0 0
\(34\) 3.16333 + 4.01990i 0.542507 + 0.689407i
\(35\) −1.52637 1.52637i −0.258004 0.258004i
\(36\) 0 0
\(37\) 4.38607 4.38607i 0.721066 0.721066i −0.247756 0.968822i \(-0.579693\pi\)
0.968822 + 0.247756i \(0.0796932\pi\)
\(38\) 0.605684 5.07931i 0.0982549 0.823973i
\(39\) 0 0
\(40\) 0.466962 1.25559i 0.0738332 0.198527i
\(41\) 9.27391i 1.44834i 0.689620 + 0.724171i \(0.257777\pi\)
−0.689620 + 0.724171i \(0.742223\pi\)
\(42\) 0 0
\(43\) −1.61040 + 1.61040i −0.245583 + 0.245583i −0.819155 0.573572i \(-0.805557\pi\)
0.573572 + 0.819155i \(0.305557\pi\)
\(44\) 3.64520 + 5.97186i 0.549534 + 0.900292i
\(45\) 0 0
\(46\) −3.14343 + 2.47363i −0.463474 + 0.364716i
\(47\) −2.82843 −0.412568 −0.206284 0.978492i \(-0.566137\pi\)
−0.206284 + 0.978492i \(0.566137\pi\)
\(48\) 0 0
\(49\) −13.7721 −1.96745
\(50\) 5.30755 4.17661i 0.750601 0.590662i
\(51\) 0 0
\(52\) 0.143434 0.0875513i 0.0198907 0.0121412i
\(53\) 0.493523 0.493523i 0.0677906 0.0677906i −0.672399 0.740189i \(-0.734736\pi\)
0.740189 + 0.672399i \(0.234736\pi\)
\(54\) 0 0
\(55\) 1.65685i 0.223410i
\(56\) −5.36618 11.7210i −0.717086 1.56628i
\(57\) 0 0
\(58\) 1.22274 10.2540i 0.160554 1.34642i
\(59\) −4.00000 + 4.00000i −0.520756 + 0.520756i −0.917800 0.397044i \(-0.870036\pi\)
0.397044 + 0.917800i \(0.370036\pi\)
\(60\) 0 0
\(61\) 2.72922 + 2.72922i 0.349441 + 0.349441i 0.859901 0.510460i \(-0.170525\pi\)
−0.510460 + 0.859901i \(0.670525\pi\)
\(62\) 0.487695 + 0.619753i 0.0619374 + 0.0787088i
\(63\) 0 0
\(64\) 5.22746 6.05588i 0.653432 0.756985i
\(65\) −0.0397948 −0.00493593
\(66\) 0 0
\(67\) 3.77568 + 3.77568i 0.461273 + 0.461273i 0.899072 0.437800i \(-0.144242\pi\)
−0.437800 + 0.899072i \(0.644242\pi\)
\(68\) 1.70108 7.03127i 0.206286 0.852667i
\(69\) 0 0
\(70\) −0.361465 + 3.03127i −0.0432033 + 0.362306i
\(71\) 9.11529i 1.08179i −0.841091 0.540893i \(-0.818086\pi\)
0.841091 0.540893i \(-0.181914\pi\)
\(72\) 0 0
\(73\) 0.541560i 0.0633848i −0.999498 0.0316924i \(-0.989910\pi\)
0.999498 0.0316924i \(-0.0100897\pi\)
\(74\) −8.71044 1.03868i −1.01257 0.120744i
\(75\) 0 0
\(76\) −6.17471 + 3.76901i −0.708287 + 0.432336i
\(77\) −11.2739 11.2739i −1.28478 1.28478i
\(78\) 0 0
\(79\) −10.9937 −1.23689 −0.618445 0.785828i \(-0.712237\pi\)
−0.618445 + 0.785828i \(0.712237\pi\)
\(80\) −1.80382 + 0.579123i −0.201673 + 0.0647479i
\(81\) 0 0
\(82\) 10.3068 8.11058i 1.13819 0.895664i
\(83\) 10.6417 + 10.6417i 1.16807 + 1.16807i 0.982660 + 0.185415i \(0.0593628\pi\)
0.185415 + 0.982660i \(0.440637\pi\)
\(84\) 0 0
\(85\) −1.21137 + 1.21137i −0.131391 + 0.131391i
\(86\) 3.19813 + 0.381362i 0.344864 + 0.0411234i
\(87\) 0 0
\(88\) 3.44902 9.27391i 0.367666 0.988603i
\(89\) 14.6533i 1.55325i −0.629964 0.776625i \(-0.716930\pi\)
0.629964 0.776625i \(-0.283070\pi\)
\(90\) 0 0
\(91\) −0.270780 + 0.270780i −0.0283854 + 0.0283854i
\(92\) 5.49824 + 1.33019i 0.573231 + 0.138682i
\(93\) 0 0
\(94\) 2.47363 + 3.14343i 0.255135 + 0.324220i
\(95\) 1.71313 0.175764
\(96\) 0 0
\(97\) 4.31724 0.438349 0.219175 0.975686i \(-0.429664\pi\)
0.219175 + 0.975686i \(0.429664\pi\)
\(98\) 12.0446 + 15.3060i 1.21668 + 1.54614i
\(99\) 0 0
\(100\) −9.28354 2.24597i −0.928354 0.224597i
\(101\) 0.453728 0.453728i 0.0451477 0.0451477i −0.684173 0.729320i \(-0.739836\pi\)
0.729320 + 0.684173i \(0.239836\pi\)
\(102\) 0 0
\(103\) 1.33686i 0.131724i 0.997829 + 0.0658622i \(0.0209798\pi\)
−0.997829 + 0.0658622i \(0.979020\pi\)
\(104\) −0.222743 0.0828394i −0.0218418 0.00812307i
\(105\) 0 0
\(106\) −0.980103 0.116873i −0.0951960 0.0113517i
\(107\) −6.06255 + 6.06255i −0.586088 + 0.586088i −0.936570 0.350481i \(-0.886018\pi\)
0.350481 + 0.936570i \(0.386018\pi\)
\(108\) 0 0
\(109\) 5.71627 + 5.71627i 0.547519 + 0.547519i 0.925722 0.378203i \(-0.123458\pi\)
−0.378203 + 0.925722i \(0.623458\pi\)
\(110\) −1.84138 + 1.44902i −0.175569 + 0.138158i
\(111\) 0 0
\(112\) −8.33333 + 16.2145i −0.787425 + 1.53213i
\(113\) 9.55136 0.898516 0.449258 0.893402i \(-0.351688\pi\)
0.449258 + 0.893402i \(0.351688\pi\)
\(114\) 0 0
\(115\) −0.947252 0.947252i −0.0883317 0.0883317i
\(116\) −12.4654 + 7.60882i −1.15738 + 0.706461i
\(117\) 0 0
\(118\) 7.94372 + 0.947252i 0.731279 + 0.0872016i
\(119\) 16.4853i 1.51120i
\(120\) 0 0
\(121\) 1.23765i 0.112514i
\(122\) 0.646314 5.42004i 0.0585146 0.490707i
\(123\) 0 0
\(124\) 0.262258 1.08402i 0.0235515 0.0973480i
\(125\) 3.27391 + 3.27391i 0.292828 + 0.292828i
\(126\) 0 0
\(127\) 5.09921 0.452481 0.226241 0.974071i \(-0.427356\pi\)
0.226241 + 0.974071i \(0.427356\pi\)
\(128\) −11.3021 0.513421i −0.998970 0.0453804i
\(129\) 0 0
\(130\) 0.0348029 + 0.0442268i 0.00305241 + 0.00387894i
\(131\) −2.11882 2.11882i −0.185123 0.185123i 0.608461 0.793584i \(-0.291787\pi\)
−0.793584 + 0.608461i \(0.791787\pi\)
\(132\) 0 0
\(133\) 11.6569 11.6569i 1.01078 1.01078i
\(134\) 0.894129 7.49824i 0.0772410 0.647749i
\(135\) 0 0
\(136\) −9.30205 + 4.25873i −0.797644 + 0.365183i
\(137\) 3.37941i 0.288723i 0.989525 + 0.144361i \(0.0461127\pi\)
−0.989525 + 0.144361i \(0.953887\pi\)
\(138\) 0 0
\(139\) 5.88118 5.88118i 0.498835 0.498835i −0.412240 0.911075i \(-0.635254\pi\)
0.911075 + 0.412240i \(0.135254\pi\)
\(140\) 3.68499 2.24930i 0.311439 0.190101i
\(141\) 0 0
\(142\) −10.1305 + 7.97186i −0.850131 + 0.668984i
\(143\) −0.293927 −0.0245794
\(144\) 0 0
\(145\) 3.45844 0.287208
\(146\) −0.601874 + 0.473626i −0.0498115 + 0.0391975i
\(147\) 0 0
\(148\) 6.46343 + 10.5889i 0.531291 + 0.870404i
\(149\) 9.99176 9.99176i 0.818557 0.818557i −0.167342 0.985899i \(-0.553518\pi\)
0.985899 + 0.167342i \(0.0535185\pi\)
\(150\) 0 0
\(151\) 9.97685i 0.811905i 0.913894 + 0.405952i \(0.133060\pi\)
−0.913894 + 0.405952i \(0.866940\pi\)
\(152\) 9.58892 + 3.56617i 0.777764 + 0.289255i
\(153\) 0 0
\(154\) −2.66981 + 22.3892i −0.215139 + 1.80417i
\(155\) −0.186758 + 0.186758i −0.0150008 + 0.0150008i
\(156\) 0 0
\(157\) −16.1618 16.1618i −1.28985 1.28985i −0.934877 0.354971i \(-0.884491\pi\)
−0.354971 0.934877i \(-0.615509\pi\)
\(158\) 9.61465 + 12.2181i 0.764900 + 0.972020i
\(159\) 0 0
\(160\) 2.22117 + 1.49824i 0.175599 + 0.118446i
\(161\) −12.8910 −1.01595
\(162\) 0 0
\(163\) −7.50490 7.50490i −0.587829 0.587829i 0.349214 0.937043i \(-0.386449\pi\)
−0.937043 + 0.349214i \(0.886449\pi\)
\(164\) −18.0277 4.36147i −1.40773 0.340573i
\(165\) 0 0
\(166\) 2.52008 21.1336i 0.195596 1.64029i
\(167\) 5.83822i 0.451775i 0.974153 + 0.225888i \(0.0725282\pi\)
−0.974153 + 0.225888i \(0.927472\pi\)
\(168\) 0 0
\(169\) 12.9929i 0.999457i
\(170\) 2.40569 + 0.286867i 0.184508 + 0.0220017i
\(171\) 0 0
\(172\) −2.37312 3.88784i −0.180949 0.296445i
\(173\) 3.62530 + 3.62530i 0.275627 + 0.275627i 0.831360 0.555734i \(-0.187563\pi\)
−0.555734 + 0.831360i \(0.687563\pi\)
\(174\) 0 0
\(175\) 21.7659 1.64534
\(176\) −13.3231 + 4.27744i −1.00427 + 0.322424i
\(177\) 0 0
\(178\) −16.2853 + 12.8152i −1.22063 + 0.960539i
\(179\) −9.28334 9.28334i −0.693869 0.693869i 0.269212 0.963081i \(-0.413237\pi\)
−0.963081 + 0.269212i \(0.913237\pi\)
\(180\) 0 0
\(181\) −10.8316 + 10.8316i −0.805104 + 0.805104i −0.983888 0.178785i \(-0.942783\pi\)
0.178785 + 0.983888i \(0.442783\pi\)
\(182\) 0.537750 + 0.0641242i 0.0398607 + 0.00475320i
\(183\) 0 0
\(184\) −3.33019 7.27391i −0.245505 0.536240i
\(185\) 2.93783i 0.215993i
\(186\) 0 0
\(187\) −8.94725 + 8.94725i −0.654288 + 0.654288i
\(188\) 1.33019 5.49824i 0.0970142 0.401000i
\(189\) 0 0
\(190\) −1.49824 1.90393i −0.108693 0.138125i
\(191\) 8.63001 0.624446 0.312223 0.950009i \(-0.398926\pi\)
0.312223 + 0.950009i \(0.398926\pi\)
\(192\) 0 0
\(193\) 11.4514 0.824288 0.412144 0.911119i \(-0.364780\pi\)
0.412144 + 0.911119i \(0.364780\pi\)
\(194\) −3.77568 4.79806i −0.271078 0.344480i
\(195\) 0 0
\(196\) 6.47696 26.7720i 0.462640 1.91228i
\(197\) −7.48999 + 7.48999i −0.533640 + 0.533640i −0.921654 0.388014i \(-0.873161\pi\)
0.388014 + 0.921654i \(0.373161\pi\)
\(198\) 0 0
\(199\) 3.68000i 0.260868i −0.991457 0.130434i \(-0.958363\pi\)
0.991457 0.130434i \(-0.0416371\pi\)
\(200\) 5.62289 + 12.2817i 0.397598 + 0.868447i
\(201\) 0 0
\(202\) −0.901073 0.107449i −0.0633993 0.00756007i
\(203\) 23.5326 23.5326i 1.65167 1.65167i
\(204\) 0 0
\(205\) 3.10587 + 3.10587i 0.216923 + 0.216923i
\(206\) 1.48574 1.16916i 0.103517 0.0814592i
\(207\) 0 0
\(208\) 0.102737 + 0.319999i 0.00712351 + 0.0221879i
\(209\) 12.6533 0.875249
\(210\) 0 0
\(211\) 10.1188 + 10.1188i 0.696609 + 0.696609i 0.963677 0.267069i \(-0.0860551\pi\)
−0.267069 + 0.963677i \(0.586055\pi\)
\(212\) 0.727268 + 1.19147i 0.0499490 + 0.0818305i
\(213\) 0 0
\(214\) 12.0398 + 1.43569i 0.823023 + 0.0981417i
\(215\) 1.07866i 0.0735637i
\(216\) 0 0
\(217\) 2.54156i 0.172532i
\(218\) 1.35369 11.3521i 0.0916832 0.768862i
\(219\) 0 0
\(220\) 3.22079 + 0.779208i 0.217146 + 0.0525342i
\(221\) 0.214897 + 0.214897i 0.0144556 + 0.0144556i
\(222\) 0 0
\(223\) −4.86156 −0.325554 −0.162777 0.986663i \(-0.552045\pi\)
−0.162777 + 0.986663i \(0.552045\pi\)
\(224\) 25.3083 4.91911i 1.69098 0.328672i
\(225\) 0 0
\(226\) −8.35322 10.6151i −0.555648 0.706106i
\(227\) −10.6417 10.6417i −0.706312 0.706312i 0.259445 0.965758i \(-0.416460\pi\)
−0.965758 + 0.259445i \(0.916460\pi\)
\(228\) 0 0
\(229\) −20.1712 + 20.1712i −1.33295 + 1.33295i −0.430229 + 0.902720i \(0.641567\pi\)
−0.902720 + 0.430229i \(0.858433\pi\)
\(230\) −0.224321 + 1.88118i −0.0147913 + 0.124041i
\(231\) 0 0
\(232\) 19.3579 + 7.19932i 1.27091 + 0.472658i
\(233\) 13.5702i 0.889014i −0.895775 0.444507i \(-0.853379\pi\)
0.895775 0.444507i \(-0.146621\pi\)
\(234\) 0 0
\(235\) −0.947252 + 0.947252i −0.0617919 + 0.0617919i
\(236\) −5.89450 9.65685i −0.383699 0.628608i
\(237\) 0 0
\(238\) 18.3213 14.4173i 1.18759 0.934538i
\(239\) −29.3629 −1.89933 −0.949665 0.313267i \(-0.898576\pi\)
−0.949665 + 0.313267i \(0.898576\pi\)
\(240\) 0 0
\(241\) 24.0063 1.54638 0.773190 0.634175i \(-0.218660\pi\)
0.773190 + 0.634175i \(0.218660\pi\)
\(242\) −1.37549 + 1.08240i −0.0884197 + 0.0695791i
\(243\) 0 0
\(244\) −6.58892 + 4.02185i −0.421812 + 0.257473i
\(245\) −4.61235 + 4.61235i −0.294672 + 0.294672i
\(246\) 0 0
\(247\) 0.303911i 0.0193374i
\(248\) −1.43411 + 0.656574i −0.0910661 + 0.0416925i
\(249\) 0 0
\(250\) 0.775305 6.50176i 0.0490346 0.411208i
\(251\) −15.7570 + 15.7570i −0.994571 + 0.994571i −0.999985 0.00541463i \(-0.998276\pi\)
0.00541463 + 0.999985i \(0.498276\pi\)
\(252\) 0 0
\(253\) −6.99647 6.99647i −0.439864 0.439864i
\(254\) −4.45956 5.66711i −0.279817 0.355586i
\(255\) 0 0
\(256\) 9.31371 + 13.0098i 0.582107 + 0.813112i
\(257\) −8.66038 −0.540220 −0.270110 0.962829i \(-0.587060\pi\)
−0.270110 + 0.962829i \(0.587060\pi\)
\(258\) 0 0
\(259\) −19.9902 19.9902i −1.24213 1.24213i
\(260\) 0.0187152 0.0773578i 0.00116067 0.00479753i
\(261\) 0 0
\(262\) −0.501765 + 4.20784i −0.0309991 + 0.259961i
\(263\) 13.3208i 0.821394i −0.911772 0.410697i \(-0.865285\pi\)
0.911772 0.410697i \(-0.134715\pi\)
\(264\) 0 0
\(265\) 0.330566i 0.0203065i
\(266\) −23.1497 2.76049i −1.41940 0.169257i
\(267\) 0 0
\(268\) −9.11529 + 5.56394i −0.556805 + 0.339872i
\(269\) 11.6714 + 11.6714i 0.711616 + 0.711616i 0.966873 0.255257i \(-0.0821602\pi\)
−0.255257 + 0.966873i \(0.582160\pi\)
\(270\) 0 0
\(271\) −21.9769 −1.33500 −0.667499 0.744610i \(-0.732635\pi\)
−0.667499 + 0.744610i \(0.732635\pi\)
\(272\) 12.8682 + 6.61353i 0.780251 + 0.401004i
\(273\) 0 0
\(274\) 3.75578 2.95549i 0.226895 0.178548i
\(275\) 11.8132 + 11.8132i 0.712365 + 0.712365i
\(276\) 0 0
\(277\) −10.9504 + 10.9504i −0.657945 + 0.657945i −0.954893 0.296949i \(-0.904031\pi\)
0.296949 + 0.954893i \(0.404031\pi\)
\(278\) −11.6796 1.39274i −0.700496 0.0835309i
\(279\) 0 0
\(280\) −5.72256 2.12825i −0.341988 0.127187i
\(281\) 22.8910i 1.36556i 0.730624 + 0.682780i \(0.239229\pi\)
−0.730624 + 0.682780i \(0.760771\pi\)
\(282\) 0 0
\(283\) 4.48528 4.48528i 0.266622 0.266622i −0.561115 0.827738i \(-0.689628\pi\)
0.827738 + 0.561115i \(0.189628\pi\)
\(284\) 17.7194 + 4.28687i 1.05145 + 0.254379i
\(285\) 0 0
\(286\) 0.257057 + 0.326662i 0.0152001 + 0.0193159i
\(287\) 42.2672 2.49496
\(288\) 0 0
\(289\) −3.91688 −0.230405
\(290\) −3.02461 3.84361i −0.177611 0.225705i
\(291\) 0 0
\(292\) 1.05275 + 0.254692i 0.0616074 + 0.0149047i
\(293\) −21.6221 + 21.6221i −1.26318 + 1.26318i −0.313636 + 0.949543i \(0.601547\pi\)
−0.949543 + 0.313636i \(0.898453\pi\)
\(294\) 0 0
\(295\) 2.67923i 0.155991i
\(296\) 6.11557 16.4439i 0.355461 0.955783i
\(297\) 0 0
\(298\) −19.8429 2.36618i −1.14947 0.137069i
\(299\) −0.168043 + 0.168043i −0.00971818 + 0.00971818i
\(300\) 0 0
\(301\) 7.33962 + 7.33962i 0.423048 + 0.423048i
\(302\) 11.0880 8.72534i 0.638042 0.502087i
\(303\) 0 0
\(304\) −4.42274 13.7757i −0.253661 0.790089i
\(305\) 1.82805 0.104674
\(306\) 0 0
\(307\) −12.1118 12.1118i −0.691255 0.691255i 0.271253 0.962508i \(-0.412562\pi\)
−0.962508 + 0.271253i \(0.912562\pi\)
\(308\) 27.2176 16.6135i 1.55087 0.946644i
\(309\) 0 0
\(310\) 0.370889 + 0.0442268i 0.0210651 + 0.00251191i
\(311\) 26.8651i 1.52338i 0.647943 + 0.761689i \(0.275630\pi\)
−0.647943 + 0.761689i \(0.724370\pi\)
\(312\) 0 0
\(313\) 19.6890i 1.11289i 0.830885 + 0.556445i \(0.187835\pi\)
−0.830885 + 0.556445i \(0.812165\pi\)
\(314\) −3.82731 + 32.0961i −0.215988 + 1.81129i
\(315\) 0 0
\(316\) 5.17027 21.3709i 0.290851 1.20221i
\(317\) −21.3447 21.3447i −1.19884 1.19884i −0.974515 0.224323i \(-0.927983\pi\)
−0.224323 0.974515i \(-0.572017\pi\)
\(318\) 0 0
\(319\) 25.5443 1.43021
\(320\) −0.277444 3.77883i −0.0155096 0.211243i
\(321\) 0 0
\(322\) 11.2739 + 14.3267i 0.628271 + 0.798394i
\(323\) −9.25116 9.25116i −0.514748 0.514748i
\(324\) 0 0
\(325\) 0.283734 0.283734i 0.0157387 0.0157387i
\(326\) −1.77726 + 14.9042i −0.0984331 + 0.825468i
\(327\) 0 0
\(328\) 10.9191 + 23.8499i 0.602907 + 1.31689i
\(329\) 12.8910i 0.710702i
\(330\) 0 0
\(331\) 14.6926 14.6926i 0.807576 0.807576i −0.176690 0.984266i \(-0.556539\pi\)
0.984266 + 0.176690i \(0.0565391\pi\)
\(332\) −25.6913 + 15.6818i −1.40999 + 0.860653i
\(333\) 0 0
\(334\) 6.48844 5.10587i 0.355032 0.279381i
\(335\) 2.52898 0.138173
\(336\) 0 0
\(337\) −23.0098 −1.25342 −0.626712 0.779251i \(-0.715600\pi\)
−0.626712 + 0.779251i \(0.715600\pi\)
\(338\) −14.4400 + 11.3631i −0.785432 + 0.618071i
\(339\) 0 0
\(340\) −1.78510 2.92450i −0.0968108 0.158603i
\(341\) −1.37941 + 1.37941i −0.0746993 + 0.0746993i
\(342\) 0 0
\(343\) 30.8651i 1.66656i
\(344\) −2.24540 + 6.03756i −0.121064 + 0.325524i
\(345\) 0 0
\(346\) 0.858518 7.19960i 0.0461542 0.387053i
\(347\) 10.9026 10.9026i 0.585284 0.585284i −0.351067 0.936350i \(-0.614181\pi\)
0.936350 + 0.351067i \(0.114181\pi\)
\(348\) 0 0
\(349\) 20.0563 + 20.0563i 1.07359 + 1.07359i 0.997068 + 0.0765186i \(0.0243805\pi\)
0.0765186 + 0.997068i \(0.475620\pi\)
\(350\) −19.0355 24.1900i −1.01749 1.29301i
\(351\) 0 0
\(352\) 16.4057 + 11.0661i 0.874426 + 0.589824i
\(353\) 12.2117 0.649965 0.324983 0.945720i \(-0.394642\pi\)
0.324983 + 0.945720i \(0.394642\pi\)
\(354\) 0 0
\(355\) −3.05275 3.05275i −0.162023 0.162023i
\(356\) 28.4849 + 6.89137i 1.50970 + 0.365242i
\(357\) 0 0
\(358\) −2.19841 + 18.4361i −0.116190 + 0.974376i
\(359\) 33.4780i 1.76690i −0.468522 0.883452i \(-0.655214\pi\)
0.468522 0.883452i \(-0.344786\pi\)
\(360\) 0 0
\(361\) 5.91688i 0.311415i
\(362\) 21.5107 + 2.56505i 1.13058 + 0.134816i
\(363\) 0 0
\(364\) −0.399028 0.653720i −0.0209148 0.0342643i
\(365\) −0.181370 0.181370i −0.00949337 0.00949337i
\(366\) 0 0
\(367\) −0.702379 −0.0366639 −0.0183319 0.999832i \(-0.505836\pi\)
−0.0183319 + 0.999832i \(0.505836\pi\)
\(368\) −5.17157 + 10.0625i −0.269587 + 0.524546i
\(369\) 0 0
\(370\) −3.26502 + 2.56930i −0.169740 + 0.133572i
\(371\) −2.24930 2.24930i −0.116778 0.116778i
\(372\) 0 0
\(373\) 18.9598 18.9598i 0.981702 0.981702i −0.0181339 0.999836i \(-0.505773\pi\)
0.999836 + 0.0181339i \(0.00577250\pi\)
\(374\) 17.7686 + 2.11882i 0.918793 + 0.109562i
\(375\) 0 0
\(376\) −7.27391 + 3.33019i −0.375123 + 0.171742i
\(377\) 0.613530i 0.0315984i
\(378\) 0 0
\(379\) −1.77844 + 1.77844i −0.0913523 + 0.0913523i −0.751306 0.659954i \(-0.770576\pi\)
0.659954 + 0.751306i \(0.270576\pi\)
\(380\) −0.805676 + 3.33019i −0.0413303 + 0.170835i
\(381\) 0 0
\(382\) −7.54745 9.59115i −0.386161 0.490726i
\(383\) −25.4880 −1.30238 −0.651188 0.758916i \(-0.725729\pi\)
−0.651188 + 0.758916i \(0.725729\pi\)
\(384\) 0 0
\(385\) −7.55136 −0.384853
\(386\) −10.0149 12.7267i −0.509745 0.647774i
\(387\) 0 0
\(388\) −2.03037 + 8.39236i −0.103076 + 0.426058i
\(389\) 11.7049 11.7049i 0.593462 0.593462i −0.345103 0.938565i \(-0.612156\pi\)
0.938565 + 0.345103i \(0.112156\pi\)
\(390\) 0 0
\(391\) 10.2306i 0.517383i
\(392\) −35.4181 + 16.2153i −1.78888 + 0.818998i
\(393\) 0 0
\(394\) 14.8746 + 1.77373i 0.749372 + 0.0893591i
\(395\) −3.68184 + 3.68184i −0.185253 + 0.185253i
\(396\) 0 0
\(397\) −9.04646 9.04646i −0.454029 0.454029i 0.442661 0.896689i \(-0.354035\pi\)
−0.896689 + 0.442661i \(0.854035\pi\)
\(398\) −4.08985 + 3.21838i −0.205006 + 0.161323i
\(399\) 0 0
\(400\) 8.73198 16.9902i 0.436599 0.849509i
\(401\) 18.0853 0.903137 0.451568 0.892237i \(-0.350865\pi\)
0.451568 + 0.892237i \(0.350865\pi\)
\(402\) 0 0
\(403\) 0.0331311 + 0.0331311i 0.00165038 + 0.00165038i
\(404\) 0.668626 + 1.09540i 0.0332654 + 0.0544980i
\(405\) 0 0
\(406\) −46.7342 5.57283i −2.31938 0.276575i
\(407\) 21.6990i 1.07558i
\(408\) 0 0
\(409\) 25.2271i 1.24740i −0.781665 0.623699i \(-0.785629\pi\)
0.781665 0.623699i \(-0.214371\pi\)
\(410\) 0.735510 6.16804i 0.0363243 0.304618i
\(411\) 0 0
\(412\) −2.59874 0.628715i −0.128031 0.0309746i
\(413\) 18.2306 + 18.2306i 0.897069 + 0.897069i
\(414\) 0 0
\(415\) 7.12787 0.349894
\(416\) 0.265788 0.394036i 0.0130313 0.0193192i
\(417\) 0 0
\(418\) −11.0661 14.0625i −0.541259 0.687822i
\(419\) −7.25283 7.25283i −0.354324 0.354324i 0.507392 0.861716i \(-0.330610\pi\)
−0.861716 + 0.507392i \(0.830610\pi\)
\(420\) 0 0
\(421\) 2.39550 2.39550i 0.116749 0.116749i −0.646318 0.763068i \(-0.723692\pi\)
0.763068 + 0.646318i \(0.223692\pi\)
\(422\) 2.39627 20.0953i 0.116648 0.978223i
\(423\) 0 0
\(424\) 0.688127 1.85028i 0.0334184 0.0898574i
\(425\) 17.2739i 0.837908i
\(426\) 0 0
\(427\) 12.4388 12.4388i 0.601957 0.601957i
\(428\) −8.93392 14.6363i −0.431838 0.707471i
\(429\) 0 0
\(430\) 1.19879 0.943348i 0.0578107 0.0454923i
\(431\) 4.42454 0.213123 0.106561 0.994306i \(-0.466016\pi\)
0.106561 + 0.994306i \(0.466016\pi\)
\(432\) 0 0
\(433\) 7.31371 0.351474 0.175737 0.984437i \(-0.443769\pi\)
0.175737 + 0.984437i \(0.443769\pi\)
\(434\) 2.82462 2.22274i 0.135586 0.106695i
\(435\) 0 0
\(436\) −13.8003 + 8.42364i −0.660914 + 0.403419i
\(437\) 7.23412 7.23412i 0.346055 0.346055i
\(438\) 0 0
\(439\) 29.6533i 1.41527i −0.706576 0.707637i \(-0.749761\pi\)
0.706576 0.707637i \(-0.250239\pi\)
\(440\) −1.95078 4.26096i −0.0929999 0.203133i
\(441\) 0 0
\(442\) 0.0508905 0.426771i 0.00242061 0.0202994i
\(443\) −10.3056 + 10.3056i −0.489633 + 0.489633i −0.908190 0.418557i \(-0.862536\pi\)
0.418557 + 0.908190i \(0.362536\pi\)
\(444\) 0 0
\(445\) −4.90746 4.90746i −0.232636 0.232636i
\(446\) 4.25172 + 5.40300i 0.201325 + 0.255839i
\(447\) 0 0
\(448\) −27.6006 23.8249i −1.30400 1.12562i
\(449\) 6.48844 0.306208 0.153104 0.988210i \(-0.451073\pi\)
0.153104 + 0.988210i \(0.451073\pi\)
\(450\) 0 0
\(451\) 22.9402 + 22.9402i 1.08021 + 1.08021i
\(452\) −4.49195 + 18.5671i −0.211283 + 0.873322i
\(453\) 0 0
\(454\) −2.52008 + 21.1336i −0.118273 + 0.991850i
\(455\) 0.181370i 0.00850278i
\(456\) 0 0
\(457\) 9.00353i 0.421167i −0.977576 0.210584i \(-0.932464\pi\)
0.977576 0.210584i \(-0.0675364\pi\)
\(458\) 40.0586 + 4.77679i 1.87181 + 0.223205i
\(459\) 0 0
\(460\) 2.28687 1.39589i 0.106626 0.0650839i
\(461\) −14.6218 14.6218i −0.681004 0.681004i 0.279223 0.960226i \(-0.409923\pi\)
−0.960226 + 0.279223i \(0.909923\pi\)
\(462\) 0 0
\(463\) −18.6435 −0.866437 −0.433219 0.901289i \(-0.642622\pi\)
−0.433219 + 0.901289i \(0.642622\pi\)
\(464\) −8.92854 27.8101i −0.414497 1.29105i
\(465\) 0 0
\(466\) −15.0815 + 11.8679i −0.698639 + 0.549772i
\(467\) 23.5138 + 23.5138i 1.08809 + 1.08809i 0.995725 + 0.0923633i \(0.0294421\pi\)
0.0923633 + 0.995725i \(0.470558\pi\)
\(468\) 0 0
\(469\) 17.2082 17.2082i 0.794601 0.794601i
\(470\) 1.88118 + 0.224321i 0.0867722 + 0.0103472i
\(471\) 0 0
\(472\) −5.57726 + 14.9965i −0.256714 + 0.690268i
\(473\) 7.96703i 0.366325i
\(474\) 0 0
\(475\) −12.2145 + 12.2145i −0.560440 + 0.560440i
\(476\) −32.0461 7.75293i −1.46883 0.355355i
\(477\) 0 0
\(478\) 25.6796 + 32.6331i 1.17456 + 1.49260i
\(479\) 1.08864 0.0497412 0.0248706 0.999691i \(-0.492083\pi\)
0.0248706 + 0.999691i \(0.492083\pi\)
\(480\) 0 0
\(481\) −0.521173 −0.0237634
\(482\) −20.9949 26.6799i −0.956291 1.21524i
\(483\) 0 0
\(484\) 2.40589 + 0.582059i 0.109359 + 0.0264572i
\(485\) 1.44586 1.44586i 0.0656531 0.0656531i
\(486\) 0 0
\(487\) 35.3298i 1.60095i −0.599369 0.800473i \(-0.704582\pi\)
0.599369 0.800473i \(-0.295418\pi\)
\(488\) 10.2322 + 3.80540i 0.463188 + 0.172262i
\(489\) 0 0
\(490\) 9.15980 + 1.09226i 0.413798 + 0.0493434i
\(491\) 12.8910 12.8910i 0.581761 0.581761i −0.353626 0.935387i \(-0.615051\pi\)
0.935387 + 0.353626i \(0.115051\pi\)
\(492\) 0 0
\(493\) −18.6761 18.6761i −0.841128 0.841128i
\(494\) −0.337758 + 0.265788i −0.0151964 + 0.0119584i
\(495\) 0 0
\(496\) 1.98391 + 1.01962i 0.0890803 + 0.0457822i
\(497\) −41.5443 −1.86352
\(498\) 0 0
\(499\) 14.3798 + 14.3798i 0.643728 + 0.643728i 0.951470 0.307742i \(-0.0995734\pi\)
−0.307742 + 0.951470i \(0.599573\pi\)
\(500\) −7.90393 + 4.82452i −0.353474 + 0.215759i
\(501\) 0 0
\(502\) 31.2922 + 3.73145i 1.39664 + 0.166543i
\(503\) 30.2969i 1.35087i 0.737420 + 0.675435i \(0.236044\pi\)
−0.737420 + 0.675435i \(0.763956\pi\)
\(504\) 0 0
\(505\) 0.303911i 0.0135239i
\(506\) −1.65685 + 13.8945i −0.0736562 + 0.617686i
\(507\) 0 0
\(508\) −2.39813 + 9.91245i −0.106400 + 0.439794i
\(509\) −10.5825 10.5825i −0.469063 0.469063i 0.432548 0.901611i \(-0.357615\pi\)
−0.901611 + 0.432548i \(0.857615\pi\)
\(510\) 0 0
\(511\) −2.46824 −0.109188
\(512\) 6.31333 21.7288i 0.279013 0.960287i
\(513\) 0 0
\(514\) 7.57401 + 9.62491i 0.334075 + 0.424536i
\(515\) 0.447718 + 0.447718i 0.0197288 + 0.0197288i
\(516\) 0 0
\(517\) −6.99647 + 6.99647i −0.307704 + 0.307704i
\(518\) −4.73393 + 39.6991i −0.207997 + 1.74428i
\(519\) 0 0
\(520\) −0.102341 + 0.0468544i −0.00448794 + 0.00205470i
\(521\) 24.9049i 1.09110i −0.838078 0.545551i \(-0.816320\pi\)
0.838078 0.545551i \(-0.183680\pi\)
\(522\) 0 0
\(523\) −12.9008 + 12.9008i −0.564112 + 0.564112i −0.930473 0.366361i \(-0.880604\pi\)
0.366361 + 0.930473i \(0.380604\pi\)
\(524\) 5.11529 3.12235i 0.223463 0.136401i
\(525\) 0 0
\(526\) −14.8043 + 11.6498i −0.645499 + 0.507955i
\(527\) 2.01704 0.0878638
\(528\) 0 0
\(529\) 15.0000 0.652174
\(530\) −0.367381 + 0.289099i −0.0159580 + 0.0125577i
\(531\) 0 0
\(532\) 17.1778 + 28.1421i 0.744754 + 1.22012i
\(533\) 0.550984 0.550984i 0.0238657 0.0238657i
\(534\) 0 0
\(535\) 4.06074i 0.175561i
\(536\) 14.1555 + 5.26449i 0.611423 + 0.227391i
\(537\) 0 0
\(538\) 2.76393 23.1785i 0.119161 0.999297i
\(539\) −34.0671 + 34.0671i −1.46738 + 1.46738i
\(540\) 0 0
\(541\) 18.2767 + 18.2767i 0.785776 + 0.785776i 0.980799 0.195023i \(-0.0624782\pi\)
−0.195023 + 0.980799i \(0.562478\pi\)
\(542\) 19.2200 + 24.4245i 0.825572 + 1.04912i
\(543\) 0 0
\(544\) −3.90393 20.0853i −0.167379 0.861150i
\(545\) 3.82880 0.164008
\(546\) 0 0
\(547\) 13.7355 + 13.7355i 0.587287 + 0.587287i 0.936896 0.349609i \(-0.113685\pi\)
−0.349609 + 0.936896i \(0.613685\pi\)
\(548\) −6.56930 1.58932i −0.280627 0.0678922i
\(549\) 0 0
\(550\) 2.79753 23.4603i 0.119287 1.00035i
\(551\) 26.4120i 1.12519i
\(552\) 0 0
\(553\) 50.1055i 2.13070i
\(554\) 21.7467 + 2.59319i 0.923929 + 0.110174i
\(555\) 0 0
\(556\) 8.66665 + 14.1984i 0.367548 + 0.602147i
\(557\) 27.5525 + 27.5525i 1.16744 + 1.16744i 0.982808 + 0.184631i \(0.0591089\pi\)
0.184631 + 0.982808i \(0.440891\pi\)
\(558\) 0 0
\(559\) 0.191354 0.00809342
\(560\) 2.63944 + 8.22117i 0.111537 + 0.347408i
\(561\) 0 0
\(562\) 25.4404 20.0195i 1.07314 0.844472i
\(563\) 19.8928 + 19.8928i 0.838383 + 0.838383i 0.988646 0.150263i \(-0.0480121\pi\)
−0.150263 + 0.988646i \(0.548012\pi\)
\(564\) 0 0
\(565\) 3.19879 3.19879i 0.134574 0.134574i
\(566\) −8.90746 1.06217i −0.374408 0.0446464i
\(567\) 0 0
\(568\) −10.7324 23.4420i −0.450320 0.983603i
\(569\) 13.4849i 0.565317i −0.959221 0.282658i \(-0.908784\pi\)
0.959221 0.282658i \(-0.0912163\pi\)
\(570\) 0 0
\(571\) −14.8284 + 14.8284i −0.620550 + 0.620550i −0.945672 0.325122i \(-0.894595\pi\)
0.325122 + 0.945672i \(0.394595\pi\)
\(572\) 0.138232 0.571371i 0.00577977 0.0238902i
\(573\) 0 0
\(574\) −36.9652 46.9746i −1.54290 1.96068i
\(575\) 13.5077 0.563308
\(576\) 0 0
\(577\) −11.6176 −0.483648 −0.241824 0.970320i \(-0.577746\pi\)
−0.241824 + 0.970320i \(0.577746\pi\)
\(578\) 3.42554 + 4.35311i 0.142484 + 0.181066i
\(579\) 0 0
\(580\) −1.62648 + 6.72293i −0.0675360 + 0.279154i
\(581\) 48.5010 48.5010i 2.01216 2.01216i
\(582\) 0 0
\(583\) 2.44158i 0.101120i
\(584\) −0.637633 1.39274i −0.0263854 0.0576319i
\(585\) 0 0
\(586\) 42.9401 + 5.12040i 1.77384 + 0.211522i
\(587\) 17.0268 17.0268i 0.702773 0.702773i −0.262232 0.965005i \(-0.584459\pi\)
0.965005 + 0.262232i \(0.0844585\pi\)
\(588\) 0 0
\(589\) −1.42627 1.42627i −0.0587682 0.0587682i
\(590\) 2.97762 2.34315i 0.122587 0.0964658i
\(591\) 0 0
\(592\) −23.6237 + 7.58449i −0.970929 + 0.311721i
\(593\) −41.5372 −1.70573 −0.852865 0.522132i \(-0.825137\pi\)
−0.852865 + 0.522132i \(0.825137\pi\)
\(594\) 0 0
\(595\) 5.52099 + 5.52099i 0.226338 + 0.226338i
\(596\) 14.7241 + 24.1222i 0.603123 + 0.988085i
\(597\) 0 0
\(598\) 0.333722 + 0.0397948i 0.0136469 + 0.00162733i
\(599\) 6.43160i 0.262788i 0.991330 + 0.131394i \(0.0419453\pi\)
−0.991330 + 0.131394i \(0.958055\pi\)
\(600\) 0 0
\(601\) 3.45844i 0.141073i 0.997509 + 0.0705364i \(0.0224711\pi\)
−0.997509 + 0.0705364i \(0.977529\pi\)
\(602\) 1.73812 14.5760i 0.0708403 0.594072i
\(603\) 0 0
\(604\) −19.3942 4.69205i −0.789139 0.190917i
\(605\) −0.414494 0.414494i −0.0168516 0.0168516i
\(606\) 0 0
\(607\) −30.1019 −1.22180 −0.610900 0.791708i \(-0.709192\pi\)
−0.610900 + 0.791708i \(0.709192\pi\)
\(608\) −11.4420 + 16.9629i −0.464033 + 0.687938i
\(609\) 0 0
\(610\) −1.59874 2.03165i −0.0647311 0.0822590i
\(611\) 0.168043 + 0.168043i 0.00679829 + 0.00679829i
\(612\) 0 0
\(613\) 2.50490 2.50490i 0.101172 0.101172i −0.654709 0.755881i \(-0.727209\pi\)
0.755881 + 0.654709i \(0.227209\pi\)
\(614\) −2.86822 + 24.0531i −0.115752 + 0.970705i
\(615\) 0 0
\(616\) −42.2672 15.7194i −1.70300 0.633353i
\(617\) 22.9098i 0.922315i 0.887318 + 0.461157i \(0.152566\pi\)
−0.887318 + 0.461157i \(0.847434\pi\)
\(618\) 0 0
\(619\) −28.6104 + 28.6104i −1.14995 + 1.14995i −0.163386 + 0.986562i \(0.552242\pi\)
−0.986562 + 0.163386i \(0.947758\pi\)
\(620\) −0.275212 0.450874i −0.0110528 0.0181076i
\(621\) 0 0
\(622\) 29.8571 23.4951i 1.19716 0.942067i
\(623\) −66.7847 −2.67567
\(624\) 0 0
\(625\) −21.6855 −0.867420
\(626\) 21.8818 17.2192i 0.874574 0.688218i
\(627\) 0 0
\(628\) 39.0179 23.8164i 1.55698 0.950377i
\(629\) −15.8647 + 15.8647i −0.632567 + 0.632567i
\(630\) 0 0
\(631\) 11.1851i 0.445270i −0.974902 0.222635i \(-0.928534\pi\)
0.974902 0.222635i \(-0.0714659\pi\)
\(632\) −28.2727 + 12.9440i −1.12463 + 0.514885i
\(633\) 0 0
\(634\) −5.05470 + 42.3891i −0.200748 + 1.68349i
\(635\) 1.70774 1.70774i 0.0677698 0.0677698i
\(636\) 0 0
\(637\) 0.818234 + 0.818234i 0.0324196 + 0.0324196i
\(638\) −22.3400 28.3892i −0.884449 1.12394i
\(639\) 0 0
\(640\) −3.95705 + 3.61316i −0.156416 + 0.142823i
\(641\) 6.69312 0.264362 0.132181 0.991226i \(-0.457802\pi\)
0.132181 + 0.991226i \(0.457802\pi\)
\(642\) 0 0
\(643\) −17.9410 17.9410i −0.707522 0.707522i 0.258491 0.966014i \(-0.416775\pi\)
−0.966014 + 0.258491i \(0.916775\pi\)
\(644\) 6.06255 25.0590i 0.238898 0.987464i
\(645\) 0 0
\(646\) −2.19079 + 18.3722i −0.0861957 + 0.722843i
\(647\) 6.72999i 0.264583i 0.991211 + 0.132292i \(0.0422335\pi\)
−0.991211 + 0.132292i \(0.957766\pi\)
\(648\) 0 0
\(649\) 19.7890i 0.776786i
\(650\) −0.563475 0.0671918i −0.0221013 0.00263548i
\(651\) 0 0
\(652\) 18.1184 11.0594i 0.709572 0.433120i
\(653\) −26.1731 26.1731i −1.02423 1.02423i −0.999699 0.0245347i \(-0.992190\pi\)
−0.0245347 0.999699i \(-0.507810\pi\)
\(654\) 0 0
\(655\) −1.41921 −0.0554529
\(656\) 16.9567 32.9933i 0.662047 1.28817i
\(657\) 0 0
\(658\) 14.3267 11.2739i 0.558511 0.439503i
\(659\) −13.9741 13.9741i −0.544353 0.544353i 0.380449 0.924802i \(-0.375770\pi\)
−0.924802 + 0.380449i \(0.875770\pi\)
\(660\) 0 0
\(661\) 11.9241 11.9241i 0.463794 0.463794i −0.436103 0.899897i \(-0.643642\pi\)
0.899897 + 0.436103i \(0.143642\pi\)
\(662\) −29.1784 3.47939i −1.13405 0.135230i
\(663\) 0 0
\(664\) 39.8969 + 14.8379i 1.54830 + 0.575820i
\(665\) 7.80785i 0.302776i
\(666\) 0 0
\(667\) 14.6041 14.6041i 0.565473 0.565473i
\(668\) −11.3490 2.74568i −0.439108 0.106234i
\(669\) 0 0
\(670\) −2.21174 2.81064i −0.0854470 0.108584i
\(671\) 13.5021 0.521244
\(672\) 0 0
\(673\) −37.3066 −1.43807 −0.719033 0.694976i \(-0.755415\pi\)
−0.719033 + 0.694976i \(0.755415\pi\)
\(674\) 20.1234 + 25.5724i 0.775125 + 0.985013i
\(675\) 0 0
\(676\) 25.2572 + 6.11050i 0.971432 + 0.235019i
\(677\) −0.447461 + 0.447461i −0.0171973 + 0.0171973i −0.715653 0.698456i \(-0.753871\pi\)
0.698456 + 0.715653i \(0.253871\pi\)
\(678\) 0 0
\(679\) 19.6764i 0.755113i
\(680\) −1.68903 + 4.54156i −0.0647713 + 0.174161i
\(681\) 0 0
\(682\) 2.73941 + 0.326662i 0.104898 + 0.0125085i
\(683\) 4.27521 4.27521i 0.163586 0.163586i −0.620567 0.784153i \(-0.713098\pi\)
0.784153 + 0.620567i \(0.213098\pi\)
\(684\) 0 0
\(685\) 1.13178 + 1.13178i 0.0432430 + 0.0432430i
\(686\) 34.3026 26.9933i 1.30968 1.03061i
\(687\) 0 0
\(688\) 8.67371 2.78473i 0.330682 0.106167i
\(689\) −0.0586426 −0.00223410
\(690\) 0 0
\(691\) 20.0786 + 20.0786i 0.763827 + 0.763827i 0.977012 0.213185i \(-0.0683836\pi\)
−0.213185 + 0.977012i \(0.568384\pi\)
\(692\) −8.75225 + 5.34234i −0.332711 + 0.203085i
\(693\) 0 0
\(694\) −21.6519 2.58188i −0.821893 0.0980069i
\(695\) 3.93926i 0.149425i
\(696\) 0 0
\(697\) 33.5443i 1.27058i
\(698\) 4.74958 39.8303i 0.179774 1.50760i
\(699\) 0 0
\(700\) −10.2364 + 42.3111i −0.386898 + 1.59921i
\(701\) 10.4467 + 10.4467i 0.394565 + 0.394565i 0.876311 0.481746i \(-0.159997\pi\)
−0.481746 + 0.876311i \(0.659997\pi\)
\(702\) 0 0
\(703\) 22.4361 0.846192
\(704\) −2.04922 27.9108i −0.0772328 1.05193i
\(705\) 0 0
\(706\) −10.6799 13.5718i −0.401943 0.510781i
\(707\) −2.06793 2.06793i −0.0777727 0.0777727i
\(708\) 0 0
\(709\) 16.0916 16.0916i 0.604332 0.604332i −0.337127 0.941459i \(-0.609455\pi\)
0.941459 + 0.337127i \(0.109455\pi\)
\(710\) −0.722930 + 6.06255i −0.0271311 + 0.227523i
\(711\) 0 0
\(712\) −17.2528 37.6842i −0.646577 1.41228i
\(713\) 1.57726i 0.0590690i
\(714\) 0 0
\(715\) −0.0984373 + 0.0984373i −0.00368135 + 0.00368135i
\(716\) 22.4120 13.6802i 0.837574 0.511252i
\(717\) 0 0
\(718\) −37.2065 + 29.2785i −1.38854 + 1.09266i
\(719\) 30.9957 1.15594 0.577972 0.816057i \(-0.303844\pi\)
0.577972 + 0.816057i \(0.303844\pi\)
\(720\) 0 0
\(721\) 6.09292 0.226912
\(722\) −6.57585 + 5.17466i −0.244728 + 0.192581i
\(723\) 0 0
\(724\) −15.9617 26.1497i −0.593211 0.971846i
\(725\) −24.6584 + 24.6584i −0.915790 + 0.915790i
\(726\) 0 0
\(727\) 41.1117i 1.52475i 0.647135 + 0.762375i \(0.275967\pi\)
−0.647135 + 0.762375i \(0.724033\pi\)
\(728\) −0.377553 + 1.01519i −0.0139930 + 0.0376253i
\(729\) 0 0
\(730\) −0.0429509 + 0.360189i −0.00158968 + 0.0133312i
\(731\) 5.82490 5.82490i 0.215442 0.215442i
\(732\) 0 0
\(733\) 0.146061 + 0.146061i 0.00539490 + 0.00539490i 0.709799 0.704404i \(-0.248786\pi\)
−0.704404 + 0.709799i \(0.748786\pi\)
\(734\) 0.614272 + 0.780604i 0.0226732 + 0.0288126i
\(735\) 0 0
\(736\) 15.7061 3.05275i 0.578934 0.112526i
\(737\) 18.6792 0.688058
\(738\) 0 0
\(739\) −1.50766 1.50766i −0.0554601 0.0554601i 0.678833 0.734293i \(-0.262486\pi\)
−0.734293 + 0.678833i \(0.762486\pi\)
\(740\) 5.71090 + 1.38164i 0.209937 + 0.0507902i
\(741\) 0 0
\(742\) −0.532664 + 4.46696i −0.0195547 + 0.163987i
\(743\) 40.5175i 1.48644i −0.669046 0.743221i \(-0.733297\pi\)
0.669046 0.743221i \(-0.266703\pi\)
\(744\) 0 0
\(745\) 6.69256i 0.245196i
\(746\) −37.6529 4.48993i −1.37857 0.164388i
\(747\) 0 0
\(748\) −13.1849 21.6006i −0.482088 0.789795i
\(749\) 27.6309 + 27.6309i 1.00961 + 1.00961i
\(750\) 0 0
\(751\) −12.5843 −0.459208 −0.229604 0.973284i \(-0.573743\pi\)
−0.229604 + 0.973284i \(0.573743\pi\)
\(752\) 10.0625 + 5.17157i 0.366943 + 0.188588i
\(753\) 0 0
\(754\) −0.681859 + 0.536568i −0.0248319 + 0.0195406i
\(755\) 3.34129 + 3.34129i 0.121602 + 0.121602i
\(756\) 0 0
\(757\) −7.49900 + 7.49900i −0.272556 + 0.272556i −0.830128 0.557572i \(-0.811733\pi\)
0.557572 + 0.830128i \(0.311733\pi\)
\(758\) 3.53186 + 0.421157i 0.128283 + 0.0152971i
\(759\) 0 0
\(760\) 4.40569 2.01704i 0.159811 0.0731659i
\(761\) 42.8182i 1.55216i 0.630635 + 0.776079i \(0.282794\pi\)
−0.630635 + 0.776079i \(0.717206\pi\)
\(762\) 0 0
\(763\) 26.0527 26.0527i 0.943172 0.943172i
\(764\) −4.05864 + 16.7761i −0.146837 + 0.606936i
\(765\) 0 0
\(766\) 22.2908 + 28.3267i 0.805398 + 1.02348i
\(767\) 0.475298 0.0171620
\(768\) 0 0
\(769\) 12.7455 0.459614 0.229807 0.973236i \(-0.426190\pi\)
0.229807 + 0.973236i \(0.426190\pi\)
\(770\) 6.60411 + 8.39236i 0.237995 + 0.302440i
\(771\) 0 0
\(772\) −5.38551 + 22.2606i −0.193829 + 0.801175i
\(773\) 22.8765 22.8765i 0.822809 0.822809i −0.163701 0.986510i \(-0.552343\pi\)
0.986510 + 0.163701i \(0.0523432\pi\)
\(774\) 0 0
\(775\) 2.66314i 0.0956630i
\(776\) 11.1027 5.08312i 0.398564 0.182473i
\(777\) 0 0
\(778\) −23.2451 2.77187i −0.833377 0.0993763i
\(779\) −23.7194 + 23.7194i −0.849836 + 0.849836i
\(780\) 0 0
\(781\) −22.5478 22.5478i −0.806825 0.806825i
\(782\) 11.3700 8.94725i 0.406590 0.319953i
\(783\) 0 0
\(784\) 48.9964 + 25.1814i 1.74987 + 0.899335i
\(785\) −10.8253 −0.386370
\(786\) 0 0
\(787\) 5.20470 + 5.20470i 0.185528 + 0.185528i 0.793759 0.608232i \(-0.208121\pi\)
−0.608232 + 0.793759i \(0.708121\pi\)
\(788\) −11.0374 18.0824i −0.393193 0.644160i
\(789\) 0 0
\(790\) 7.31187 + 0.871906i 0.260145 + 0.0310210i
\(791\) 43.5317i 1.54781i
\(792\) 0 0
\(793\) 0.324298i 0.0115162i
\(794\) −2.14232 + 17.9656i −0.0760280 + 0.637577i
\(795\) 0 0
\(796\) 7.15363 + 1.73068i 0.253554 + 0.0613424i
\(797\) −17.0149 17.0149i −0.602698 0.602698i 0.338330 0.941028i \(-0.390138\pi\)
−0.941028 + 0.338330i \(0.890138\pi\)
\(798\) 0 0
\(799\) 10.2306 0.361932
\(800\) −26.5190 + 5.15444i −0.937589 + 0.182237i
\(801\) 0 0
\(802\) −15.8167 20.0995i −0.558506 0.709738i
\(803\) −1.33962 1.33962i −0.0472740 0.0472740i
\(804\) 0 0
\(805\) −4.31724 + 4.31724i −0.152163 + 0.152163i
\(806\) 0.00784586 0.0657960i 0.000276359 0.00231756i
\(807\) 0 0
\(808\) 0.632641 1.70108i 0.0222562 0.0598438i
\(809\) 7.83586i 0.275494i 0.990467 + 0.137747i \(0.0439861\pi\)
−0.990467 + 0.137747i \(0.956014\pi\)
\(810\) 0 0
\(811\) 32.3396 32.3396i 1.13560 1.13560i 0.146366 0.989230i \(-0.453242\pi\)
0.989230 0.146366i \(-0.0467578\pi\)
\(812\) 34.6783 + 56.8128i 1.21697 + 1.99374i
\(813\) 0 0
\(814\) −24.1157 + 18.9771i −0.845254 + 0.665146i
\(815\) −5.02684 −0.176083
\(816\) 0 0
\(817\) −8.23765 −0.288199
\(818\) −28.0366 + 22.0625i −0.980278 + 0.771399i
\(819\) 0 0
\(820\) −7.49824 + 4.57689i −0.261850 + 0.159832i
\(821\) −19.3541 + 19.3541i −0.675464 + 0.675464i −0.958970 0.283507i \(-0.908502\pi\)
0.283507 + 0.958970i \(0.408502\pi\)
\(822\) 0 0
\(823\) 28.8560i 1.00586i −0.864328 0.502929i \(-0.832256\pi\)
0.864328 0.502929i \(-0.167744\pi\)
\(824\) 1.57401 + 3.43801i 0.0548334 + 0.119769i
\(825\) 0 0
\(826\) 4.31724 36.2047i 0.150216 1.25972i
\(827\) 10.1984 10.1984i 0.354634 0.354634i −0.507197 0.861830i \(-0.669318\pi\)
0.861830 + 0.507197i \(0.169318\pi\)
\(828\) 0 0
\(829\) 15.3794 + 15.3794i 0.534148 + 0.534148i 0.921804 0.387656i \(-0.126715\pi\)
−0.387656 + 0.921804i \(0.626715\pi\)
\(830\) −6.23375 7.92172i −0.216376 0.274967i
\(831\) 0 0
\(832\) −0.670368 + 0.0492187i −0.0232408 + 0.00170635i
\(833\) 49.8147 1.72598
\(834\) 0 0
\(835\) 1.95524 + 1.95524i 0.0676640 + 0.0676640i
\(836\) −5.95078 + 24.5970i −0.205812 + 0.850707i
\(837\) 0 0
\(838\) −1.71756 + 14.4036i −0.0593323 + 0.497565i
\(839\) 44.4557i 1.53478i −0.641181 0.767390i \(-0.721555\pi\)
0.641181 0.767390i \(-0.278445\pi\)
\(840\) 0 0
\(841\) 24.3200i 0.838620i
\(842\) −4.75729 0.567285i −0.163947 0.0195499i
\(843\) 0 0
\(844\) −24.4290 + 14.9114i −0.840881 + 0.513270i
\(845\) −4.35139 4.35139i −0.149692 0.149692i
\(846\) 0 0
\(847\) −5.64077 −0.193819
\(848\) −2.65815 + 0.853410i −0.0912813 + 0.0293062i
\(849\) 0 0
\(850\) −19.1977 + 15.1071i −0.658477 + 0.518168i
\(851\) −12.4057 12.4057i −0.425262 0.425262i
\(852\) 0 0
\(853\) −11.7131 + 11.7131i −0.401049 + 0.401049i −0.878603 0.477553i \(-0.841524\pi\)
0.477553 + 0.878603i \(0.341524\pi\)
\(854\) −24.7026 2.94567i −0.845307 0.100799i
\(855\) 0 0
\(856\) −8.45311 + 22.7292i −0.288921 + 0.776868i
\(857\) 19.0888i 0.652062i −0.945359 0.326031i \(-0.894289\pi\)
0.945359 0.326031i \(-0.105711\pi\)
\(858\) 0 0
\(859\) −38.1323 + 38.1323i −1.30106 + 1.30106i −0.373379 + 0.927679i \(0.621801\pi\)
−0.927679 + 0.373379i \(0.878199\pi\)
\(860\) −2.09682 0.507285i −0.0715010 0.0172983i
\(861\) 0 0
\(862\) −3.86952 4.91731i −0.131796 0.167484i
\(863\) −3.64533 −0.124089 −0.0620443 0.998073i \(-0.519762\pi\)
−0.0620443 + 0.998073i \(0.519762\pi\)
\(864\) 0 0
\(865\) 2.42826 0.0825632
\(866\) −6.39627 8.12825i −0.217354 0.276209i
\(867\) 0 0
\(868\) −4.94059 1.19528i −0.167694 0.0405704i
\(869\) −27.1943 + 27.1943i −0.922504 + 0.922504i
\(870\) 0 0
\(871\) 0.448643i 0.0152017i
\(872\) 21.4310 + 7.97028i 0.725744 + 0.269908i
\(873\) 0 0
\(874\) −14.3665 1.71313i −0.485953 0.0579476i
\(875\) 14.9213 14.9213i 0.504433 0.504433i
\(876\) 0 0
\(877\) 40.0563 + 40.0563i 1.35260 + 1.35260i 0.882738 + 0.469866i \(0.155698\pi\)
0.469866 + 0.882738i \(0.344302\pi\)
\(878\) −32.9558 + 25.9336i −1.11221 + 0.875215i
\(879\) 0 0
\(880\) −3.02944 + 5.89450i −0.102122 + 0.198704i
\(881\) 20.0118 0.674214 0.337107 0.941466i \(-0.390552\pi\)
0.337107 + 0.941466i \(0.390552\pi\)
\(882\) 0 0
\(883\) −10.6273 10.6273i −0.357636 0.357636i 0.505305 0.862941i \(-0.331380\pi\)
−0.862941 + 0.505305i \(0.831380\pi\)
\(884\) −0.518808 + 0.316678i −0.0174494 + 0.0106510i
\(885\) 0 0
\(886\) 20.4662 + 2.44049i 0.687574 + 0.0819900i
\(887\) 26.1180i 0.876958i 0.898742 + 0.438479i \(0.144483\pi\)
−0.898742 + 0.438479i \(0.855517\pi\)
\(888\) 0 0
\(889\) 23.2404i 0.779458i
\(890\) −1.16215 + 9.74587i −0.0389553 + 0.326682i
\(891\) 0 0
\(892\) 2.28636 9.45048i 0.0765530 0.316425i
\(893\) −7.23412 7.23412i −0.242081 0.242081i
\(894\) 0 0
\(895\) −6.21805 −0.207847
\(896\) −2.33999 + 51.5108i −0.0781736 + 1.72085i
\(897\) 0 0
\(898\) −5.67452 7.21107i −0.189361 0.240636i
\(899\) −2.87932 2.87932i −0.0960306 0.0960306i
\(900\) 0 0
\(901\) −1.78510 + 1.78510i −0.0594704 + 0.0594704i
\(902\) 5.43253 45.5576i 0.180884 1.51690i
\(903\) 0 0
\(904\) 24.5634 11.2458i 0.816966 0.374029i
\(905\) 7.25507i 0.241167i
\(906\) 0 0
\(907\) 36.2378 36.2378i 1.20326 1.20326i 0.230087 0.973170i \(-0.426099\pi\)
0.973170 0.230087i \(-0.0739010\pi\)
\(908\) 25.6913 15.6818i 0.852594 0.520420i
\(909\) 0 0
\(910\) 0.201570 0.158619i 0.00668198 0.00525817i
\(911\) 21.0535 0.697533 0.348767 0.937210i \(-0.386601\pi\)
0.348767 + 0.937210i \(0.386601\pi\)
\(912\) 0 0
\(913\) 52.6470 1.74236
\(914\) −10.0063 + 7.87412i −0.330978 + 0.260453i
\(915\) 0 0
\(916\) −29.7248 48.6975i −0.982134 1.60901i
\(917\) −9.65685 + 9.65685i −0.318897 + 0.318897i
\(918\) 0 0
\(919\) 17.8839i 0.589937i 0.955507 + 0.294968i \(0.0953091\pi\)
−0.955507 + 0.294968i \(0.904691\pi\)
\(920\) −3.55136 1.32077i −0.117085 0.0435444i
\(921\) 0 0
\(922\) −3.46262 + 29.0378i −0.114035 + 0.956310i
\(923\) −0.541560 + 0.541560i −0.0178257 + 0.0178257i
\(924\) 0 0
\(925\) 20.9465 + 20.9465i 0.688716 + 0.688716i
\(926\) 16.3048 + 20.7199i 0.535810 + 0.680897i
\(927\) 0 0
\(928\) −23.0988 + 34.2445i −0.758256 + 1.12413i
\(929\) −10.2774 −0.337192 −0.168596 0.985685i \(-0.553923\pi\)
−0.168596 + 0.985685i \(0.553923\pi\)
\(930\) 0 0
\(931\) −35.2243 35.2243i −1.15443 1.15443i
\(932\) 26.3794 + 6.38198i 0.864086 + 0.209049i
\(933\) 0 0
\(934\) 5.56837 46.6968i 0.182203 1.52796i
\(935\) 5.99294i 0.195990i
\(936\) 0 0
\(937\) 13.5780i 0.443574i −0.975095 0.221787i \(-0.928811\pi\)
0.975095 0.221787i \(-0.0711890\pi\)
\(938\) −34.1743 4.07513i −1.11583 0.133058i
\(939\) 0 0
\(940\) −1.39589 2.28687i −0.0455290 0.0745894i
\(941\) 3.95902 + 3.95902i 0.129060 + 0.129060i 0.768686 0.639626i \(-0.220911\pi\)
−0.639626 + 0.768686i \(0.720911\pi\)
\(942\) 0 0
\(943\) 26.2306 0.854186
\(944\) 21.5443 6.91688i 0.701207 0.225125i
\(945\) 0 0
\(946\) 8.85433 6.96764i 0.287879 0.226537i
\(947\) 33.1708 + 33.1708i 1.07791 + 1.07791i 0.996697 + 0.0812084i \(0.0258779\pi\)
0.0812084 + 0.996697i \(0.474122\pi\)
\(948\) 0 0
\(949\) −0.0321752 + 0.0321752i −0.00104445 + 0.00104445i
\(950\) 24.2572 + 2.89255i 0.787006 + 0.0938468i
\(951\) 0 0
\(952\) 19.4098 + 42.3955i 0.629075 + 1.37405i
\(953\) 5.59115i 0.181115i 0.995891 + 0.0905576i \(0.0288649\pi\)
−0.995891 + 0.0905576i \(0.971135\pi\)
\(954\) 0 0
\(955\) 2.89023 2.89023i 0.0935255 0.0935255i
\(956\) 13.8092 57.0792i 0.446622 1.84607i
\(957\) 0 0
\(958\) −0.952079 1.20988i −0.0307603 0.0390896i
\(959\) 15.4022 0.497362
\(960\) 0 0
\(961\) −30.6890 −0.989969
\(962\) 0.455796 + 0.579216i 0.0146955 + 0.0186747i
\(963\) 0 0
\(964\) −11.2900 + 46.6663i −0.363626 + 1.50302i
\(965\) 3.83511 3.83511i 0.123457 0.123457i
\(966\) 0 0
\(967\) 30.7561i 0.989048i 0.869164 + 0.494524i \(0.164658\pi\)
−0.869164 + 0.494524i \(0.835342\pi\)
\(968\) −1.45721 3.18288i −0.0468365 0.102302i
\(969\) 0 0
\(970\) −2.87138 0.342398i −0.0921944 0.0109937i
\(971\) −8.03756 + 8.03756i −0.257938 + 0.257938i −0.824215 0.566277i \(-0.808383\pi\)
0.566277 + 0.824215i \(0.308383\pi\)
\(972\) 0 0
\(973\) −26.8043 26.8043i −0.859307 0.859307i
\(974\) −39.2645 + 30.8980i −1.25812 + 0.990035i
\(975\) 0 0
\(976\) −4.71942 14.6998i −0.151065 0.470529i
\(977\) −22.8323 −0.730471 −0.365235 0.930915i \(-0.619012\pi\)
−0.365235 + 0.930915i \(0.619012\pi\)
\(978\) 0 0
\(979\) −36.2468 36.2468i −1.15845 1.15845i
\(980\) −6.79687 11.1352i −0.217118 0.355701i
\(981\) 0 0
\(982\) −25.6006 3.05275i −0.816947 0.0974171i
\(983\) 46.3557i 1.47852i 0.673422 + 0.739258i \(0.264824\pi\)
−0.673422 + 0.739258i \(0.735176\pi\)
\(984\) 0 0
\(985\) 5.01686i 0.159850i
\(986\) −4.42274 + 37.0894i −0.140849 + 1.18117i
\(987\) 0 0
\(988\) 0.590778 + 0.142927i 0.0187952 + 0.00454713i
\(989\) 4.55489 + 4.55489i 0.144837 + 0.144837i
\(990\) 0 0
\(991\) 3.43683 0.109175 0.0545873 0.998509i \(-0.482616\pi\)
0.0545873 + 0.998509i \(0.482616\pi\)
\(992\) −0.601874 3.09658i −0.0191095 0.0983165i
\(993\) 0 0
\(994\) 36.3329 + 46.1712i 1.15241 + 1.46446i
\(995\) −1.23245 1.23245i −0.0390712 0.0390712i
\(996\) 0 0
\(997\) −21.9430 + 21.9430i −0.694940 + 0.694940i −0.963315 0.268374i \(-0.913514\pi\)
0.268374 + 0.963315i \(0.413514\pi\)
\(998\) 3.40532 28.5573i 0.107793 0.903964i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 144.2.k.b.109.1 8
3.2 odd 2 48.2.j.a.13.4 8
4.3 odd 2 576.2.k.b.145.3 8
8.3 odd 2 1152.2.k.f.289.2 8
8.5 even 2 1152.2.k.c.289.2 8
12.11 even 2 192.2.j.a.145.3 8
16.3 odd 4 1152.2.k.f.865.2 8
16.5 even 4 inner 144.2.k.b.37.1 8
16.11 odd 4 576.2.k.b.433.3 8
16.13 even 4 1152.2.k.c.865.2 8
24.5 odd 2 384.2.j.b.289.4 8
24.11 even 2 384.2.j.a.289.2 8
32.5 even 8 9216.2.a.y.1.3 4
32.11 odd 8 9216.2.a.bn.1.2 4
32.21 even 8 9216.2.a.bo.1.2 4
32.27 odd 8 9216.2.a.x.1.3 4
48.5 odd 4 48.2.j.a.37.4 yes 8
48.11 even 4 192.2.j.a.49.3 8
48.29 odd 4 384.2.j.b.97.4 8
48.35 even 4 384.2.j.a.97.2 8
96.5 odd 8 3072.2.a.t.1.2 4
96.11 even 8 3072.2.a.o.1.3 4
96.29 odd 8 3072.2.d.f.1537.2 8
96.35 even 8 3072.2.d.i.1537.6 8
96.53 odd 8 3072.2.a.i.1.3 4
96.59 even 8 3072.2.a.n.1.2 4
96.77 odd 8 3072.2.d.f.1537.7 8
96.83 even 8 3072.2.d.i.1537.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
48.2.j.a.13.4 8 3.2 odd 2
48.2.j.a.37.4 yes 8 48.5 odd 4
144.2.k.b.37.1 8 16.5 even 4 inner
144.2.k.b.109.1 8 1.1 even 1 trivial
192.2.j.a.49.3 8 48.11 even 4
192.2.j.a.145.3 8 12.11 even 2
384.2.j.a.97.2 8 48.35 even 4
384.2.j.a.289.2 8 24.11 even 2
384.2.j.b.97.4 8 48.29 odd 4
384.2.j.b.289.4 8 24.5 odd 2
576.2.k.b.145.3 8 4.3 odd 2
576.2.k.b.433.3 8 16.11 odd 4
1152.2.k.c.289.2 8 8.5 even 2
1152.2.k.c.865.2 8 16.13 even 4
1152.2.k.f.289.2 8 8.3 odd 2
1152.2.k.f.865.2 8 16.3 odd 4
3072.2.a.i.1.3 4 96.53 odd 8
3072.2.a.n.1.2 4 96.59 even 8
3072.2.a.o.1.3 4 96.11 even 8
3072.2.a.t.1.2 4 96.5 odd 8
3072.2.d.f.1537.2 8 96.29 odd 8
3072.2.d.f.1537.7 8 96.77 odd 8
3072.2.d.i.1537.3 8 96.83 even 8
3072.2.d.i.1537.6 8 96.35 even 8
9216.2.a.x.1.3 4 32.27 odd 8
9216.2.a.y.1.3 4 32.5 even 8
9216.2.a.bn.1.2 4 32.11 odd 8
9216.2.a.bo.1.2 4 32.21 even 8