Defining parameters
Level: | \( N \) | \(=\) | \( 144 = 2^{4} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 3 \) |
Character orbit: | \([\chi]\) | \(=\) | 144.o (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 36 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(72\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(5\), \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{3}(144, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 108 | 24 | 84 |
Cusp forms | 84 | 24 | 60 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{3}^{\mathrm{new}}(144, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
144.3.o.a | $8$ | $3.924$ | 8.0.856615824.2 | None | \(0\) | \(-3\) | \(3\) | \(3\) | \(q+(1-\beta _{1}+\beta _{2}+\beta _{3})q^{3}+(1-\beta _{1}+\beta _{2}+\cdots)q^{5}+\cdots\) |
144.3.o.b | $8$ | $3.924$ | 8.0.121550625.1 | None | \(0\) | \(0\) | \(-6\) | \(0\) | \(q+(\beta _{2}+\beta _{5})q^{3}+(-1-\beta _{1}-\beta _{7})q^{5}+\cdots\) |
144.3.o.c | $8$ | $3.924$ | 8.0.856615824.2 | None | \(0\) | \(3\) | \(3\) | \(-3\) | \(q+(-\beta _{3}+\beta _{4})q^{3}+(1-\beta _{2}+\beta _{3}-\beta _{4}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{3}^{\mathrm{old}}(144, [\chi])\) into lower level spaces
\( S_{3}^{\mathrm{old}}(144, [\chi]) \simeq \) \(S_{3}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 3}\)