Properties

Label 144.8.i.c
Level $144$
Weight $8$
Character orbit 144.i
Analytic conductor $44.983$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [144,8,Mod(49,144)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(144, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("144.49");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 144 = 2^{4} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 144.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(44.9834436697\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} + 375 x^{10} - 1820 x^{9} + 50808 x^{8} - 192378 x^{7} + 3002887 x^{6} + \cdots + 754412211 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{16}\cdot 3^{15} \)
Twist minimal: no (minimal twist has level 9)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_{6} + \beta_{4} - 2) q^{3} + ( - \beta_{10} - \beta_{6} + \cdots + 30 \beta_{3}) q^{5} + (\beta_{11} - 3 \beta_{10} - 2 \beta_{9} + \cdots + 14) q^{7} + (6 \beta_{11} + 3 \beta_{10} + \cdots - 210) q^{9}+ \cdots + (13869 \beta_{11} - 4125 \beta_{10} + \cdots + 4284114) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 24 q^{3} - 180 q^{5} + 84 q^{7} + 990 q^{9} + 8460 q^{11} - 1848 q^{13} + 1188 q^{15} + 30564 q^{17} - 24432 q^{19} - 187224 q^{21} + 51588 q^{23} + 4746 q^{25} - 322272 q^{27} - 414648 q^{29} - 8196 q^{31}+ \cdots + 49382676 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - 6 x^{11} + 375 x^{10} - 1820 x^{9} + 50808 x^{8} - 192378 x^{7} + 3002887 x^{6} + \cdots + 754412211 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{10} - 5 \nu^{9} + 631 \nu^{8} - 2494 \nu^{7} + 213005 \nu^{6} - 630307 \nu^{5} + \cdots + 4058788905 ) / 119996640 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{10} - 5 \nu^{9} + 631 \nu^{8} - 2494 \nu^{7} + 213005 \nu^{6} - 630307 \nu^{5} + \cdots + 3338809065 ) / 59998320 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 3916394 \nu^{11} + 21540167 \nu^{10} - 1457064271 \nu^{9} + 6395237967 \nu^{8} + \cdots + 87187467749373 ) / 780837815928960 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 8715547 \nu^{11} + 274872853 \nu^{10} - 5371798301 \nu^{9} + 101334640866 \nu^{8} + \cdots + 44\!\cdots\!32 ) / 390418907964480 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 39397984 \nu^{11} + 946466653 \nu^{10} + 7691846527 \nu^{9} + 467122386875 \nu^{8} + \cdots + 77\!\cdots\!09 ) / 780837815928960 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 39397984 \nu^{11} + 494870173 \nu^{10} - 14898530657 \nu^{9} + 130856702487 \nu^{8} + \cdots - 16\!\cdots\!07 ) / 780837815928960 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 39397984 \nu^{11} + 491616591 \nu^{10} - 14882262747 \nu^{9} + 128803692245 \nu^{8} + \cdots - 30\!\cdots\!37 ) / 780837815928960 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( - 10227479 \nu^{11} + 161179154 \nu^{10} - 3614811022 \nu^{9} + 56619062412 \nu^{8} + \cdots + 38\!\cdots\!46 ) / 65069817994080 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 205349422 \nu^{11} + 2882244785 \nu^{10} + 62835655811 \nu^{9} + 1007320564173 \nu^{8} + \cdots + 48\!\cdots\!27 ) / 780837815928960 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 1292509692 \nu^{11} + 7097415769 \nu^{10} - 454447599701 \nu^{9} + \cdots + 43\!\cdots\!69 ) / 780837815928960 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 1416577970 \nu^{11} + 8246680315 \nu^{10} - 530017555415 \nu^{9} + \cdots + 39\!\cdots\!97 ) / 780837815928960 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{2} - 2\beta _1 + 12 ) / 24 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -2\beta_{7} + 2\beta_{6} - \beta _1 - 714 ) / 12 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 36 \beta_{11} - 16 \beta_{10} + 48 \beta_{9} - 24 \beta_{8} - 200 \beta_{6} + 8 \beta_{5} - 292 \beta_{4} + \cdots - 6984 ) / 72 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 18 \beta_{11} - 8 \beta_{10} + 32 \beta_{9} + 26 \beta_{8} + 381 \beta_{7} - 675 \beta_{6} + \cdots + 103221 ) / 18 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - 2468 \beta_{11} + 984 \beta_{10} - 2184 \beta_{9} + 952 \beta_{8} + 16 \beta_{7} + 8112 \beta_{6} + \cdots + 480252 ) / 24 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( - 11196 \beta_{11} + 4468 \beta_{10} - 12876 \beta_{9} - 10104 \beta_{8} - 94320 \beta_{7} + \cdots - 21509748 ) / 36 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 1180224 \beta_{11} - 411656 \beta_{10} + 809336 \beta_{9} - 367672 \beta_{8} - 44088 \beta_{7} + \cdots - 246596076 ) / 72 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( 402130 \beta_{11} - 140700 \beta_{10} + 345036 \beta_{9} + 258646 \beta_{8} + 1969693 \beta_{7} + \cdots + 382567035 ) / 6 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( - 171131364 \beta_{11} + 54820952 \beta_{10} - 97990536 \beta_{9} + 51195912 \beta_{8} + \cdots + 38050923240 ) / 72 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( - 446002812 \beta_{11} + 143415236 \beta_{10} - 304901180 \beta_{9} - 218430056 \beta_{8} + \cdots - 246838018302 ) / 36 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( 7847972884 \beta_{11} - 2415017640 \beta_{10} + 3954731352 \beta_{9} - 2467799936 \beta_{8} + \cdots - 1850187526692 ) / 24 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/144\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(65\) \(127\)
\(\chi(n)\) \(1\) \(\beta_{3}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
0.500000 9.08282i
0.500000 + 2.70685i
0.500000 + 11.4952i
0.500000 1.48508i
0.500000 + 6.17443i
0.500000 9.80854i
0.500000 + 9.08282i
0.500000 2.70685i
0.500000 11.4952i
0.500000 + 1.48508i
0.500000 6.17443i
0.500000 + 9.80854i
0 −45.7172 + 9.84574i 0 −145.304 + 251.673i 0 555.940 + 962.916i 0 1993.12 900.239i 0
49.2 0 −36.5784 29.1379i 0 167.952 290.901i 0 −442.025 765.610i 0 488.965 + 2131.64i 0
49.3 0 −21.6493 + 41.4525i 0 32.6274 56.5123i 0 118.194 + 204.717i 0 −1249.62 1794.83i 0
49.4 0 22.8679 + 40.7929i 0 47.9866 83.1153i 0 189.000 + 327.358i 0 −1141.12 + 1865.70i 0
49.5 0 33.3118 32.8226i 0 −246.026 + 426.130i 0 382.311 + 662.182i 0 32.3523 2186.76i 0
49.6 0 35.7652 30.1306i 0 52.7641 91.3900i 0 −761.419 1318.82i 0 371.296 2155.25i 0
97.1 0 −45.7172 9.84574i 0 −145.304 251.673i 0 555.940 962.916i 0 1993.12 + 900.239i 0
97.2 0 −36.5784 + 29.1379i 0 167.952 + 290.901i 0 −442.025 + 765.610i 0 488.965 2131.64i 0
97.3 0 −21.6493 41.4525i 0 32.6274 + 56.5123i 0 118.194 204.717i 0 −1249.62 + 1794.83i 0
97.4 0 22.8679 40.7929i 0 47.9866 + 83.1153i 0 189.000 327.358i 0 −1141.12 1865.70i 0
97.5 0 33.3118 + 32.8226i 0 −246.026 426.130i 0 382.311 662.182i 0 32.3523 + 2186.76i 0
97.6 0 35.7652 + 30.1306i 0 52.7641 + 91.3900i 0 −761.419 + 1318.82i 0 371.296 + 2155.25i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 49.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 144.8.i.c 12
3.b odd 2 1 432.8.i.c 12
4.b odd 2 1 9.8.c.a 12
9.c even 3 1 inner 144.8.i.c 12
9.d odd 6 1 432.8.i.c 12
12.b even 2 1 27.8.c.a 12
36.f odd 6 1 9.8.c.a 12
36.f odd 6 1 81.8.a.e 6
36.h even 6 1 27.8.c.a 12
36.h even 6 1 81.8.a.c 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
9.8.c.a 12 4.b odd 2 1
9.8.c.a 12 36.f odd 6 1
27.8.c.a 12 12.b even 2 1
27.8.c.a 12 36.h even 6 1
81.8.a.c 6 36.h even 6 1
81.8.a.e 6 36.f odd 6 1
144.8.i.c 12 1.a even 1 1 trivial
144.8.i.c 12 9.c even 3 1 inner
432.8.i.c 12 3.b odd 2 1
432.8.i.c 12 9.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{12} + 180 T_{5}^{11} + 248202 T_{5}^{10} - 26226720 T_{5}^{9} + 37979473779 T_{5}^{8} + \cdots + 10\!\cdots\!00 \) acting on \(S_{8}^{\mathrm{new}}(144, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} \) Copy content Toggle raw display
$3$ \( T^{12} + \cdots + 10\!\cdots\!09 \) Copy content Toggle raw display
$5$ \( T^{12} + \cdots + 10\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{12} + \cdots + 10\!\cdots\!04 \) Copy content Toggle raw display
$11$ \( T^{12} + \cdots + 83\!\cdots\!81 \) Copy content Toggle raw display
$13$ \( T^{12} + \cdots + 50\!\cdots\!64 \) Copy content Toggle raw display
$17$ \( (T^{6} + \cdots - 16\!\cdots\!76)^{2} \) Copy content Toggle raw display
$19$ \( (T^{6} + \cdots + 16\!\cdots\!00)^{2} \) Copy content Toggle raw display
$23$ \( T^{12} + \cdots + 73\!\cdots\!84 \) Copy content Toggle raw display
$29$ \( T^{12} + \cdots + 53\!\cdots\!44 \) Copy content Toggle raw display
$31$ \( T^{12} + \cdots + 23\!\cdots\!56 \) Copy content Toggle raw display
$37$ \( (T^{6} + \cdots + 17\!\cdots\!64)^{2} \) Copy content Toggle raw display
$41$ \( T^{12} + \cdots + 45\!\cdots\!61 \) Copy content Toggle raw display
$43$ \( T^{12} + \cdots + 27\!\cdots\!69 \) Copy content Toggle raw display
$47$ \( T^{12} + \cdots + 56\!\cdots\!04 \) Copy content Toggle raw display
$53$ \( (T^{6} + \cdots + 54\!\cdots\!44)^{2} \) Copy content Toggle raw display
$59$ \( T^{12} + \cdots + 74\!\cdots\!89 \) Copy content Toggle raw display
$61$ \( T^{12} + \cdots + 75\!\cdots\!96 \) Copy content Toggle raw display
$67$ \( T^{12} + \cdots + 21\!\cdots\!49 \) Copy content Toggle raw display
$71$ \( (T^{6} + \cdots + 81\!\cdots\!24)^{2} \) Copy content Toggle raw display
$73$ \( (T^{6} + \cdots + 34\!\cdots\!16)^{2} \) Copy content Toggle raw display
$79$ \( T^{12} + \cdots + 11\!\cdots\!44 \) Copy content Toggle raw display
$83$ \( T^{12} + \cdots + 58\!\cdots\!64 \) Copy content Toggle raw display
$89$ \( (T^{6} + \cdots - 14\!\cdots\!00)^{2} \) Copy content Toggle raw display
$97$ \( T^{12} + \cdots + 83\!\cdots\!69 \) Copy content Toggle raw display
show more
show less