Properties

Label 1440.1.cm.a.379.2
Level 14401440
Weight 11
Character 1440.379
Analytic conductor 0.7190.719
Analytic rank 00
Dimension 88
Projective image D8D_{8}
CM discriminant -15
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1440,1,Mod(19,1440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1440, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([4, 7, 0, 4]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1440.19");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 1440=25325 1440 = 2^{5} \cdot 3^{2} \cdot 5
Weight: k k == 1 1
Character orbit: [χ][\chi] == 1440.cm (of order 88, degree 44, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.7186536181920.718653618192
Analytic rank: 00
Dimension: 88
Relative dimension: 22 over Q(ζ8)\Q(\zeta_{8})
Coefficient field: Q(ζ16)\Q(\zeta_{16})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x8+1 x^{8} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D8D_{8}
Projective field: Galois closure of 8.2.36238786560000.11

Embedding invariants

Embedding label 379.2
Root 0.923880+0.382683i0.923880 + 0.382683i of defining polynomial
Character χ\chi == 1440.379
Dual form 1440.1.cm.a.19.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.382683+0.923880i)q2+(0.707107+0.707107i)q4+(0.3826830.923880i)q5+(0.9238800.382683i)q8+1.00000q101.00000iq16+1.84776q17+(0.707107+1.70711i)q19+(0.382683+0.923880i)q20+(0.5411960.541196i)q23+(0.7071070.707107i)q25+1.41421iq31+(0.9238800.382683i)q32+(0.707107+1.70711i)q34+(1.30656+1.30656i)q38+(0.707107+0.707107i)q40+(0.707107+0.292893i)q461.84776iq471.00000iq49+(0.3826830.923880i)q50+(1.306560.541196i)q53+(0.292893+0.707107i)q61+(1.30656+0.541196i)q62+(0.707107+0.707107i)q64+(1.30656+1.30656i)q68+(1.707110.707107i)q762.00000q79+(0.9238800.382683i)q80+(1.30656+0.541196i)q83+(0.7071071.70711i)q85+0.765367iq92+(1.707110.707107i)q94+1.84776q95+(0.9238800.382683i)q98+O(q100)q+(0.382683 + 0.923880i) q^{2} +(-0.707107 + 0.707107i) q^{4} +(0.382683 - 0.923880i) q^{5} +(-0.923880 - 0.382683i) q^{8} +1.00000 q^{10} -1.00000i q^{16} +1.84776 q^{17} +(0.707107 + 1.70711i) q^{19} +(0.382683 + 0.923880i) q^{20} +(0.541196 - 0.541196i) q^{23} +(-0.707107 - 0.707107i) q^{25} +1.41421i q^{31} +(0.923880 - 0.382683i) q^{32} +(0.707107 + 1.70711i) q^{34} +(-1.30656 + 1.30656i) q^{38} +(-0.707107 + 0.707107i) q^{40} +(0.707107 + 0.292893i) q^{46} -1.84776i q^{47} -1.00000i q^{49} +(0.382683 - 0.923880i) q^{50} +(-1.30656 - 0.541196i) q^{53} +(0.292893 + 0.707107i) q^{61} +(-1.30656 + 0.541196i) q^{62} +(0.707107 + 0.707107i) q^{64} +(-1.30656 + 1.30656i) q^{68} +(-1.70711 - 0.707107i) q^{76} -2.00000 q^{79} +(-0.923880 - 0.382683i) q^{80} +(-1.30656 + 0.541196i) q^{83} +(0.707107 - 1.70711i) q^{85} +0.765367i q^{92} +(1.70711 - 0.707107i) q^{94} +1.84776 q^{95} +(0.923880 - 0.382683i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+8q10+8q618q7616q79+8q94+O(q100) 8 q + 8 q^{10} + 8 q^{61} - 8 q^{76} - 16 q^{79} + 8 q^{94}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1440Z)×\left(\mathbb{Z}/1440\mathbb{Z}\right)^\times.

nn 577577 641641 901901 991991
χ(n)\chi(n) 1-1 11 e(18)e\left(\frac{1}{8}\right) 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.382683 + 0.923880i 0.382683 + 0.923880i
33 0 0
44 −0.707107 + 0.707107i −0.707107 + 0.707107i
55 0.382683 0.923880i 0.382683 0.923880i
66 0 0
77 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
88 −0.923880 0.382683i −0.923880 0.382683i
99 0 0
1010 1.00000 1.00000
1111 0 0 0.382683 0.923880i 0.375000π-0.375000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
1212 0 0
1313 0 0 0.923880 0.382683i 0.125000π-0.125000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
1414 0 0
1515 0 0
1616 1.00000i 1.00000i
1717 1.84776 1.84776 0.923880 0.382683i 0.125000π-0.125000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
1818 0 0
1919 0.707107 + 1.70711i 0.707107 + 1.70711i 0.707107 + 0.707107i 0.250000π0.250000\pi
1.00000i 0.5π0.5\pi
2020 0.382683 + 0.923880i 0.382683 + 0.923880i
2121 0 0
2222 0 0
2323 0.541196 0.541196i 0.541196 0.541196i −0.382683 0.923880i 0.625000π-0.625000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
2424 0 0
2525 −0.707107 0.707107i −0.707107 0.707107i
2626 0 0
2727 0 0
2828 0 0
2929 0 0 0.923880 0.382683i 0.125000π-0.125000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
3030 0 0
3131 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
3232 0.923880 0.382683i 0.923880 0.382683i
3333 0 0
3434 0.707107 + 1.70711i 0.707107 + 1.70711i
3535 0 0
3636 0 0
3737 0 0 −0.923880 0.382683i 0.875000π-0.875000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
3838 −1.30656 + 1.30656i −1.30656 + 1.30656i
3939 0 0
4040 −0.707107 + 0.707107i −0.707107 + 0.707107i
4141 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
4242 0 0
4343 0 0 −0.923880 0.382683i 0.875000π-0.875000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
4444 0 0
4545 0 0
4646 0.707107 + 0.292893i 0.707107 + 0.292893i
4747 1.84776i 1.84776i −0.382683 0.923880i 0.625000π-0.625000\pi
0.382683 0.923880i 0.375000π-0.375000\pi
4848 0 0
4949 1.00000i 1.00000i
5050 0.382683 0.923880i 0.382683 0.923880i
5151 0 0
5252 0 0
5353 −1.30656 0.541196i −1.30656 0.541196i −0.382683 0.923880i 0.625000π-0.625000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0 0
5959 0 0 −0.923880 0.382683i 0.875000π-0.875000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
6060 0 0
6161 0.292893 + 0.707107i 0.292893 + 0.707107i 1.00000 00
−0.707107 + 0.707107i 0.750000π0.750000\pi
6262 −1.30656 + 0.541196i −1.30656 + 0.541196i
6363 0 0
6464 0.707107 + 0.707107i 0.707107 + 0.707107i
6565 0 0
6666 0 0
6767 0 0 0.923880 0.382683i 0.125000π-0.125000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
6868 −1.30656 + 1.30656i −1.30656 + 1.30656i
6969 0 0
7070 0 0
7171 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
7272 0 0
7373 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
7474 0 0
7575 0 0
7676 −1.70711 0.707107i −1.70711 0.707107i
7777 0 0
7878 0 0
7979 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
8080 −0.923880 0.382683i −0.923880 0.382683i
8181 0 0
8282 0 0
8383 −1.30656 + 0.541196i −1.30656 + 0.541196i −0.923880 0.382683i 0.875000π-0.875000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
8484 0 0
8585 0.707107 1.70711i 0.707107 1.70711i
8686 0 0
8787 0 0
8888 0 0
8989 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
9090 0 0
9191 0 0
9292 0.765367i 0.765367i
9393 0 0
9494 1.70711 0.707107i 1.70711 0.707107i
9595 1.84776 1.84776
9696 0 0
9797 0 0 1.00000 00
−1.00000 π\pi
9898 0.923880 0.382683i 0.923880 0.382683i
9999 0 0
100100 1.00000 1.00000
101101 0 0 0.382683 0.923880i 0.375000π-0.375000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
102102 0 0
103103 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
104104 0 0
105105 0 0
106106 1.41421i 1.41421i
107107 −0.541196 + 1.30656i −0.541196 + 1.30656i 0.382683 + 0.923880i 0.375000π0.375000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
108108 0 0
109109 −0.707107 + 0.292893i −0.707107 + 0.292893i −0.707107 0.707107i 0.750000π-0.750000\pi
1.00000i 0.5π0.5\pi
110110 0 0
111111 0 0
112112 0 0
113113 −0.765367 −0.765367 −0.382683 0.923880i 0.625000π-0.625000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
114114 0 0
115115 −0.292893 0.707107i −0.292893 0.707107i
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 −0.707107 0.707107i −0.707107 0.707107i
122122 −0.541196 + 0.541196i −0.541196 + 0.541196i
123123 0 0
124124 −1.00000 1.00000i −1.00000 1.00000i
125125 −0.923880 + 0.382683i −0.923880 + 0.382683i
126126 0 0
127127 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
128128 −0.382683 + 0.923880i −0.382683 + 0.923880i
129129 0 0
130130 0 0
131131 0 0 −0.382683 0.923880i 0.625000π-0.625000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 −1.70711 0.707107i −1.70711 0.707107i
137137 0.541196 + 0.541196i 0.541196 + 0.541196i 0.923880 0.382683i 0.125000π-0.125000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
138138 0 0
139139 −0.707107 0.292893i −0.707107 0.292893i 1.00000i 0.5π-0.5\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 0 0
148148 0 0
149149 0 0 −0.923880 0.382683i 0.875000π-0.875000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
150150 0 0
151151 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
152152 1.84776i 1.84776i
153153 0 0
154154 0 0
155155 1.30656 + 0.541196i 1.30656 + 0.541196i
156156 0 0
157157 0 0 −0.382683 0.923880i 0.625000π-0.625000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
158158 −0.765367 1.84776i −0.765367 1.84776i
159159 0 0
160160 1.00000i 1.00000i
161161 0 0
162162 0 0
163163 0 0 0.923880 0.382683i 0.125000π-0.125000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
164164 0 0
165165 0 0
166166 −1.00000 1.00000i −1.00000 1.00000i
167167 −0.541196 0.541196i −0.541196 0.541196i 0.382683 0.923880i 0.375000π-0.375000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
168168 0 0
169169 0.707107 0.707107i 0.707107 0.707107i
170170 1.84776 1.84776
171171 0 0
172172 0 0
173173 −0.541196 1.30656i −0.541196 1.30656i −0.923880 0.382683i 0.875000π-0.875000\pi
0.382683 0.923880i 0.375000π-0.375000\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0 0
179179 0 0 0.923880 0.382683i 0.125000π-0.125000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
180180 0 0
181181 0.707107 1.70711i 0.707107 1.70711i 1.00000i 0.5π-0.5\pi
0.707107 0.707107i 0.250000π-0.250000\pi
182182 0 0
183183 0 0
184184 −0.707107 + 0.292893i −0.707107 + 0.292893i
185185 0 0
186186 0 0
187187 0 0
188188 1.30656 + 1.30656i 1.30656 + 1.30656i
189189 0 0
190190 0.707107 + 1.70711i 0.707107 + 1.70711i
191191 0 0 1.00000 00
−1.00000 π\pi
192192 0 0
193193 0 0 1.00000 00
−1.00000 π\pi
194194 0 0
195195 0 0
196196 0.707107 + 0.707107i 0.707107 + 0.707107i
197197 0 0 −0.923880 0.382683i 0.875000π-0.875000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
198198 0 0
199199 1.41421 1.41421i 1.41421 1.41421i 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 0.707107i 0.250000π-0.250000\pi
200200 0.382683 + 0.923880i 0.382683 + 0.923880i
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 0 0
209209 0 0
210210 0 0
211211 0.707107 + 1.70711i 0.707107 + 1.70711i 0.707107 + 0.707107i 0.250000π0.250000\pi
1.00000i 0.5π0.5\pi
212212 1.30656 0.541196i 1.30656 0.541196i
213213 0 0
214214 −1.41421 −1.41421
215215 0 0
216216 0 0
217217 0 0
218218 −0.541196 0.541196i −0.541196 0.541196i
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
224224 0 0
225225 0 0
226226 −0.292893 0.707107i −0.292893 0.707107i
227227 −0.541196 1.30656i −0.541196 1.30656i −0.923880 0.382683i 0.875000π-0.875000\pi
0.382683 0.923880i 0.375000π-0.375000\pi
228228 0 0
229229 −1.70711 0.707107i −1.70711 0.707107i −0.707107 0.707107i 0.750000π-0.750000\pi
−1.00000 π\pi
230230 0.541196 0.541196i 0.541196 0.541196i
231231 0 0
232232 0 0
233233 1.30656 + 1.30656i 1.30656 + 1.30656i 0.923880 + 0.382683i 0.125000π0.125000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
234234 0 0
235235 −1.70711 0.707107i −1.70711 0.707107i
236236 0 0
237237 0 0
238238 0 0
239239 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
240240 0 0
241241 1.41421i 1.41421i 0.707107 + 0.707107i 0.250000π0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
242242 0.382683 0.923880i 0.382683 0.923880i
243243 0 0
244244 −0.707107 0.292893i −0.707107 0.292893i
245245 −0.923880 0.382683i −0.923880 0.382683i
246246 0 0
247247 0 0
248248 0.541196 1.30656i 0.541196 1.30656i
249249 0 0
250250 −0.707107 0.707107i −0.707107 0.707107i
251251 0 0 −0.923880 0.382683i 0.875000π-0.875000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 −1.00000 −1.00000
257257 1.84776i 1.84776i 0.382683 + 0.923880i 0.375000π0.375000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 0.541196 + 0.541196i 0.541196 + 0.541196i 0.923880 0.382683i 0.125000π-0.125000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
264264 0 0
265265 −1.00000 + 1.00000i −1.00000 + 1.00000i
266266 0 0
267267 0 0
268268 0 0
269269 0 0 −0.382683 0.923880i 0.625000π-0.625000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
270270 0 0
271271 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
272272 1.84776i 1.84776i
273273 0 0
274274 −0.292893 + 0.707107i −0.292893 + 0.707107i
275275 0 0
276276 0 0
277277 0 0 0.382683 0.923880i 0.375000π-0.375000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
278278 0.765367i 0.765367i
279279 0 0
280280 0 0
281281 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
282282 0 0
283283 0 0 0.382683 0.923880i 0.375000π-0.375000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 2.41421 2.41421
290290 0 0
291291 0 0
292292 0 0
293293 −0.541196 + 1.30656i −0.541196 + 1.30656i 0.382683 + 0.923880i 0.375000π0.375000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 −0.541196 + 1.30656i −0.541196 + 1.30656i
303303 0 0
304304 1.70711 0.707107i 1.70711 0.707107i
305305 0.765367 0.765367
306306 0 0
307307 0 0 −0.382683 0.923880i 0.625000π-0.625000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
308308 0 0
309309 0 0
310310 1.41421i 1.41421i
311311 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
312312 0 0
313313 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
314314 0 0
315315 0 0
316316 1.41421 1.41421i 1.41421 1.41421i
317317 0 0 −0.382683 0.923880i 0.625000π-0.625000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
318318 0 0
319319 0 0
320320 0.923880 0.382683i 0.923880 0.382683i
321321 0 0
322322 0 0
323323 1.30656 + 3.15432i 1.30656 + 3.15432i
324324 0 0
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 −0.707107 0.292893i −0.707107 0.292893i 1.00000i 0.5π-0.5\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
332332 0.541196 1.30656i 0.541196 1.30656i
333333 0 0
334334 0.292893 0.707107i 0.292893 0.707107i
335335 0 0
336336 0 0
337337 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
338338 0.923880 + 0.382683i 0.923880 + 0.382683i
339339 0 0
340340 0.707107 + 1.70711i 0.707107 + 1.70711i
341341 0 0
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 1.00000 1.00000i 1.00000 1.00000i
347347 −1.84776 0.765367i −1.84776 0.765367i −0.923880 0.382683i 0.875000π-0.875000\pi
−0.923880 0.382683i 0.875000π-0.875000\pi
348348 0 0
349349 0.292893 + 0.707107i 0.292893 + 0.707107i 1.00000 00
−0.707107 + 0.707107i 0.750000π0.750000\pi
350350 0 0
351351 0 0
352352 0 0
353353 0.765367i 0.765367i −0.923880 0.382683i 0.875000π-0.875000\pi
0.923880 0.382683i 0.125000π-0.125000\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
360360 0 0
361361 −1.70711 + 1.70711i −1.70711 + 1.70711i
362362 1.84776 1.84776
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 0 0 1.00000 00
−1.00000 π\pi
368368 −0.541196 0.541196i −0.541196 0.541196i
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0 0 0.382683 0.923880i 0.375000π-0.375000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
374374 0 0
375375 0 0
376376 −0.707107 + 1.70711i −0.707107 + 1.70711i
377377 0 0
378378 0 0
379379 0.292893 0.707107i 0.292893 0.707107i −0.707107 0.707107i 0.750000π-0.750000\pi
1.00000 00
380380 −1.30656 + 1.30656i −1.30656 + 1.30656i
381381 0 0
382382 0 0
383383 −1.84776 −1.84776 −0.923880 0.382683i 0.875000π-0.875000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 0 0 0.382683 0.923880i 0.375000π-0.375000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
390390 0 0
391391 1.00000 1.00000i 1.00000 1.00000i
392392 −0.382683 + 0.923880i −0.382683 + 0.923880i
393393 0 0
394394 0 0
395395 −0.765367 + 1.84776i −0.765367 + 1.84776i
396396 0 0
397397 0 0 0.923880 0.382683i 0.125000π-0.125000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
398398 1.84776 + 0.765367i 1.84776 + 0.765367i
399399 0 0
400400 −0.707107 + 0.707107i −0.707107 + 0.707107i
401401 0 0 1.00000 00
−1.00000 π\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 1.41421i 1.41421i
416416 0 0
417417 0 0
418418 0 0
419419 0 0 −0.382683 0.923880i 0.625000π-0.625000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
420420 0 0
421421 1.70711 + 0.707107i 1.70711 + 0.707107i 1.00000 00
0.707107 + 0.707107i 0.250000π0.250000\pi
422422 −1.30656 + 1.30656i −1.30656 + 1.30656i
423423 0 0
424424 1.00000 + 1.00000i 1.00000 + 1.00000i
425425 −1.30656 1.30656i −1.30656 1.30656i
426426 0 0
427427 0 0
428428 −0.541196 1.30656i −0.541196 1.30656i
429429 0 0
430430 0 0
431431 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
432432 0 0
433433 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
434434 0 0
435435 0 0
436436 0.292893 0.707107i 0.292893 0.707107i
437437 1.30656 + 0.541196i 1.30656 + 0.541196i
438438 0 0
439439 −1.41421 1.41421i −1.41421 1.41421i −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 0.707107i 0.750000π-0.750000\pi
440440 0 0
441441 0 0
442442 0 0
443443 −1.30656 0.541196i −1.30656 0.541196i −0.382683 0.923880i 0.625000π-0.625000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
450450 0 0
451451 0 0
452452 0.541196 0.541196i 0.541196 0.541196i
453453 0 0
454454 1.00000 1.00000i 1.00000 1.00000i
455455 0 0
456456 0 0
457457 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
458458 1.84776i 1.84776i
459459 0 0
460460 0.707107 + 0.292893i 0.707107 + 0.292893i
461461 0 0 −0.382683 0.923880i 0.625000π-0.625000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
462462 0 0
463463 0 0 1.00000 00
−1.00000 π\pi
464464 0 0
465465 0 0
466466 −0.707107 + 1.70711i −0.707107 + 1.70711i
467467 −1.84776 + 0.765367i −1.84776 + 0.765367i −0.923880 + 0.382683i 0.875000π0.875000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
468468 0 0
469469 0 0
470470 1.84776i 1.84776i
471471 0 0
472472 0 0
473473 0 0
474474 0 0
475475 0.707107 1.70711i 0.707107 1.70711i
476476 0 0
477477 0 0
478478 0 0
479479 0 0 1.00000 00
−1.00000 π\pi
480480 0 0
481481 0 0
482482 −1.30656 + 0.541196i −1.30656 + 0.541196i
483483 0 0
484484 1.00000 1.00000
485485 0 0
486486 0 0
487487 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
488488 0.765367i 0.765367i
489489 0 0
490490 1.00000i 1.00000i
491491 0 0 0.382683 0.923880i 0.375000π-0.375000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 1.41421 1.41421
497497 0 0
498498 0 0
499499 0.292893 + 0.707107i 0.292893 + 0.707107i 1.00000 00
−0.707107 + 0.707107i 0.750000π0.750000\pi
500500 0.382683 0.923880i 0.382683 0.923880i
501501 0 0
502502 0 0
503503 1.30656 1.30656i 1.30656 1.30656i 0.382683 0.923880i 0.375000π-0.375000\pi
0.923880 0.382683i 0.125000π-0.125000\pi
504504 0 0
505505 0 0
506506 0 0
507507 0 0
508508 0 0
509509 0 0 0.923880 0.382683i 0.125000π-0.125000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
510510 0 0
511511 0 0
512512 −0.382683 0.923880i −0.382683 0.923880i
513513 0 0
514514 −1.70711 + 0.707107i −1.70711 + 0.707107i
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
522522 0 0
523523 0 0 −0.923880 0.382683i 0.875000π-0.875000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
524524 0 0
525525 0 0
526526 −0.292893 + 0.707107i −0.292893 + 0.707107i
527527 2.61313i 2.61313i
528528 0 0
529529 0.414214i 0.414214i
530530 −1.30656 0.541196i −1.30656 0.541196i
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 1.00000 + 1.00000i 1.00000 + 1.00000i
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 0.707107 + 1.70711i 0.707107 + 1.70711i 0.707107 + 0.707107i 0.250000π0.250000\pi
1.00000i 0.5π0.5\pi
542542 0 0
543543 0 0
544544 1.70711 0.707107i 1.70711 0.707107i
545545 0.765367i 0.765367i
546546 0 0
547547 0 0 0.923880 0.382683i 0.125000π-0.125000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
548548 −0.765367 −0.765367
549549 0 0
550550 0 0
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0.707107 0.292893i 0.707107 0.292893i
557557 0.541196 + 1.30656i 0.541196 + 1.30656i 0.923880 + 0.382683i 0.125000π0.125000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 1.84776 0.765367i 1.84776 0.765367i 0.923880 0.382683i 0.125000π-0.125000\pi
0.923880 0.382683i 0.125000π-0.125000\pi
564564 0 0
565565 −0.292893 + 0.707107i −0.292893 + 0.707107i
566566 0 0
567567 0 0
568568 0 0
569569 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
570570 0 0
571571 0.292893 0.707107i 0.292893 0.707107i −0.707107 0.707107i 0.750000π-0.750000\pi
1.00000 00
572572 0 0
573573 0 0
574574 0 0
575575 −0.765367 −0.765367
576576 0 0
577577 0 0 1.00000 00
−1.00000 π\pi
578578 0.923880 + 2.23044i 0.923880 + 2.23044i
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 −1.41421 −1.41421
587587 0.541196 1.30656i 0.541196 1.30656i −0.382683 0.923880i 0.625000π-0.625000\pi
0.923880 0.382683i 0.125000π-0.125000\pi
588588 0 0
589589 −2.41421 + 1.00000i −2.41421 + 1.00000i
590590 0 0
591591 0 0
592592 0 0
593593 −1.84776 −1.84776 −0.923880 0.382683i 0.875000π-0.875000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
600600 0 0
601601 1.00000 + 1.00000i 1.00000 + 1.00000i 1.00000 00
1.00000i 0.5π0.5\pi
602602 0 0
603603 0 0
604604 −1.41421 −1.41421
605605 −0.923880 + 0.382683i −0.923880 + 0.382683i
606606 0 0
607607 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
608608 1.30656 + 1.30656i 1.30656 + 1.30656i
609609 0 0
610610 0.292893 + 0.707107i 0.292893 + 0.707107i
611611 0 0
612612 0 0
613613 0 0 −0.923880 0.382683i 0.875000π-0.875000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
614614 0 0
615615 0 0
616616 0 0
617617 0.541196 + 0.541196i 0.541196 + 0.541196i 0.923880 0.382683i 0.125000π-0.125000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
618618 0 0
619619 1.70711 + 0.707107i 1.70711 + 0.707107i 1.00000 00
0.707107 + 0.707107i 0.250000π0.250000\pi
620620 −1.30656 + 0.541196i −1.30656 + 0.541196i
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 1.00000i 1.00000i
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
632632 1.84776 + 0.765367i 1.84776 + 0.765367i
633633 0 0
634634 0 0
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 0.707107 + 0.707107i 0.707107 + 0.707107i
641641 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
642642 0 0
643643 0 0 0.923880 0.382683i 0.125000π-0.125000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
644644 0 0
645645 0 0
646646 −2.41421 + 2.41421i −2.41421 + 2.41421i
647647 −1.30656 1.30656i −1.30656 1.30656i −0.923880 0.382683i 0.875000π-0.875000\pi
−0.382683 0.923880i 0.625000π-0.625000\pi
648648 0 0
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 −0.541196 1.30656i −0.541196 1.30656i −0.923880 0.382683i 0.875000π-0.875000\pi
0.382683 0.923880i 0.375000π-0.375000\pi
654654 0 0
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 0 0 0.923880 0.382683i 0.125000π-0.125000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
660660 0 0
661661 −0.292893 + 0.707107i −0.292893 + 0.707107i 0.707107 + 0.707107i 0.250000π0.250000\pi
−1.00000 π\pi
662662 0.765367i 0.765367i
663663 0 0
664664 1.41421 1.41421
665665 0 0
666666 0 0
667667 0 0
668668 0.765367 0.765367
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0 0 1.00000 00
−1.00000 π\pi
674674 0 0
675675 0 0
676676 1.00000i 1.00000i
677677 0.541196 1.30656i 0.541196 1.30656i −0.382683 0.923880i 0.625000π-0.625000\pi
0.923880 0.382683i 0.125000π-0.125000\pi
678678 0 0
679679 0 0
680680 −1.30656 + 1.30656i −1.30656 + 1.30656i
681681 0 0
682682 0 0
683683 0.765367 1.84776i 0.765367 1.84776i 0.382683 0.923880i 0.375000π-0.375000\pi
0.382683 0.923880i 0.375000π-0.375000\pi
684684 0 0
685685 0.707107 0.292893i 0.707107 0.292893i
686686 0 0
687687 0 0
688688 0 0
689689 0 0
690690 0 0
691691 −0.292893 0.707107i −0.292893 0.707107i 0.707107 0.707107i 0.250000π-0.250000\pi
−1.00000 π\pi
692692 1.30656 + 0.541196i 1.30656 + 0.541196i
693693 0 0
694694 2.00000i 2.00000i
695695 −0.541196 + 0.541196i −0.541196 + 0.541196i
696696 0 0
697697 0 0
698698 −0.541196 + 0.541196i −0.541196 + 0.541196i
699699 0 0
700700 0 0
701701 0 0 0.923880 0.382683i 0.125000π-0.125000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
702702 0 0
703703 0 0
704704 0 0
705705 0 0
706706 0.707107 0.292893i 0.707107 0.292893i
707707 0 0
708708 0 0
709709 0.707107 + 0.292893i 0.707107 + 0.292893i 0.707107 0.707107i 0.250000π-0.250000\pi
1.00000i 0.5π0.5\pi
710710 0 0
711711 0 0
712712 0 0
713713 0.765367 + 0.765367i 0.765367 + 0.765367i
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
720720 0 0
721721 0 0
722722 −2.23044 0.923880i −2.23044 0.923880i
723723 0 0
724724 0.707107 + 1.70711i 0.707107 + 1.70711i
725725 0 0
726726 0 0
727727 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
728728 0 0
729729 0 0
730730 0 0
731731 0 0
732732 0 0
733733 0 0 −0.382683 0.923880i 0.625000π-0.625000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
734734 0 0
735735 0 0
736736 0.292893 0.707107i 0.292893 0.707107i
737737 0 0
738738 0 0
739739 1.70711 0.707107i 1.70711 0.707107i 0.707107 0.707107i 0.250000π-0.250000\pi
1.00000 00
740740 0 0
741741 0 0
742742 0 0
743743 1.30656 + 1.30656i 1.30656 + 1.30656i 0.923880 + 0.382683i 0.125000π0.125000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 −1.41421 −1.41421 −0.707107 0.707107i 0.750000π-0.750000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
752752 −1.84776 −1.84776
753753 0 0
754754 0 0
755755 1.30656 0.541196i 1.30656 0.541196i
756756 0 0
757757 0 0 0.382683 0.923880i 0.375000π-0.375000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
758758 0.765367 0.765367
759759 0 0
760760 −1.70711 0.707107i −1.70711 0.707107i
761761 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 −0.707107 1.70711i −0.707107 1.70711i
767767 0 0
768768 0 0
769769 1.41421 1.41421 0.707107 0.707107i 0.250000π-0.250000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
770770 0 0
771771 0 0
772772 0 0
773773 −0.765367 + 1.84776i −0.765367 + 1.84776i −0.382683 + 0.923880i 0.625000π0.625000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
774774 0 0
775775 1.00000 1.00000i 1.00000 1.00000i
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 1.30656 + 0.541196i 1.30656 + 0.541196i
783783 0 0
784784 −1.00000 −1.00000
785785 0 0
786786 0 0
787787 0 0 −0.382683 0.923880i 0.625000π-0.625000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
788788 0 0
789789 0 0
790790 −2.00000 −2.00000
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 2.00000i 2.00000i
797797 0 0 −0.382683 0.923880i 0.625000π-0.625000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
798798 0 0
799799 3.41421i 3.41421i
800800 −0.923880 0.382683i −0.923880 0.382683i
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
810810 0 0
811811 −1.70711 0.707107i −1.70711 0.707107i −0.707107 0.707107i 0.750000π-0.750000\pi
−1.00000 π\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0.541196 1.30656i 0.541196 1.30656i
819819 0 0
820820 0 0
821821 0 0 −0.923880 0.382683i 0.875000π-0.875000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
822822 0 0
823823 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
824824 0 0
825825 0 0
826826 0 0
827827 1.84776 + 0.765367i 1.84776 + 0.765367i 0.923880 + 0.382683i 0.125000π0.125000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
828828 0 0
829829 0.707107 + 1.70711i 0.707107 + 1.70711i 0.707107 + 0.707107i 0.250000π0.250000\pi
1.00000i 0.5π0.5\pi
830830 −1.30656 + 0.541196i −1.30656 + 0.541196i
831831 0 0
832832 0 0
833833 1.84776i 1.84776i
834834 0 0
835835 −0.707107 + 0.292893i −0.707107 + 0.292893i
836836 0 0
837837 0 0
838838 0 0
839839 0 0 −0.707107 0.707107i 0.750000π-0.750000\pi
0.707107 + 0.707107i 0.250000π0.250000\pi
840840 0 0
841841 0.707107 0.707107i 0.707107 0.707107i
842842 1.84776i 1.84776i
843843 0 0
844844 −1.70711 0.707107i −1.70711 0.707107i
845845 −0.382683 0.923880i −0.382683 0.923880i
846846 0 0
847847 0 0
848848 −0.541196 + 1.30656i −0.541196 + 1.30656i
849849 0 0
850850 0.707107 1.70711i 0.707107 1.70711i
851851 0 0
852852 0 0
853853 0 0 0.382683 0.923880i 0.375000π-0.375000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
854854 0 0
855855 0 0
856856 1.00000 1.00000i 1.00000 1.00000i
857857 0.541196 0.541196i 0.541196 0.541196i −0.382683 0.923880i 0.625000π-0.625000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
858858 0 0
859859 −0.707107 + 1.70711i −0.707107 + 1.70711i 1.00000i 0.5π0.5\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
860860 0 0
861861 0 0
862862 0 0
863863 0.765367 0.765367 0.382683 0.923880i 0.375000π-0.375000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
864864 0 0
865865 −1.41421 −1.41421
866866 0 0
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0.765367 0.765367
873873 0 0
874874 1.41421i 1.41421i
875875 0 0
876876 0 0
877877 0 0 0.923880 0.382683i 0.125000π-0.125000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
878878 0.765367 1.84776i 0.765367 1.84776i
879879 0 0
880880 0 0
881881 0 0 1.00000 00
−1.00000 π\pi
882882 0 0
883883 0 0 −0.382683 0.923880i 0.625000π-0.625000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
884884 0 0
885885 0 0
886886 1.41421i 1.41421i
887887 −0.541196 + 0.541196i −0.541196 + 0.541196i −0.923880 0.382683i 0.875000π-0.875000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 3.15432 1.30656i 3.15432 1.30656i
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 −2.41421 1.00000i −2.41421 1.00000i
902902 0 0
903903 0 0
904904 0.707107 + 0.292893i 0.707107 + 0.292893i
905905 −1.30656 1.30656i −1.30656 1.30656i
906906 0 0
907907 0 0 −0.923880 0.382683i 0.875000π-0.875000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
908908 1.30656 + 0.541196i 1.30656 + 0.541196i
909909 0 0
910910 0 0
911911 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 1.70711 0.707107i 1.70711 0.707107i
917917 0 0
918918 0 0
919919 −1.00000 1.00000i −1.00000 1.00000i 1.00000i 0.5π-0.5\pi
−1.00000 π\pi
920920 0.765367i 0.765367i
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
930930 0 0
931931 1.70711 0.707107i 1.70711 0.707107i
932932 −1.84776 −1.84776
933933 0 0
934934 −1.41421 1.41421i −1.41421 1.41421i
935935 0 0
936936 0 0
937937 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
938938 0 0
939939 0 0
940940 1.70711 0.707107i 1.70711 0.707107i
941941 0 0 −0.382683 0.923880i 0.625000π-0.625000\pi
0.382683 + 0.923880i 0.375000π0.375000\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 1.30656 0.541196i 1.30656 0.541196i 0.382683 0.923880i 0.375000π-0.375000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
948948 0 0
949949 0 0
950950 1.84776 1.84776
951951 0 0
952952 0 0
953953 1.30656 1.30656i 1.30656 1.30656i 0.382683 0.923880i 0.375000π-0.375000\pi
0.923880 0.382683i 0.125000π-0.125000\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 −1.00000 −1.00000
962962 0 0
963963 0 0
964964 −1.00000 1.00000i −1.00000 1.00000i
965965 0 0
966966 0 0
967967 0 0 0.707107 0.707107i 0.250000π-0.250000\pi
−0.707107 + 0.707107i 0.750000π0.750000\pi
968968 0.382683 + 0.923880i 0.382683 + 0.923880i
969969 0 0
970970 0 0
971971 0 0 0.382683 0.923880i 0.375000π-0.375000\pi
−0.382683 + 0.923880i 0.625000π0.625000\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 0.707107 0.292893i 0.707107 0.292893i
977977 −1.84776 −1.84776 −0.923880 0.382683i 0.875000π-0.875000\pi
−0.923880 + 0.382683i 0.875000π0.875000\pi
978978 0 0
979979 0 0
980980 0.923880 0.382683i 0.923880 0.382683i
981981 0 0
982982 0 0
983983 0.541196 0.541196i 0.541196 0.541196i −0.382683 0.923880i 0.625000π-0.625000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 1.00000 00
−1.00000 π\pi
992992 0.541196 + 1.30656i 0.541196 + 1.30656i
993993 0 0
994994 0 0
995995 −0.765367 1.84776i −0.765367 1.84776i
996996 0 0
997997 0 0 −0.923880 0.382683i 0.875000π-0.875000\pi
0.923880 + 0.382683i 0.125000π0.125000\pi
998998 −0.541196 + 0.541196i −0.541196 + 0.541196i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1440.1.cm.a.379.2 yes 8
3.2 odd 2 inner 1440.1.cm.a.379.1 yes 8
5.4 even 2 inner 1440.1.cm.a.379.1 yes 8
15.14 odd 2 CM 1440.1.cm.a.379.2 yes 8
32.19 odd 8 inner 1440.1.cm.a.19.1 8
96.83 even 8 inner 1440.1.cm.a.19.2 yes 8
160.19 odd 8 inner 1440.1.cm.a.19.2 yes 8
480.179 even 8 inner 1440.1.cm.a.19.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1440.1.cm.a.19.1 8 32.19 odd 8 inner
1440.1.cm.a.19.1 8 480.179 even 8 inner
1440.1.cm.a.19.2 yes 8 96.83 even 8 inner
1440.1.cm.a.19.2 yes 8 160.19 odd 8 inner
1440.1.cm.a.379.1 yes 8 3.2 odd 2 inner
1440.1.cm.a.379.1 yes 8 5.4 even 2 inner
1440.1.cm.a.379.2 yes 8 1.1 even 1 trivial
1440.1.cm.a.379.2 yes 8 15.14 odd 2 CM