Properties

Label 1440.2.m.b.719.3
Level $1440$
Weight $2$
Character 1440.719
Analytic conductor $11.498$
Analytic rank $0$
Dimension $4$
CM discriminant -40
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1440,2,Mod(719,1440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1440, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1440.719");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1440 = 2^{5} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1440.m (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.4984578911\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 4x^{2} + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 360)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 719.3
Root \(-1.58114 + 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 1440.719
Dual form 1440.2.m.b.719.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.23607i q^{5} -1.16228 q^{7} +5.88635i q^{11} +7.16228 q^{13} -6.32456 q^{19} -4.47214i q^{23} -5.00000 q^{25} -2.59893i q^{35} -4.83772 q^{37} +7.53006i q^{41} +2.82843i q^{47} -5.64911 q^{49} +5.65685i q^{53} -13.1623 q^{55} +14.3716i q^{59} +16.0153i q^{65} -6.84157i q^{77} -0.955223i q^{89} -8.32456 q^{91} -14.1421i q^{95} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{7} + 16 q^{13} - 20 q^{25} - 32 q^{37} + 28 q^{49} - 40 q^{55} - 8 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1440\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(641\) \(901\) \(991\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.23607i 1.00000i
\(6\) 0 0
\(7\) −1.16228 −0.439300 −0.219650 0.975579i \(-0.570491\pi\)
−0.219650 + 0.975579i \(0.570491\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 5.88635i 1.77480i 0.460999 + 0.887401i \(0.347491\pi\)
−0.460999 + 0.887401i \(0.652509\pi\)
\(12\) 0 0
\(13\) 7.16228 1.98646 0.993229 0.116171i \(-0.0370621\pi\)
0.993229 + 0.116171i \(0.0370621\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) −6.32456 −1.45095 −0.725476 0.688247i \(-0.758380\pi\)
−0.725476 + 0.688247i \(0.758380\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 4.47214i − 0.932505i −0.884652 0.466252i \(-0.845604\pi\)
0.884652 0.466252i \(-0.154396\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) − 2.59893i − 0.439300i
\(36\) 0 0
\(37\) −4.83772 −0.795317 −0.397658 0.917534i \(-0.630177\pi\)
−0.397658 + 0.917534i \(0.630177\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 7.53006i 1.17600i 0.808862 + 0.587999i \(0.200084\pi\)
−0.808862 + 0.587999i \(0.799916\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.82843i 0.412568i 0.978492 + 0.206284i \(0.0661372\pi\)
−0.978492 + 0.206284i \(0.933863\pi\)
\(48\) 0 0
\(49\) −5.64911 −0.807016
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 5.65685i 0.777029i 0.921443 + 0.388514i \(0.127012\pi\)
−0.921443 + 0.388514i \(0.872988\pi\)
\(54\) 0 0
\(55\) −13.1623 −1.77480
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 14.3716i 1.87103i 0.353291 + 0.935513i \(0.385063\pi\)
−0.353291 + 0.935513i \(0.614937\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 16.0153i 1.98646i
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 6.84157i − 0.779670i
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) − 0.955223i − 0.101253i −0.998718 0.0506267i \(-0.983878\pi\)
0.998718 0.0506267i \(-0.0161219\pi\)
\(90\) 0 0
\(91\) −8.32456 −0.872651
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) − 14.1421i − 1.45095i
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 10.8377 1.06787 0.533936 0.845525i \(-0.320712\pi\)
0.533936 + 0.845525i \(0.320712\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(108\) 0 0
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 10.0000 0.932505
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −23.6491 −2.14992
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) − 11.1803i − 1.00000i
\(126\) 0 0
\(127\) 17.8114 1.58051 0.790253 0.612781i \(-0.209949\pi\)
0.790253 + 0.612781i \(0.209949\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 11.0842i − 0.968432i −0.874948 0.484216i \(-0.839105\pi\)
0.874948 0.484216i \(-0.160895\pi\)
\(132\) 0 0
\(133\) 7.35089 0.637403
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) −14.0000 −1.18746 −0.593732 0.804663i \(-0.702346\pi\)
−0.593732 + 0.804663i \(0.702346\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 42.1597i 3.52557i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −23.8114 −1.90036 −0.950178 0.311708i \(-0.899099\pi\)
−0.950178 + 0.311708i \(0.899099\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 5.19786i 0.409649i
\(162\) 0 0
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 4.47214i − 0.346064i −0.984916 0.173032i \(-0.944644\pi\)
0.984916 0.173032i \(-0.0553564\pi\)
\(168\) 0 0
\(169\) 38.2982 2.94602
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 22.6274i 1.72033i 0.510015 + 0.860165i \(0.329640\pi\)
−0.510015 + 0.860165i \(0.670360\pi\)
\(174\) 0 0
\(175\) 5.81139 0.439300
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 22.8569i 1.70841i 0.519940 + 0.854203i \(0.325954\pi\)
−0.519940 + 0.854203i \(0.674046\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) − 10.8175i − 0.795317i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 22.3607i − 1.59313i −0.604551 0.796566i \(-0.706648\pi\)
0.604551 0.796566i \(-0.293352\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −16.8377 −1.17600
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) − 37.2285i − 2.57515i
\(210\) 0 0
\(211\) 22.0000 1.51454 0.757271 0.653101i \(-0.226532\pi\)
0.757271 + 0.653101i \(0.226532\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 29.8114 1.99632 0.998159 0.0606498i \(-0.0193173\pi\)
0.998159 + 0.0606498i \(0.0193173\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(234\) 0 0
\(235\) −6.32456 −0.412568
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(240\) 0 0
\(241\) 25.2982 1.62960 0.814801 0.579741i \(-0.196846\pi\)
0.814801 + 0.579741i \(0.196846\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) − 12.6318i − 0.807016i
\(246\) 0 0
\(247\) −45.2982 −2.88226
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 20.9465i − 1.32213i −0.750329 0.661065i \(-0.770105\pi\)
0.750329 0.661065i \(-0.229895\pi\)
\(252\) 0 0
\(253\) 26.3246 1.65501
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 5.62278 0.349382
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 31.3050i − 1.93035i −0.261612 0.965173i \(-0.584254\pi\)
0.261612 0.965173i \(-0.415746\pi\)
\(264\) 0 0
\(265\) −12.6491 −0.777029
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 29.4317i − 1.77480i
\(276\) 0 0
\(277\) 14.1359 0.849347 0.424673 0.905347i \(-0.360389\pi\)
0.424673 + 0.905347i \(0.360389\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) − 2.33219i − 0.139127i −0.997578 0.0695635i \(-0.977839\pi\)
0.997578 0.0695635i \(-0.0221607\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 8.75202i − 0.516615i
\(288\) 0 0
\(289\) −17.0000 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 4.47214i 0.261265i 0.991431 + 0.130632i \(0.0417008\pi\)
−0.991431 + 0.130632i \(0.958299\pi\)
\(294\) 0 0
\(295\) −32.1359 −1.87103
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 32.0307i − 1.85238i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 31.3050i 1.75826i 0.476581 + 0.879131i \(0.341876\pi\)
−0.476581 + 0.879131i \(0.658124\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) −35.8114 −1.98646
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) − 3.28742i − 0.181241i
\(330\) 0 0
\(331\) 31.6228 1.73814 0.869072 0.494685i \(-0.164716\pi\)
0.869072 + 0.494685i \(0.164716\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 14.7018 0.793821
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(360\) 0 0
\(361\) 21.0000 1.10526
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −6.18861 −0.323043 −0.161521 0.986869i \(-0.551640\pi\)
−0.161521 + 0.986869i \(0.551640\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) − 6.57484i − 0.341348i
\(372\) 0 0
\(373\) 38.1359 1.97460 0.987302 0.158854i \(-0.0507798\pi\)
0.987302 + 0.158854i \(0.0507798\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 34.0000 1.74646 0.873231 0.487306i \(-0.162020\pi\)
0.873231 + 0.487306i \(0.162020\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 36.7696i 1.87884i 0.342773 + 0.939418i \(0.388634\pi\)
−0.342773 + 0.939418i \(0.611366\pi\)
\(384\) 0 0
\(385\) 15.2982 0.779670
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 31.1623 1.56399 0.781995 0.623285i \(-0.214202\pi\)
0.781995 + 0.623285i \(0.214202\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) − 17.9258i − 0.895171i −0.894241 0.447586i \(-0.852284\pi\)
0.894241 0.447586i \(-0.147716\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 28.4765i − 1.41153i
\(408\) 0 0
\(409\) 14.0000 0.692255 0.346128 0.938187i \(-0.387496\pi\)
0.346128 + 0.938187i \(0.387496\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 16.7038i − 0.821942i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) − 3.97590i − 0.194236i −0.995273 0.0971178i \(-0.969038\pi\)
0.995273 0.0971178i \(-0.0309624\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 28.2843i 1.35302i
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) 2.13594 0.101253
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 6.15309i 0.290382i 0.989404 + 0.145191i \(0.0463797\pi\)
−0.989404 + 0.145191i \(0.953620\pi\)
\(450\) 0 0
\(451\) −44.3246 −2.08716
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) − 18.6143i − 0.872651i
\(456\) 0 0
\(457\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 41.8114 1.94314 0.971570 0.236752i \(-0.0760830\pi\)
0.971570 + 0.236752i \(0.0760830\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 31.6228 1.45095
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) −34.6491 −1.57986
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −44.1359 −1.99999 −0.999995 0.00308010i \(-0.999020\pi\)
−0.999995 + 0.00308010i \(0.999020\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 32.7192i 1.47660i 0.674475 + 0.738298i \(0.264370\pi\)
−0.674475 + 0.738298i \(0.735630\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −44.2719 −1.98188 −0.990941 0.134298i \(-0.957122\pi\)
−0.990941 + 0.134298i \(0.957122\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 19.7990i 0.882793i 0.897312 + 0.441397i \(0.145517\pi\)
−0.897312 + 0.441397i \(0.854483\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 24.2339i 1.06787i
\(516\) 0 0
\(517\) −16.6491 −0.732227
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) − 44.7586i − 1.96091i −0.196744 0.980455i \(-0.563037\pi\)
0.196744 0.980455i \(-0.436963\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 3.00000 0.130435
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 53.9324i 2.33607i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) − 33.2526i − 1.43229i
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 45.2548i − 1.91751i −0.284236 0.958754i \(-0.591740\pi\)
0.284236 0.958754i \(-0.408260\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 41.4712i 1.73856i 0.494318 + 0.869281i \(0.335418\pi\)
−0.494318 + 0.869281i \(0.664582\pi\)
\(570\) 0 0
\(571\) −44.2719 −1.85272 −0.926360 0.376638i \(-0.877080\pi\)
−0.926360 + 0.376638i \(0.877080\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 22.3607i 0.932505i
\(576\) 0 0
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −33.2982 −1.37907
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) 25.2982 1.03194 0.515968 0.856608i \(-0.327432\pi\)
0.515968 + 0.856608i \(0.327432\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) − 52.8810i − 2.14992i
\(606\) 0 0
\(607\) 36.7851 1.49306 0.746530 0.665352i \(-0.231719\pi\)
0.746530 + 0.665352i \(0.231719\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 20.2580i 0.819550i
\(612\) 0 0
\(613\) −30.7851 −1.24340 −0.621698 0.783257i \(-0.713557\pi\)
−0.621698 + 0.783257i \(0.713557\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(618\) 0 0
\(619\) 46.0000 1.84890 0.924448 0.381308i \(-0.124526\pi\)
0.924448 + 0.381308i \(0.124526\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 1.11023i 0.0444806i
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 39.8275i 1.58051i
\(636\) 0 0
\(637\) −40.4605 −1.60310
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 34.3629i 1.35725i 0.734484 + 0.678626i \(0.237424\pi\)
−0.734484 + 0.678626i \(0.762576\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 31.1127i − 1.22317i −0.791180 0.611583i \(-0.790533\pi\)
0.791180 0.611583i \(-0.209467\pi\)
\(648\) 0 0
\(649\) −84.5964 −3.32070
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 4.47214i 0.175008i 0.996164 + 0.0875041i \(0.0278891\pi\)
−0.996164 + 0.0875041i \(0.972111\pi\)
\(654\) 0 0
\(655\) 24.7851 0.968432
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 49.6897i 1.93564i 0.251649 + 0.967818i \(0.419027\pi\)
−0.251649 + 0.967818i \(0.580973\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 16.4371i 0.637403i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 49.1935i − 1.89066i −0.326116 0.945330i \(-0.605740\pi\)
0.326116 0.945330i \(-0.394260\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 40.5160i 1.54354i
\(690\) 0 0
\(691\) 31.6228 1.20299 0.601494 0.798878i \(-0.294573\pi\)
0.601494 + 0.798878i \(0.294573\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) − 31.3050i − 1.18746i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 0 0
\(703\) 30.5964 1.15397
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) −94.2719 −3.52557
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) −12.5964 −0.469116
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 34.8377 1.29206 0.646030 0.763312i \(-0.276428\pi\)
0.646030 + 0.763312i \(0.276428\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) −18.7851 −0.693842 −0.346921 0.937894i \(-0.612773\pi\)
−0.346921 + 0.937894i \(0.612773\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) −6.32456 −0.232653 −0.116326 0.993211i \(-0.537112\pi\)
−0.116326 + 0.993211i \(0.537112\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 36.7696i 1.34894i 0.738300 + 0.674472i \(0.235629\pi\)
−0.738300 + 0.674472i \(0.764371\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −9.86406 −0.358515 −0.179258 0.983802i \(-0.557370\pi\)
−0.179258 + 0.983802i \(0.557370\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 51.3334i 1.86084i 0.366501 + 0.930418i \(0.380556\pi\)
−0.366501 + 0.930418i \(0.619444\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 102.934i 3.71672i
\(768\) 0 0
\(769\) −12.6491 −0.456139 −0.228069 0.973645i \(-0.573241\pi\)
−0.228069 + 0.973645i \(0.573241\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 22.3607i − 0.804258i −0.915583 0.402129i \(-0.868270\pi\)
0.915583 0.402129i \(-0.131730\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 47.6243i − 1.70632i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) − 53.2439i − 1.90036i
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 39.5980i 1.40263i 0.712850 + 0.701316i \(0.247404\pi\)
−0.712850 + 0.701316i \(0.752596\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −11.6228 −0.409649
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 17.3923i 0.611481i 0.952115 + 0.305741i \(0.0989040\pi\)
−0.952115 + 0.305741i \(0.901096\pi\)
\(810\) 0 0
\(811\) −2.00000 −0.0702295 −0.0351147 0.999383i \(-0.511180\pi\)
−0.0351147 + 0.999383i \(0.511180\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(822\) 0 0
\(823\) −56.1359 −1.95678 −0.978388 0.206778i \(-0.933702\pi\)
−0.978388 + 0.206778i \(0.933702\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 10.0000 0.346064
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −29.0000 −1.00000
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 85.6374i 2.94602i
\(846\) 0 0
\(847\) 27.4868 0.944459
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 21.6350i 0.741637i
\(852\) 0 0
\(853\) 45.1096 1.54452 0.772262 0.635304i \(-0.219125\pi\)
0.772262 + 0.635304i \(0.219125\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) −14.0000 −0.477674 −0.238837 0.971060i \(-0.576766\pi\)
−0.238837 + 0.971060i \(0.576766\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 58.1378i − 1.97903i −0.144421 0.989516i \(-0.546132\pi\)
0.144421 0.989516i \(-0.453868\pi\)
\(864\) 0 0
\(865\) −50.5964 −1.72033
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 12.9947i 0.439300i
\(876\) 0 0
\(877\) 33.1096 1.11803 0.559016 0.829157i \(-0.311179\pi\)
0.559016 + 0.829157i \(0.311179\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 49.9565i 1.68308i 0.540198 + 0.841538i \(0.318349\pi\)
−0.540198 + 0.841538i \(0.681651\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 4.47214i − 0.150160i −0.997178 0.0750798i \(-0.976079\pi\)
0.997178 0.0750798i \(-0.0239212\pi\)
\(888\) 0 0
\(889\) −20.7018 −0.694315
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 17.8885i − 0.598617i
\(894\) 0 0
\(895\) −51.1096 −1.70841
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 12.8829i 0.425432i
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 24.1886 0.795317
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 59.8187i 1.96259i 0.192514 + 0.981294i \(0.438336\pi\)
−0.192514 + 0.981294i \(0.561664\pi\)
\(930\) 0 0
\(931\) 35.7281 1.17094
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 33.6754 1.09662
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 31.0000 1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 15.8641 0.510154 0.255077 0.966921i \(-0.417899\pi\)
0.255077 + 0.966921i \(0.417899\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 48.3128i 1.55043i 0.631697 + 0.775215i \(0.282359\pi\)
−0.631697 + 0.775215i \(0.717641\pi\)
\(972\) 0 0
\(973\) 16.2719 0.521653
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) 0 0
\(979\) 5.62278 0.179705
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) − 48.0833i − 1.53362i −0.641875 0.766809i \(-0.721843\pi\)
0.641875 0.766809i \(-0.278157\pi\)
\(984\) 0 0
\(985\) 50.0000 1.59313
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −6.78505 −0.214885 −0.107442 0.994211i \(-0.534266\pi\)
−0.107442 + 0.994211i \(0.534266\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1440.2.m.b.719.3 4
3.2 odd 2 inner 1440.2.m.b.719.1 4
4.3 odd 2 360.2.m.a.179.2 4
5.2 odd 4 7200.2.b.f.4751.4 8
5.3 odd 4 7200.2.b.f.4751.6 8
5.4 even 2 1440.2.m.a.719.2 4
8.3 odd 2 1440.2.m.a.719.2 4
8.5 even 2 360.2.m.b.179.3 yes 4
12.11 even 2 360.2.m.a.179.3 yes 4
15.2 even 4 7200.2.b.f.4751.3 8
15.8 even 4 7200.2.b.f.4751.5 8
15.14 odd 2 1440.2.m.a.719.4 4
20.3 even 4 1800.2.b.f.251.2 8
20.7 even 4 1800.2.b.f.251.7 8
20.19 odd 2 360.2.m.b.179.3 yes 4
24.5 odd 2 360.2.m.b.179.2 yes 4
24.11 even 2 1440.2.m.a.719.4 4
40.3 even 4 7200.2.b.f.4751.4 8
40.13 odd 4 1800.2.b.f.251.7 8
40.19 odd 2 CM 1440.2.m.b.719.3 4
40.27 even 4 7200.2.b.f.4751.6 8
40.29 even 2 360.2.m.a.179.2 4
40.37 odd 4 1800.2.b.f.251.2 8
60.23 odd 4 1800.2.b.f.251.6 8
60.47 odd 4 1800.2.b.f.251.3 8
60.59 even 2 360.2.m.b.179.2 yes 4
120.29 odd 2 360.2.m.a.179.3 yes 4
120.53 even 4 1800.2.b.f.251.3 8
120.59 even 2 inner 1440.2.m.b.719.1 4
120.77 even 4 1800.2.b.f.251.6 8
120.83 odd 4 7200.2.b.f.4751.3 8
120.107 odd 4 7200.2.b.f.4751.5 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
360.2.m.a.179.2 4 4.3 odd 2
360.2.m.a.179.2 4 40.29 even 2
360.2.m.a.179.3 yes 4 12.11 even 2
360.2.m.a.179.3 yes 4 120.29 odd 2
360.2.m.b.179.2 yes 4 24.5 odd 2
360.2.m.b.179.2 yes 4 60.59 even 2
360.2.m.b.179.3 yes 4 8.5 even 2
360.2.m.b.179.3 yes 4 20.19 odd 2
1440.2.m.a.719.2 4 5.4 even 2
1440.2.m.a.719.2 4 8.3 odd 2
1440.2.m.a.719.4 4 15.14 odd 2
1440.2.m.a.719.4 4 24.11 even 2
1440.2.m.b.719.1 4 3.2 odd 2 inner
1440.2.m.b.719.1 4 120.59 even 2 inner
1440.2.m.b.719.3 4 1.1 even 1 trivial
1440.2.m.b.719.3 4 40.19 odd 2 CM
1800.2.b.f.251.2 8 20.3 even 4
1800.2.b.f.251.2 8 40.37 odd 4
1800.2.b.f.251.3 8 60.47 odd 4
1800.2.b.f.251.3 8 120.53 even 4
1800.2.b.f.251.6 8 60.23 odd 4
1800.2.b.f.251.6 8 120.77 even 4
1800.2.b.f.251.7 8 20.7 even 4
1800.2.b.f.251.7 8 40.13 odd 4
7200.2.b.f.4751.3 8 15.2 even 4
7200.2.b.f.4751.3 8 120.83 odd 4
7200.2.b.f.4751.4 8 5.2 odd 4
7200.2.b.f.4751.4 8 40.3 even 4
7200.2.b.f.4751.5 8 15.8 even 4
7200.2.b.f.4751.5 8 120.107 odd 4
7200.2.b.f.4751.6 8 5.3 odd 4
7200.2.b.f.4751.6 8 40.27 even 4