Properties

Label 1440.2.o.b
Level $1440$
Weight $2$
Character orbit 1440.o
Analytic conductor $11.498$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1440,2,Mod(1439,1440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1440, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1440.1439");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1440 = 2^{5} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1440.o (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.4984578911\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.426337261060096.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4x^{9} - 3x^{8} + 4x^{7} + 8x^{6} + 8x^{5} - 12x^{4} - 32x^{3} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{5} - \beta_{9} q^{7} + ( - \beta_{4} - \beta_{3} + \beta_{2}) q^{11} + ( - \beta_{8} + \beta_{7}) q^{13} + \beta_{6} q^{17} + 2 \beta_{7} q^{19} + (\beta_{11} - 2 \beta_{5} + \cdots - \beta_{2}) q^{23}+ \cdots + (\beta_{10} + 2 \beta_{8} + \cdots + \beta_1) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 8 q^{25} + 64 q^{43} - 4 q^{49} - 48 q^{55} - 8 q^{61} - 32 q^{67} + 20 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{12} - 4x^{9} - 3x^{8} + 4x^{7} + 8x^{6} + 8x^{5} - 12x^{4} - 32x^{3} + 64 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( - \nu^{11} + 12 \nu^{9} + 16 \nu^{8} + 11 \nu^{7} - 28 \nu^{6} - 44 \nu^{5} + 52 \nu^{4} + 100 \nu^{3} + \cdots - 288 ) / 80 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 3 \nu^{11} + \nu^{10} + 22 \nu^{9} + 2 \nu^{8} - 19 \nu^{7} - 67 \nu^{6} - 22 \nu^{5} + 110 \nu^{4} + \cdots - 352 ) / 160 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 4 \nu^{11} + 5 \nu^{10} + 8 \nu^{9} - 6 \nu^{8} + 4 \nu^{7} - 27 \nu^{6} + 4 \nu^{5} + 18 \nu^{4} + \cdots - 32 ) / 160 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{11} + 4\nu^{10} + \nu^{9} + 2\nu^{8} - 7\nu^{7} - 20\nu^{6} + \nu^{5} + 18\nu^{4} + 18\nu^{3} - 16\nu^{2} - 72\nu ) / 80 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -\nu^{10} - \nu^{9} + 2\nu^{7} + 3\nu^{6} - 5\nu^{5} - 4\nu^{4} - 2\nu^{3} + 8\nu^{2} + 24\nu ) / 16 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( - 3 \nu^{11} - 8 \nu^{10} + 18 \nu^{9} + 16 \nu^{8} + 29 \nu^{7} - 60 \nu^{6} - 102 \nu^{5} + \cdots - 320 ) / 160 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - \nu^{11} - 12 \nu^{10} - 20 \nu^{9} - 12 \nu^{8} + 35 \nu^{7} + 48 \nu^{6} + 36 \nu^{5} + \cdots + 448 ) / 160 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( -3\nu^{11} - \nu^{10} + 4\nu^{8} + 5\nu^{7} - \nu^{6} - 12\nu^{5} - 8\nu^{4} - 12\nu^{3} + 36\nu^{2} + 16\nu + 64 ) / 40 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( - 7 \nu^{11} - 12 \nu^{10} + 12 \nu^{9} + 44 \nu^{8} + 21 \nu^{7} - 40 \nu^{6} - 108 \nu^{5} + \cdots - 320 ) / 160 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( 2 \nu^{11} + \nu^{10} + 2 \nu^{9} - 3 \nu^{8} - 4 \nu^{7} + 3 \nu^{6} - 2 \nu^{5} + 5 \nu^{4} + \cdots - 72 ) / 20 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( - 11 \nu^{11} - 22 \nu^{10} - 30 \nu^{9} + 28 \nu^{8} + 85 \nu^{7} + 38 \nu^{6} - 94 \nu^{5} + \cdots + 448 ) / 160 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{11} + \beta_{9} + \beta_{7} + \beta_{5} + \beta_{4} + \beta_{3} - \beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -\beta_{10} - \beta_{8} - 2\beta_{7} + \beta_{6} - 2\beta_{4} + \beta_{3} - \beta_{2} - \beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( \beta_{11} + \beta_{9} - 2\beta_{8} - \beta_{7} - 2\beta_{6} + \beta_{5} - \beta_{4} + 3\beta_{3} + \beta_{2} + 4 ) / 4 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -3\beta_{11} - 3\beta_{10} - 2\beta_{9} + 6\beta_{5} - \beta_{3} - \beta_{2} + 3\beta _1 + 2 ) / 4 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -\beta_{11} - 4\beta_{10} + \beta_{9} - 4\beta_{8} + \beta_{7} - 7\beta_{5} - 7\beta_{4} + \beta_{3} - \beta_{2} - 8 ) / 4 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( \beta_{10} + 5\beta_{8} - 6\beta_{7} - 5\beta_{6} - 14\beta_{4} + 3\beta_{3} - 3\beta_{2} + \beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 3 \beta_{11} - 9 \beta_{9} - 2 \beta_{8} + 9 \beta_{7} - 2 \beta_{6} - \beta_{5} + \beta_{4} + 5 \beta_{3} + \cdots + 4 ) / 4 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( -5\beta_{11} - 5\beta_{10} + 10\beta_{9} - 14\beta_{5} - 15\beta_{3} - 15\beta_{2} + 5\beta _1 - 2 ) / 4 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( - 3 \beta_{11} + 12 \beta_{10} + 7 \beta_{9} + 16 \beta_{8} + 7 \beta_{7} + 4 \beta_{6} - 33 \beta_{5} + \cdots + 32 ) / 4 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( ( 15\beta_{10} + 11\beta_{8} - 2\beta_{7} - 11\beta_{6} + 38\beta_{4} + 37\beta_{3} - 37\beta_{2} + 15\beta_1 ) / 4 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( \beta_{11} + \beta_{9} - 50 \beta_{8} - \beta_{7} + 22 \beta_{6} - 7 \beta_{5} + 7 \beta_{4} + \cdots + 100 ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1440\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(641\) \(901\) \(991\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1439.1
−0.0912546 + 1.41127i
−0.0912546 1.41127i
−0.760198 + 1.19252i
−0.760198 1.19252i
−1.35818 + 0.394157i
−1.35818 0.394157i
−0.394157 1.35818i
−0.394157 + 1.35818i
1.19252 + 0.760198i
1.19252 0.760198i
1.41127 + 0.0912546i
1.41127 0.0912546i
0 0 0 −2.20963 0.342849i 0 −2.64002 0 0 0
1439.2 0 0 0 −2.20963 + 0.342849i 0 −2.64002 0 0 0
1439.3 0 0 0 −1.24561 1.85700i 0 −0.864641 0 0 0
1439.4 0 0 0 −1.24561 + 1.85700i 0 −0.864641 0 0 0
1439.5 0 0 0 −0.256912 2.22126i 0 3.50466 0 0 0
1439.6 0 0 0 −0.256912 + 2.22126i 0 3.50466 0 0 0
1439.7 0 0 0 0.256912 2.22126i 0 3.50466 0 0 0
1439.8 0 0 0 0.256912 + 2.22126i 0 3.50466 0 0 0
1439.9 0 0 0 1.24561 1.85700i 0 −0.864641 0 0 0
1439.10 0 0 0 1.24561 + 1.85700i 0 −0.864641 0 0 0
1439.11 0 0 0 2.20963 0.342849i 0 −2.64002 0 0 0
1439.12 0 0 0 2.20963 + 0.342849i 0 −2.64002 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1439.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
20.d odd 2 1 inner
60.h even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1440.2.o.b yes 12
3.b odd 2 1 inner 1440.2.o.b yes 12
4.b odd 2 1 1440.2.o.a 12
5.b even 2 1 1440.2.o.a 12
5.c odd 4 1 7200.2.h.l 12
5.c odd 4 1 7200.2.h.m 12
8.b even 2 1 2880.2.o.e 12
8.d odd 2 1 2880.2.o.f 12
12.b even 2 1 1440.2.o.a 12
15.d odd 2 1 1440.2.o.a 12
15.e even 4 1 7200.2.h.l 12
15.e even 4 1 7200.2.h.m 12
20.d odd 2 1 inner 1440.2.o.b yes 12
20.e even 4 1 7200.2.h.l 12
20.e even 4 1 7200.2.h.m 12
24.f even 2 1 2880.2.o.f 12
24.h odd 2 1 2880.2.o.e 12
40.e odd 2 1 2880.2.o.e 12
40.f even 2 1 2880.2.o.f 12
60.h even 2 1 inner 1440.2.o.b yes 12
60.l odd 4 1 7200.2.h.l 12
60.l odd 4 1 7200.2.h.m 12
120.i odd 2 1 2880.2.o.f 12
120.m even 2 1 2880.2.o.e 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1440.2.o.a 12 4.b odd 2 1
1440.2.o.a 12 5.b even 2 1
1440.2.o.a 12 12.b even 2 1
1440.2.o.a 12 15.d odd 2 1
1440.2.o.b yes 12 1.a even 1 1 trivial
1440.2.o.b yes 12 3.b odd 2 1 inner
1440.2.o.b yes 12 20.d odd 2 1 inner
1440.2.o.b yes 12 60.h even 2 1 inner
2880.2.o.e 12 8.b even 2 1
2880.2.o.e 12 24.h odd 2 1
2880.2.o.e 12 40.e odd 2 1
2880.2.o.e 12 120.m even 2 1
2880.2.o.f 12 8.d odd 2 1
2880.2.o.f 12 24.f even 2 1
2880.2.o.f 12 40.f even 2 1
2880.2.o.f 12 120.i odd 2 1
7200.2.h.l 12 5.c odd 4 1
7200.2.h.l 12 15.e even 4 1
7200.2.h.l 12 20.e even 4 1
7200.2.h.l 12 60.l odd 4 1
7200.2.h.m 12 5.c odd 4 1
7200.2.h.m 12 15.e even 4 1
7200.2.h.m 12 20.e even 4 1
7200.2.h.m 12 60.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{3} - 10T_{7} - 8 \) acting on \(S_{2}^{\mathrm{new}}(1440, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} \) Copy content Toggle raw display
$3$ \( T^{12} \) Copy content Toggle raw display
$5$ \( T^{12} + 4 T^{10} + \cdots + 15625 \) Copy content Toggle raw display
$7$ \( (T^{3} - 10 T - 8)^{4} \) Copy content Toggle raw display
$11$ \( (T^{6} - 28 T^{4} + \cdots - 512)^{2} \) Copy content Toggle raw display
$13$ \( (T^{6} + 32 T^{4} + \cdots + 16)^{2} \) Copy content Toggle raw display
$17$ \( (T^{6} - 34 T^{4} + \cdots - 128)^{2} \) Copy content Toggle raw display
$19$ \( (T^{6} + 80 T^{4} + \cdots + 4096)^{2} \) Copy content Toggle raw display
$23$ \( (T^{6} + 88 T^{4} + \cdots + 512)^{2} \) Copy content Toggle raw display
$29$ \( (T^{6} + 98 T^{4} + \cdots + 3200)^{2} \) Copy content Toggle raw display
$31$ \( (T^{6} + 88 T^{4} + \cdots + 6400)^{2} \) Copy content Toggle raw display
$37$ \( (T^{6} + 44 T^{4} + \cdots + 64)^{2} \) Copy content Toggle raw display
$41$ \( (T^{6} + 102 T^{4} + \cdots + 13448)^{2} \) Copy content Toggle raw display
$43$ \( (T^{3} - 16 T^{2} + \cdots + 512)^{4} \) Copy content Toggle raw display
$47$ \( (T^{6} + 176 T^{4} + \cdots + 51200)^{2} \) Copy content Toggle raw display
$53$ \( (T^{6} - 306 T^{4} + \cdots - 991232)^{2} \) Copy content Toggle raw display
$59$ \( (T^{6} - 220 T^{4} + \cdots - 359552)^{2} \) Copy content Toggle raw display
$61$ \( (T^{3} + 2 T^{2} + \cdots - 328)^{4} \) Copy content Toggle raw display
$67$ \( (T^{3} + 8 T^{2} + \cdots - 512)^{4} \) Copy content Toggle raw display
$71$ \( (T^{6} - 256 T^{4} + \cdots - 204800)^{2} \) Copy content Toggle raw display
$73$ \( (T^{6} + 276 T^{4} + \cdots + 215296)^{2} \) Copy content Toggle raw display
$79$ \( (T^{6} + 344 T^{4} + \cdots + 215296)^{2} \) Copy content Toggle raw display
$83$ \( (T^{6} + 256 T^{4} + \cdots + 204800)^{2} \) Copy content Toggle raw display
$89$ \( (T^{6} + 118 T^{4} + \cdots + 200)^{2} \) Copy content Toggle raw display
$97$ \( (T^{6} + 276 T^{4} + \cdots + 719104)^{2} \) Copy content Toggle raw display
show more
show less