gp: [N,k,chi] = [1440,2,Mod(481,1440)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1440, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 2, 0]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1440.481");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [8,0,0,0,4,0,0,0,0]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 7 1,\beta_1,\ldots,\beta_{7} 1 , β 1 , … , β 7 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring
β 1 \beta_{1} β 1 = = =
ζ 24 4 \zeta_{24}^{4} ζ 2 4 4
v^4
β 2 \beta_{2} β 2 = = =
ζ 24 6 + ζ 24 2 \zeta_{24}^{6} + \zeta_{24}^{2} ζ 2 4 6 + ζ 2 4 2
v^6 + v^2
β 3 \beta_{3} β 3 = = =
ζ 24 7 + ζ 24 \zeta_{24}^{7} + \zeta_{24} ζ 2 4 7 + ζ 2 4
v^7 + v
β 4 \beta_{4} β 4 = = =
− ζ 24 6 + 2 ζ 24 2 -\zeta_{24}^{6} + 2\zeta_{24}^{2} − ζ 2 4 6 + 2 ζ 2 4 2
-v^6 + 2*v^2
β 5 \beta_{5} β 5 = = =
− ζ 24 5 + ζ 24 3 + ζ 24 -\zeta_{24}^{5} + \zeta_{24}^{3} + \zeta_{24} − ζ 2 4 5 + ζ 2 4 3 + ζ 2 4
-v^5 + v^3 + v
β 6 \beta_{6} β 6 = = =
− ζ 24 7 + ζ 24 5 -\zeta_{24}^{7} + \zeta_{24}^{5} − ζ 2 4 7 + ζ 2 4 5
-v^7 + v^5
β 7 \beta_{7} β 7 = = =
− ζ 24 7 − ζ 24 5 + ζ 24 -\zeta_{24}^{7} - \zeta_{24}^{5} + \zeta_{24} − ζ 2 4 7 − ζ 2 4 5 + ζ 2 4
-v^7 - v^5 + v
ζ 24 \zeta_{24} ζ 2 4 = = =
( β 7 + β 6 + 2 β 3 ) / 3 ( \beta_{7} + \beta_{6} + 2\beta_{3} ) / 3 ( β 7 + β 6 + 2 β 3 ) / 3
(b7 + b6 + 2*b3) / 3
ζ 24 2 \zeta_{24}^{2} ζ 2 4 2 = = =
( β 4 + β 2 ) / 3 ( \beta_{4} + \beta_{2} ) / 3 ( β 4 + β 2 ) / 3
(b4 + b2) / 3
ζ 24 3 \zeta_{24}^{3} ζ 2 4 3 = = =
( − 2 β 7 + β 6 + 3 β 5 − β 3 ) / 3 ( -2\beta_{7} + \beta_{6} + 3\beta_{5} - \beta_{3} ) / 3 ( − 2 β 7 + β 6 + 3 β 5 − β 3 ) / 3
(-2*b7 + b6 + 3*b5 - b3) / 3
ζ 24 4 \zeta_{24}^{4} ζ 2 4 4 = = =
β 1 \beta_1 β 1
b1
ζ 24 5 \zeta_{24}^{5} ζ 2 4 5 = = =
( − β 7 + 2 β 6 + β 3 ) / 3 ( -\beta_{7} + 2\beta_{6} + \beta_{3} ) / 3 ( − β 7 + 2 β 6 + β 3 ) / 3
(-b7 + 2*b6 + b3) / 3
ζ 24 6 \zeta_{24}^{6} ζ 2 4 6 = = =
( − β 4 + 2 β 2 ) / 3 ( -\beta_{4} + 2\beta_{2} ) / 3 ( − β 4 + 2 β 2 ) / 3
(-b4 + 2*b2) / 3
ζ 24 7 \zeta_{24}^{7} ζ 2 4 7 = = =
( − β 7 − β 6 + β 3 ) / 3 ( -\beta_{7} - \beta_{6} + \beta_{3} ) / 3 ( − β 7 − β 6 + β 3 ) / 3
(-b7 - b6 + b3) / 3
Character values
We give the values of χ \chi χ on generators for ( Z / 1440 Z ) × \left(\mathbb{Z}/1440\mathbb{Z}\right)^\times ( Z / 1 4 4 0 Z ) × .
n n n
577 577 5 7 7
641 641 6 4 1
901 901 9 0 1
991 991 9 9 1
χ ( n ) \chi(n) χ ( n )
1 1 1
− β 1 -\beta_{1} − β 1
1 1 1
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 1440 , [ χ ] ) S_{2}^{\mathrm{new}}(1440, [\chi]) S 2 n e w ( 1 4 4 0 , [ χ ] ) :
T 7 8 + 4 T 7 6 + 15 T 7 4 + 4 T 7 2 + 1 T_{7}^{8} + 4T_{7}^{6} + 15T_{7}^{4} + 4T_{7}^{2} + 1 T 7 8 + 4 T 7 6 + 1 5 T 7 4 + 4 T 7 2 + 1
T7^8 + 4*T7^6 + 15*T7^4 + 4*T7^2 + 1
T 11 8 + 28 T 11 6 + 780 T 11 4 + 112 T 11 2 + 16 T_{11}^{8} + 28T_{11}^{6} + 780T_{11}^{4} + 112T_{11}^{2} + 16 T 1 1 8 + 2 8 T 1 1 6 + 7 8 0 T 1 1 4 + 1 1 2 T 1 1 2 + 1 6
T11^8 + 28*T11^6 + 780*T11^4 + 112*T11^2 + 16
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 8 T^{8} T 8
T^8
3 3 3
T 8 − 9 T 4 + 81 T^{8} - 9T^{4} + 81 T 8 − 9 T 4 + 8 1
T^8 - 9*T^4 + 81
5 5 5
( T 2 − T + 1 ) 4 (T^{2} - T + 1)^{4} ( T 2 − T + 1 ) 4
(T^2 - T + 1)^4
7 7 7
T 8 + 4 T 6 + ⋯ + 1 T^{8} + 4 T^{6} + \cdots + 1 T 8 + 4 T 6 + ⋯ + 1
T^8 + 4*T^6 + 15*T^4 + 4*T^2 + 1
11 11 1 1
T 8 + 28 T 6 + ⋯ + 16 T^{8} + 28 T^{6} + \cdots + 16 T 8 + 2 8 T 6 + ⋯ + 1 6
T^8 + 28*T^6 + 780*T^4 + 112*T^2 + 16
13 13 1 3
( T 4 + 2 T 3 + 6 T 2 + ⋯ + 4 ) 2 (T^{4} + 2 T^{3} + 6 T^{2} + \cdots + 4)^{2} ( T 4 + 2 T 3 + 6 T 2 + ⋯ + 4 ) 2
(T^4 + 2*T^3 + 6*T^2 - 4*T + 4)^2
17 17 1 7
( T 2 − 2 T − 2 ) 4 (T^{2} - 2 T - 2)^{4} ( T 2 − 2 T − 2 ) 4
(T^2 - 2*T - 2)^4
19 19 1 9
( T 2 − 6 ) 4 (T^{2} - 6)^{4} ( T 2 − 6 ) 4
(T^2 - 6)^4
23 23 2 3
T 8 + 4 T 6 + ⋯ + 1 T^{8} + 4 T^{6} + \cdots + 1 T 8 + 4 T 6 + ⋯ + 1
T^8 + 4*T^6 + 15*T^4 + 4*T^2 + 1
29 29 2 9
( T 2 + 3 T + 9 ) 4 (T^{2} + 3 T + 9)^{4} ( T 2 + 3 T + 9 ) 4
(T^2 + 3*T + 9)^4
31 31 3 1
T 8 + 28 T 6 + ⋯ + 16 T^{8} + 28 T^{6} + \cdots + 16 T 8 + 2 8 T 6 + ⋯ + 1 6
T^8 + 28*T^6 + 780*T^4 + 112*T^2 + 16
37 37 3 7
( T 2 + 2 T − 2 ) 4 (T^{2} + 2 T - 2)^{4} ( T 2 + 2 T − 2 ) 4
(T^2 + 2*T - 2)^4
41 41 4 1
( T 4 + 8 T 3 + ⋯ + 3481 ) 2 (T^{4} + 8 T^{3} + \cdots + 3481)^{2} ( T 4 + 8 T 3 + ⋯ + 3 4 8 1 ) 2
(T^4 + 8*T^3 + 123*T^2 - 472*T + 3481)^2
43 43 4 3
( T 4 + 18 T 2 + 324 ) 2 (T^{4} + 18 T^{2} + 324)^{2} ( T 4 + 1 8 T 2 + 3 2 4 ) 2
(T^4 + 18*T^2 + 324)^2
47 47 4 7
T 8 + 76 T 6 + ⋯ + 1874161 T^{8} + 76 T^{6} + \cdots + 1874161 T 8 + 7 6 T 6 + ⋯ + 1 8 7 4 1 6 1
T^8 + 76*T^6 + 4407*T^4 + 104044*T^2 + 1874161
53 53 5 3
( T 2 − 12 T + 24 ) 4 (T^{2} - 12 T + 24)^{4} ( T 2 − 1 2 T + 2 4 ) 4
(T^2 - 12*T + 24)^4
59 59 5 9
T 8 + 208 T 6 + ⋯ + 71639296 T^{8} + 208 T^{6} + \cdots + 71639296 T 8 + 2 0 8 T 6 + ⋯ + 7 1 6 3 9 2 9 6
T^8 + 208*T^6 + 34800*T^4 + 1760512*T^2 + 71639296
61 61 6 1
( T 4 − 4 T 3 + ⋯ + 5041 ) 2 (T^{4} - 4 T^{3} + \cdots + 5041)^{2} ( T 4 − 4 T 3 + ⋯ + 5 0 4 1 ) 2
(T^4 - 4*T^3 + 87*T^2 + 284*T + 5041)^2
67 67 6 7
T 8 + 52 T 6 + ⋯ + 279841 T^{8} + 52 T^{6} + \cdots + 279841 T 8 + 5 2 T 6 + ⋯ + 2 7 9 8 4 1
T^8 + 52*T^6 + 2175*T^4 + 27508*T^2 + 279841
71 71 7 1
( T 2 − 98 ) 4 (T^{2} - 98)^{4} ( T 2 − 9 8 ) 4
(T^2 - 98)^4
73 73 7 3
( T 2 + 12 T − 72 ) 4 (T^{2} + 12 T - 72)^{4} ( T 2 + 1 2 T − 7 2 ) 4
(T^2 + 12*T - 72)^4
79 79 7 9
T 8 + 112 T 6 + ⋯ + 4096 T^{8} + 112 T^{6} + \cdots + 4096 T 8 + 1 1 2 T 6 + ⋯ + 4 0 9 6
T^8 + 112*T^6 + 12480*T^4 + 7168*T^2 + 4096
83 83 8 3
T 8 + 76 T 6 + ⋯ + 14641 T^{8} + 76 T^{6} + \cdots + 14641 T 8 + 7 6 T 6 + ⋯ + 1 4 6 4 1
T^8 + 76*T^6 + 5655*T^4 + 9196*T^2 + 14641
89 89 8 9
( T 2 + 2 T − 107 ) 4 (T^{2} + 2 T - 107)^{4} ( T 2 + 2 T − 1 0 7 ) 4
(T^2 + 2*T - 107)^4
97 97 9 7
( T 4 − 8 T 3 + ⋯ + 1024 ) 2 (T^{4} - 8 T^{3} + \cdots + 1024)^{2} ( T 4 − 8 T 3 + ⋯ + 1 0 2 4 ) 2
(T^4 - 8*T^3 + 96*T^2 + 256*T + 1024)^2
show more
show less