Properties

Label 1440.2.q.m
Level $1440$
Weight $2$
Character orbit 1440.q
Analytic conductor $11.498$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1440,2,Mod(481,1440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1440, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1440.481");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1440 = 2^{5} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1440.q (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.4984578911\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{7} + \beta_{6}) q^{3} + \beta_1 q^{5} - \beta_{7} q^{7} + ( - \beta_{4} - \beta_{2}) q^{9} + ( - 2 \beta_{7} - \beta_{5} + \beta_{3}) q^{11} + ( - \beta_{2} - \beta_1) q^{13} + ( - \beta_{7} - \beta_{3}) q^{15}+ \cdots + (4 \beta_{7} + 4 \beta_{6} + \cdots - \beta_{3}) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{5} - 4 q^{13} + 8 q^{17} - 12 q^{21} - 4 q^{25} - 12 q^{29} - 24 q^{33} - 8 q^{37} - 16 q^{41} + 20 q^{49} + 48 q^{53} + 12 q^{57} + 8 q^{61} + 4 q^{65} + 12 q^{69} - 48 q^{73} - 20 q^{77} + 36 q^{81}+ \cdots + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{24}^{4} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \zeta_{24}^{6} + \zeta_{24}^{2} \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \zeta_{24}^{7} + \zeta_{24} \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( -\zeta_{24}^{6} + 2\zeta_{24}^{2} \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -\zeta_{24}^{5} + \zeta_{24}^{3} + \zeta_{24} \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( -\zeta_{24}^{7} + \zeta_{24}^{5} \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( -\zeta_{24}^{7} - \zeta_{24}^{5} + \zeta_{24} \) Copy content Toggle raw display
\(\zeta_{24}\)\(=\) \( ( \beta_{7} + \beta_{6} + 2\beta_{3} ) / 3 \) Copy content Toggle raw display
\(\zeta_{24}^{2}\)\(=\) \( ( \beta_{4} + \beta_{2} ) / 3 \) Copy content Toggle raw display
\(\zeta_{24}^{3}\)\(=\) \( ( -2\beta_{7} + \beta_{6} + 3\beta_{5} - \beta_{3} ) / 3 \) Copy content Toggle raw display
\(\zeta_{24}^{4}\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\zeta_{24}^{5}\)\(=\) \( ( -\beta_{7} + 2\beta_{6} + \beta_{3} ) / 3 \) Copy content Toggle raw display
\(\zeta_{24}^{6}\)\(=\) \( ( -\beta_{4} + 2\beta_{2} ) / 3 \) Copy content Toggle raw display
\(\zeta_{24}^{7}\)\(=\) \( ( -\beta_{7} - \beta_{6} + \beta_{3} ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1440\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(641\) \(901\) \(991\)
\(\chi(n)\) \(1\) \(-\beta_{1}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
481.1
−0.258819 0.965926i
0.965926 0.258819i
−0.965926 + 0.258819i
0.258819 + 0.965926i
−0.258819 + 0.965926i
0.965926 + 0.258819i
−0.965926 0.258819i
0.258819 0.965926i
0 −1.67303 + 0.448288i 0 0.500000 0.866025i 0 0.258819 + 0.448288i 0 2.59808 1.50000i 0
481.2 0 −0.448288 1.67303i 0 0.500000 0.866025i 0 −0.965926 1.67303i 0 −2.59808 + 1.50000i 0
481.3 0 0.448288 + 1.67303i 0 0.500000 0.866025i 0 0.965926 + 1.67303i 0 −2.59808 + 1.50000i 0
481.4 0 1.67303 0.448288i 0 0.500000 0.866025i 0 −0.258819 0.448288i 0 2.59808 1.50000i 0
961.1 0 −1.67303 0.448288i 0 0.500000 + 0.866025i 0 0.258819 0.448288i 0 2.59808 + 1.50000i 0
961.2 0 −0.448288 + 1.67303i 0 0.500000 + 0.866025i 0 −0.965926 + 1.67303i 0 −2.59808 1.50000i 0
961.3 0 0.448288 1.67303i 0 0.500000 + 0.866025i 0 0.965926 1.67303i 0 −2.59808 1.50000i 0
961.4 0 1.67303 + 0.448288i 0 0.500000 + 0.866025i 0 −0.258819 + 0.448288i 0 2.59808 + 1.50000i 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 481.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
9.c even 3 1 inner
36.f odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1440.2.q.m 8
3.b odd 2 1 4320.2.q.j 8
4.b odd 2 1 inner 1440.2.q.m 8
9.c even 3 1 inner 1440.2.q.m 8
9.d odd 6 1 4320.2.q.j 8
12.b even 2 1 4320.2.q.j 8
36.f odd 6 1 inner 1440.2.q.m 8
36.h even 6 1 4320.2.q.j 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1440.2.q.m 8 1.a even 1 1 trivial
1440.2.q.m 8 4.b odd 2 1 inner
1440.2.q.m 8 9.c even 3 1 inner
1440.2.q.m 8 36.f odd 6 1 inner
4320.2.q.j 8 3.b odd 2 1
4320.2.q.j 8 9.d odd 6 1
4320.2.q.j 8 12.b even 2 1
4320.2.q.j 8 36.h even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1440, [\chi])\):

\( T_{7}^{8} + 4T_{7}^{6} + 15T_{7}^{4} + 4T_{7}^{2} + 1 \) Copy content Toggle raw display
\( T_{11}^{8} + 28T_{11}^{6} + 780T_{11}^{4} + 112T_{11}^{2} + 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} - 9T^{4} + 81 \) Copy content Toggle raw display
$5$ \( (T^{2} - T + 1)^{4} \) Copy content Toggle raw display
$7$ \( T^{8} + 4 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$11$ \( T^{8} + 28 T^{6} + \cdots + 16 \) Copy content Toggle raw display
$13$ \( (T^{4} + 2 T^{3} + 6 T^{2} + \cdots + 4)^{2} \) Copy content Toggle raw display
$17$ \( (T^{2} - 2 T - 2)^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} - 6)^{4} \) Copy content Toggle raw display
$23$ \( T^{8} + 4 T^{6} + \cdots + 1 \) Copy content Toggle raw display
$29$ \( (T^{2} + 3 T + 9)^{4} \) Copy content Toggle raw display
$31$ \( T^{8} + 28 T^{6} + \cdots + 16 \) Copy content Toggle raw display
$37$ \( (T^{2} + 2 T - 2)^{4} \) Copy content Toggle raw display
$41$ \( (T^{4} + 8 T^{3} + \cdots + 3481)^{2} \) Copy content Toggle raw display
$43$ \( (T^{4} + 18 T^{2} + 324)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} + 76 T^{6} + \cdots + 1874161 \) Copy content Toggle raw display
$53$ \( (T^{2} - 12 T + 24)^{4} \) Copy content Toggle raw display
$59$ \( T^{8} + 208 T^{6} + \cdots + 71639296 \) Copy content Toggle raw display
$61$ \( (T^{4} - 4 T^{3} + \cdots + 5041)^{2} \) Copy content Toggle raw display
$67$ \( T^{8} + 52 T^{6} + \cdots + 279841 \) Copy content Toggle raw display
$71$ \( (T^{2} - 98)^{4} \) Copy content Toggle raw display
$73$ \( (T^{2} + 12 T - 72)^{4} \) Copy content Toggle raw display
$79$ \( T^{8} + 112 T^{6} + \cdots + 4096 \) Copy content Toggle raw display
$83$ \( T^{8} + 76 T^{6} + \cdots + 14641 \) Copy content Toggle raw display
$89$ \( (T^{2} + 2 T - 107)^{4} \) Copy content Toggle raw display
$97$ \( (T^{4} - 8 T^{3} + \cdots + 1024)^{2} \) Copy content Toggle raw display
show more
show less