Properties

Label 1440.2.q.m
Level 14401440
Weight 22
Character orbit 1440.q
Analytic conductor 11.49811.498
Analytic rank 00
Dimension 88
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1440,2,Mod(481,1440)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1440, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1440.481"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 1440=25325 1440 = 2^{5} \cdot 3^{2} \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1440.q (of order 33, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,4,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 11.498457891111.4984578911
Analytic rank: 00
Dimension: 88
Relative dimension: 44 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q(ζ24)\Q(\zeta_{24})
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x8x4+1 x^{8} - x^{4} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 32 3^{2}
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β71,\beta_1,\ldots,\beta_{7} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β7+β6)q3+β1q5β7q7+(β4β2)q9+(2β7β5+β3)q11+(β2β1)q13+(β7β3)q15++(4β7+4β6+β3)q99+O(q100) q + ( - \beta_{7} + \beta_{6}) q^{3} + \beta_1 q^{5} - \beta_{7} q^{7} + ( - \beta_{4} - \beta_{2}) q^{9} + ( - 2 \beta_{7} - \beta_{5} + \beta_{3}) q^{11} + ( - \beta_{2} - \beta_1) q^{13} + ( - \beta_{7} - \beta_{3}) q^{15}+ \cdots + (4 \beta_{7} + 4 \beta_{6} + \cdots - \beta_{3}) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 8q+4q54q13+8q1712q214q2512q2924q338q3716q41+20q49+48q53+12q57+8q61+4q65+12q6948q7320q77+36q81++16q97+O(q100) 8 q + 4 q^{5} - 4 q^{13} + 8 q^{17} - 12 q^{21} - 4 q^{25} - 12 q^{29} - 24 q^{33} - 8 q^{37} - 16 q^{41} + 20 q^{49} + 48 q^{53} + 12 q^{57} + 8 q^{61} + 4 q^{65} + 12 q^{69} - 48 q^{73} - 20 q^{77} + 36 q^{81}+ \cdots + 16 q^{97}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring

β1\beta_{1}== ζ244 \zeta_{24}^{4} Copy content Toggle raw display
β2\beta_{2}== ζ246+ζ242 \zeta_{24}^{6} + \zeta_{24}^{2} Copy content Toggle raw display
β3\beta_{3}== ζ247+ζ24 \zeta_{24}^{7} + \zeta_{24} Copy content Toggle raw display
β4\beta_{4}== ζ246+2ζ242 -\zeta_{24}^{6} + 2\zeta_{24}^{2} Copy content Toggle raw display
β5\beta_{5}== ζ245+ζ243+ζ24 -\zeta_{24}^{5} + \zeta_{24}^{3} + \zeta_{24} Copy content Toggle raw display
β6\beta_{6}== ζ247+ζ245 -\zeta_{24}^{7} + \zeta_{24}^{5} Copy content Toggle raw display
β7\beta_{7}== ζ247ζ245+ζ24 -\zeta_{24}^{7} - \zeta_{24}^{5} + \zeta_{24} Copy content Toggle raw display
ζ24\zeta_{24}== (β7+β6+2β3)/3 ( \beta_{7} + \beta_{6} + 2\beta_{3} ) / 3 Copy content Toggle raw display
ζ242\zeta_{24}^{2}== (β4+β2)/3 ( \beta_{4} + \beta_{2} ) / 3 Copy content Toggle raw display
ζ243\zeta_{24}^{3}== (2β7+β6+3β5β3)/3 ( -2\beta_{7} + \beta_{6} + 3\beta_{5} - \beta_{3} ) / 3 Copy content Toggle raw display
ζ244\zeta_{24}^{4}== β1 \beta_1 Copy content Toggle raw display
ζ245\zeta_{24}^{5}== (β7+2β6+β3)/3 ( -\beta_{7} + 2\beta_{6} + \beta_{3} ) / 3 Copy content Toggle raw display
ζ246\zeta_{24}^{6}== (β4+2β2)/3 ( -\beta_{4} + 2\beta_{2} ) / 3 Copy content Toggle raw display
ζ247\zeta_{24}^{7}== (β7β6+β3)/3 ( -\beta_{7} - \beta_{6} + \beta_{3} ) / 3 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1440Z)×\left(\mathbb{Z}/1440\mathbb{Z}\right)^\times.

nn 577577 641641 901901 991991
χ(n)\chi(n) 11 β1-\beta_{1} 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
481.1
−0.258819 0.965926i
0.965926 0.258819i
−0.965926 + 0.258819i
0.258819 + 0.965926i
−0.258819 + 0.965926i
0.965926 + 0.258819i
−0.965926 0.258819i
0.258819 0.965926i
0 −1.67303 + 0.448288i 0 0.500000 0.866025i 0 0.258819 + 0.448288i 0 2.59808 1.50000i 0
481.2 0 −0.448288 1.67303i 0 0.500000 0.866025i 0 −0.965926 1.67303i 0 −2.59808 + 1.50000i 0
481.3 0 0.448288 + 1.67303i 0 0.500000 0.866025i 0 0.965926 + 1.67303i 0 −2.59808 + 1.50000i 0
481.4 0 1.67303 0.448288i 0 0.500000 0.866025i 0 −0.258819 0.448288i 0 2.59808 1.50000i 0
961.1 0 −1.67303 0.448288i 0 0.500000 + 0.866025i 0 0.258819 0.448288i 0 2.59808 + 1.50000i 0
961.2 0 −0.448288 + 1.67303i 0 0.500000 + 0.866025i 0 −0.965926 + 1.67303i 0 −2.59808 1.50000i 0
961.3 0 0.448288 1.67303i 0 0.500000 + 0.866025i 0 0.965926 1.67303i 0 −2.59808 1.50000i 0
961.4 0 1.67303 + 0.448288i 0 0.500000 + 0.866025i 0 −0.258819 + 0.448288i 0 2.59808 + 1.50000i 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 481.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
9.c even 3 1 inner
36.f odd 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1440.2.q.m 8
3.b odd 2 1 4320.2.q.j 8
4.b odd 2 1 inner 1440.2.q.m 8
9.c even 3 1 inner 1440.2.q.m 8
9.d odd 6 1 4320.2.q.j 8
12.b even 2 1 4320.2.q.j 8
36.f odd 6 1 inner 1440.2.q.m 8
36.h even 6 1 4320.2.q.j 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1440.2.q.m 8 1.a even 1 1 trivial
1440.2.q.m 8 4.b odd 2 1 inner
1440.2.q.m 8 9.c even 3 1 inner
1440.2.q.m 8 36.f odd 6 1 inner
4320.2.q.j 8 3.b odd 2 1
4320.2.q.j 8 9.d odd 6 1
4320.2.q.j 8 12.b even 2 1
4320.2.q.j 8 36.h even 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1440,[χ])S_{2}^{\mathrm{new}}(1440, [\chi]):

T78+4T76+15T74+4T72+1 T_{7}^{8} + 4T_{7}^{6} + 15T_{7}^{4} + 4T_{7}^{2} + 1 Copy content Toggle raw display
T118+28T116+780T114+112T112+16 T_{11}^{8} + 28T_{11}^{6} + 780T_{11}^{4} + 112T_{11}^{2} + 16 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T8 T^{8} Copy content Toggle raw display
33 T89T4+81 T^{8} - 9T^{4} + 81 Copy content Toggle raw display
55 (T2T+1)4 (T^{2} - T + 1)^{4} Copy content Toggle raw display
77 T8+4T6++1 T^{8} + 4 T^{6} + \cdots + 1 Copy content Toggle raw display
1111 T8+28T6++16 T^{8} + 28 T^{6} + \cdots + 16 Copy content Toggle raw display
1313 (T4+2T3+6T2++4)2 (T^{4} + 2 T^{3} + 6 T^{2} + \cdots + 4)^{2} Copy content Toggle raw display
1717 (T22T2)4 (T^{2} - 2 T - 2)^{4} Copy content Toggle raw display
1919 (T26)4 (T^{2} - 6)^{4} Copy content Toggle raw display
2323 T8+4T6++1 T^{8} + 4 T^{6} + \cdots + 1 Copy content Toggle raw display
2929 (T2+3T+9)4 (T^{2} + 3 T + 9)^{4} Copy content Toggle raw display
3131 T8+28T6++16 T^{8} + 28 T^{6} + \cdots + 16 Copy content Toggle raw display
3737 (T2+2T2)4 (T^{2} + 2 T - 2)^{4} Copy content Toggle raw display
4141 (T4+8T3++3481)2 (T^{4} + 8 T^{3} + \cdots + 3481)^{2} Copy content Toggle raw display
4343 (T4+18T2+324)2 (T^{4} + 18 T^{2} + 324)^{2} Copy content Toggle raw display
4747 T8+76T6++1874161 T^{8} + 76 T^{6} + \cdots + 1874161 Copy content Toggle raw display
5353 (T212T+24)4 (T^{2} - 12 T + 24)^{4} Copy content Toggle raw display
5959 T8+208T6++71639296 T^{8} + 208 T^{6} + \cdots + 71639296 Copy content Toggle raw display
6161 (T44T3++5041)2 (T^{4} - 4 T^{3} + \cdots + 5041)^{2} Copy content Toggle raw display
6767 T8+52T6++279841 T^{8} + 52 T^{6} + \cdots + 279841 Copy content Toggle raw display
7171 (T298)4 (T^{2} - 98)^{4} Copy content Toggle raw display
7373 (T2+12T72)4 (T^{2} + 12 T - 72)^{4} Copy content Toggle raw display
7979 T8+112T6++4096 T^{8} + 112 T^{6} + \cdots + 4096 Copy content Toggle raw display
8383 T8+76T6++14641 T^{8} + 76 T^{6} + \cdots + 14641 Copy content Toggle raw display
8989 (T2+2T107)4 (T^{2} + 2 T - 107)^{4} Copy content Toggle raw display
9797 (T48T3++1024)2 (T^{4} - 8 T^{3} + \cdots + 1024)^{2} Copy content Toggle raw display
show more
show less