Properties

Label 1440.2.x.j.703.1
Level $1440$
Weight $2$
Character 1440.703
Analytic conductor $11.498$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1440,2,Mod(127,1440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1440, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1440.127");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1440 = 2^{5} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1440.x (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.4984578911\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 160)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 703.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1440.703
Dual form 1440.2.x.j.127.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.00000 + 1.00000i) q^{5} +(2.00000 + 2.00000i) q^{7} +O(q^{10})\) \(q+(2.00000 + 1.00000i) q^{5} +(2.00000 + 2.00000i) q^{7} +(-1.00000 - 1.00000i) q^{13} +(5.00000 - 5.00000i) q^{17} +4.00000 q^{19} +(-2.00000 + 2.00000i) q^{23} +(3.00000 + 4.00000i) q^{25} -4.00000i q^{29} +4.00000i q^{31} +(2.00000 + 6.00000i) q^{35} +(1.00000 - 1.00000i) q^{37} +(-6.00000 + 6.00000i) q^{43} +(2.00000 + 2.00000i) q^{47} +1.00000i q^{49} +(7.00000 + 7.00000i) q^{53} -4.00000 q^{59} -4.00000 q^{61} +(-1.00000 - 3.00000i) q^{65} +(-10.0000 - 10.0000i) q^{67} +12.0000i q^{71} +(-3.00000 - 3.00000i) q^{73} +16.0000 q^{79} +(2.00000 - 2.00000i) q^{83} +(15.0000 - 5.00000i) q^{85} -4.00000i q^{91} +(8.00000 + 4.00000i) q^{95} +(-3.00000 + 3.00000i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{5} + 4 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 4 q^{5} + 4 q^{7} - 2 q^{13} + 10 q^{17} + 8 q^{19} - 4 q^{23} + 6 q^{25} + 4 q^{35} + 2 q^{37} - 12 q^{43} + 4 q^{47} + 14 q^{53} - 8 q^{59} - 8 q^{61} - 2 q^{65} - 20 q^{67} - 6 q^{73} + 32 q^{79} + 4 q^{83} + 30 q^{85} + 16 q^{95} - 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1440\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(641\) \(901\) \(991\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.00000 + 1.00000i 0.894427 + 0.447214i
\(6\) 0 0
\(7\) 2.00000 + 2.00000i 0.755929 + 0.755929i 0.975579 0.219650i \(-0.0704915\pi\)
−0.219650 + 0.975579i \(0.570491\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) −1.00000 1.00000i −0.277350 0.277350i 0.554700 0.832050i \(-0.312833\pi\)
−0.832050 + 0.554700i \(0.812833\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.00000 5.00000i 1.21268 1.21268i 0.242536 0.970143i \(-0.422021\pi\)
0.970143 0.242536i \(-0.0779791\pi\)
\(18\) 0 0
\(19\) 4.00000 0.917663 0.458831 0.888523i \(-0.348268\pi\)
0.458831 + 0.888523i \(0.348268\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.00000 + 2.00000i −0.417029 + 0.417029i −0.884178 0.467150i \(-0.845281\pi\)
0.467150 + 0.884178i \(0.345281\pi\)
\(24\) 0 0
\(25\) 3.00000 + 4.00000i 0.600000 + 0.800000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 4.00000i 0.742781i −0.928477 0.371391i \(-0.878881\pi\)
0.928477 0.371391i \(-0.121119\pi\)
\(30\) 0 0
\(31\) 4.00000i 0.718421i 0.933257 + 0.359211i \(0.116954\pi\)
−0.933257 + 0.359211i \(0.883046\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 2.00000 + 6.00000i 0.338062 + 1.01419i
\(36\) 0 0
\(37\) 1.00000 1.00000i 0.164399 0.164399i −0.620113 0.784512i \(-0.712913\pi\)
0.784512 + 0.620113i \(0.212913\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) −6.00000 + 6.00000i −0.914991 + 0.914991i −0.996660 0.0816682i \(-0.973975\pi\)
0.0816682 + 0.996660i \(0.473975\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 2.00000 + 2.00000i 0.291730 + 0.291730i 0.837763 0.546033i \(-0.183863\pi\)
−0.546033 + 0.837763i \(0.683863\pi\)
\(48\) 0 0
\(49\) 1.00000i 0.142857i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 7.00000 + 7.00000i 0.961524 + 0.961524i 0.999287 0.0377628i \(-0.0120231\pi\)
−0.0377628 + 0.999287i \(0.512023\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −4.00000 −0.520756 −0.260378 0.965507i \(-0.583847\pi\)
−0.260378 + 0.965507i \(0.583847\pi\)
\(60\) 0 0
\(61\) −4.00000 −0.512148 −0.256074 0.966657i \(-0.582429\pi\)
−0.256074 + 0.966657i \(0.582429\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.00000 3.00000i −0.124035 0.372104i
\(66\) 0 0
\(67\) −10.0000 10.0000i −1.22169 1.22169i −0.967029 0.254665i \(-0.918035\pi\)
−0.254665 0.967029i \(-0.581965\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 12.0000i 1.42414i 0.702109 + 0.712069i \(0.252242\pi\)
−0.702109 + 0.712069i \(0.747758\pi\)
\(72\) 0 0
\(73\) −3.00000 3.00000i −0.351123 0.351123i 0.509404 0.860527i \(-0.329866\pi\)
−0.860527 + 0.509404i \(0.829866\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 16.0000 1.80014 0.900070 0.435745i \(-0.143515\pi\)
0.900070 + 0.435745i \(0.143515\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 2.00000 2.00000i 0.219529 0.219529i −0.588771 0.808300i \(-0.700388\pi\)
0.808300 + 0.588771i \(0.200388\pi\)
\(84\) 0 0
\(85\) 15.0000 5.00000i 1.62698 0.542326i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 4.00000i 0.419314i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 8.00000 + 4.00000i 0.820783 + 0.410391i
\(96\) 0 0
\(97\) −3.00000 + 3.00000i −0.304604 + 0.304604i −0.842812 0.538208i \(-0.819101\pi\)
0.538208 + 0.842812i \(0.319101\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.00000 0.597022 0.298511 0.954406i \(-0.403510\pi\)
0.298511 + 0.954406i \(0.403510\pi\)
\(102\) 0 0
\(103\) −6.00000 + 6.00000i −0.591198 + 0.591198i −0.937955 0.346757i \(-0.887283\pi\)
0.346757 + 0.937955i \(0.387283\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −6.00000 6.00000i −0.580042 0.580042i 0.354873 0.934915i \(-0.384524\pi\)
−0.934915 + 0.354873i \(0.884524\pi\)
\(108\) 0 0
\(109\) 10.0000i 0.957826i −0.877862 0.478913i \(-0.841031\pi\)
0.877862 0.478913i \(-0.158969\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 9.00000 + 9.00000i 0.846649 + 0.846649i 0.989713 0.143065i \(-0.0456957\pi\)
−0.143065 + 0.989713i \(0.545696\pi\)
\(114\) 0 0
\(115\) −6.00000 + 2.00000i −0.559503 + 0.186501i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 20.0000 1.83340
\(120\) 0 0
\(121\) 11.0000 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 2.00000 + 11.0000i 0.178885 + 0.983870i
\(126\) 0 0
\(127\) 10.0000 + 10.0000i 0.887357 + 0.887357i 0.994268 0.106912i \(-0.0340963\pi\)
−0.106912 + 0.994268i \(0.534096\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 8.00000i 0.698963i 0.936943 + 0.349482i \(0.113642\pi\)
−0.936943 + 0.349482i \(0.886358\pi\)
\(132\) 0 0
\(133\) 8.00000 + 8.00000i 0.693688 + 0.693688i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −1.00000 + 1.00000i −0.0854358 + 0.0854358i −0.748533 0.663097i \(-0.769242\pi\)
0.663097 + 0.748533i \(0.269242\pi\)
\(138\) 0 0
\(139\) −12.0000 −1.01783 −0.508913 0.860818i \(-0.669953\pi\)
−0.508913 + 0.860818i \(0.669953\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 4.00000 8.00000i 0.332182 0.664364i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 18.0000i 1.47462i −0.675556 0.737309i \(-0.736096\pi\)
0.675556 0.737309i \(-0.263904\pi\)
\(150\) 0 0
\(151\) 12.0000i 0.976546i −0.872691 0.488273i \(-0.837627\pi\)
0.872691 0.488273i \(-0.162373\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −4.00000 + 8.00000i −0.321288 + 0.642575i
\(156\) 0 0
\(157\) −9.00000 + 9.00000i −0.718278 + 0.718278i −0.968252 0.249974i \(-0.919578\pi\)
0.249974 + 0.968252i \(0.419578\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −8.00000 −0.630488
\(162\) 0 0
\(163\) 2.00000 2.00000i 0.156652 0.156652i −0.624429 0.781081i \(-0.714668\pi\)
0.781081 + 0.624429i \(0.214668\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 2.00000 + 2.00000i 0.154765 + 0.154765i 0.780242 0.625478i \(-0.215096\pi\)
−0.625478 + 0.780242i \(0.715096\pi\)
\(168\) 0 0
\(169\) 11.0000i 0.846154i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −13.0000 13.0000i −0.988372 0.988372i 0.0115615 0.999933i \(-0.496320\pi\)
−0.999933 + 0.0115615i \(0.996320\pi\)
\(174\) 0 0
\(175\) −2.00000 + 14.0000i −0.151186 + 1.05830i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −12.0000 −0.896922 −0.448461 0.893802i \(-0.648028\pi\)
−0.448461 + 0.893802i \(0.648028\pi\)
\(180\) 0 0
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 3.00000 1.00000i 0.220564 0.0735215i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 20.0000i 1.44715i −0.690246 0.723575i \(-0.742498\pi\)
0.690246 0.723575i \(-0.257502\pi\)
\(192\) 0 0
\(193\) −5.00000 5.00000i −0.359908 0.359908i 0.503871 0.863779i \(-0.331909\pi\)
−0.863779 + 0.503871i \(0.831909\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −5.00000 + 5.00000i −0.356235 + 0.356235i −0.862423 0.506188i \(-0.831054\pi\)
0.506188 + 0.862423i \(0.331054\pi\)
\(198\) 0 0
\(199\) 24.0000 1.70131 0.850657 0.525720i \(-0.176204\pi\)
0.850657 + 0.525720i \(0.176204\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 8.00000 8.00000i 0.561490 0.561490i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 16.0000i 1.10149i −0.834675 0.550743i \(-0.814345\pi\)
0.834675 0.550743i \(-0.185655\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −18.0000 + 6.00000i −1.22759 + 0.409197i
\(216\) 0 0
\(217\) −8.00000 + 8.00000i −0.543075 + 0.543075i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −10.0000 −0.672673
\(222\) 0 0
\(223\) −10.0000 + 10.0000i −0.669650 + 0.669650i −0.957635 0.287985i \(-0.907015\pi\)
0.287985 + 0.957635i \(0.407015\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −10.0000 10.0000i −0.663723 0.663723i 0.292532 0.956256i \(-0.405502\pi\)
−0.956256 + 0.292532i \(0.905502\pi\)
\(228\) 0 0
\(229\) 20.0000i 1.32164i 0.750546 + 0.660819i \(0.229791\pi\)
−0.750546 + 0.660819i \(0.770209\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 5.00000 + 5.00000i 0.327561 + 0.327561i 0.851658 0.524097i \(-0.175597\pi\)
−0.524097 + 0.851658i \(0.675597\pi\)
\(234\) 0 0
\(235\) 2.00000 + 6.00000i 0.130466 + 0.391397i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −8.00000 −0.517477 −0.258738 0.965947i \(-0.583307\pi\)
−0.258738 + 0.965947i \(0.583307\pi\)
\(240\) 0 0
\(241\) −16.0000 −1.03065 −0.515325 0.856995i \(-0.672329\pi\)
−0.515325 + 0.856995i \(0.672329\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −1.00000 + 2.00000i −0.0638877 + 0.127775i
\(246\) 0 0
\(247\) −4.00000 4.00000i −0.254514 0.254514i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 24.0000i 1.51487i −0.652913 0.757433i \(-0.726453\pi\)
0.652913 0.757433i \(-0.273547\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −7.00000 + 7.00000i −0.436648 + 0.436648i −0.890882 0.454234i \(-0.849913\pi\)
0.454234 + 0.890882i \(0.349913\pi\)
\(258\) 0 0
\(259\) 4.00000 0.248548
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −6.00000 + 6.00000i −0.369976 + 0.369976i −0.867468 0.497492i \(-0.834254\pi\)
0.497492 + 0.867468i \(0.334254\pi\)
\(264\) 0 0
\(265\) 7.00000 + 21.0000i 0.430007 + 1.29002i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 10.0000i 0.609711i −0.952399 0.304855i \(-0.901392\pi\)
0.952399 0.304855i \(-0.0986081\pi\)
\(270\) 0 0
\(271\) 20.0000i 1.21491i −0.794353 0.607457i \(-0.792190\pi\)
0.794353 0.607457i \(-0.207810\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −9.00000 + 9.00000i −0.540758 + 0.540758i −0.923751 0.382993i \(-0.874893\pi\)
0.382993 + 0.923751i \(0.374893\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −8.00000 −0.477240 −0.238620 0.971113i \(-0.576695\pi\)
−0.238620 + 0.971113i \(0.576695\pi\)
\(282\) 0 0
\(283\) 6.00000 6.00000i 0.356663 0.356663i −0.505918 0.862581i \(-0.668846\pi\)
0.862581 + 0.505918i \(0.168846\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 33.0000i 1.94118i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 5.00000 + 5.00000i 0.292103 + 0.292103i 0.837911 0.545807i \(-0.183777\pi\)
−0.545807 + 0.837911i \(0.683777\pi\)
\(294\) 0 0
\(295\) −8.00000 4.00000i −0.465778 0.232889i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 4.00000 0.231326
\(300\) 0 0
\(301\) −24.0000 −1.38334
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −8.00000 4.00000i −0.458079 0.229039i
\(306\) 0 0
\(307\) −10.0000 10.0000i −0.570730 0.570730i 0.361602 0.932332i \(-0.382230\pi\)
−0.932332 + 0.361602i \(0.882230\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 28.0000i 1.58773i −0.608091 0.793867i \(-0.708065\pi\)
0.608091 0.793867i \(-0.291935\pi\)
\(312\) 0 0
\(313\) 15.0000 + 15.0000i 0.847850 + 0.847850i 0.989865 0.142014i \(-0.0453579\pi\)
−0.142014 + 0.989865i \(0.545358\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −11.0000 + 11.0000i −0.617822 + 0.617822i −0.944972 0.327151i \(-0.893912\pi\)
0.327151 + 0.944972i \(0.393912\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 20.0000 20.0000i 1.11283 1.11283i
\(324\) 0 0
\(325\) 1.00000 7.00000i 0.0554700 0.388290i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 8.00000i 0.441054i
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −10.0000 30.0000i −0.546358 1.63908i
\(336\) 0 0
\(337\) −23.0000 + 23.0000i −1.25289 + 1.25289i −0.298471 + 0.954419i \(0.596477\pi\)
−0.954419 + 0.298471i \(0.903523\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 12.0000 12.0000i 0.647939 0.647939i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −18.0000 18.0000i −0.966291 0.966291i 0.0331594 0.999450i \(-0.489443\pi\)
−0.999450 + 0.0331594i \(0.989443\pi\)
\(348\) 0 0
\(349\) 20.0000i 1.07058i −0.844670 0.535288i \(-0.820203\pi\)
0.844670 0.535288i \(-0.179797\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −9.00000 9.00000i −0.479022 0.479022i 0.425797 0.904819i \(-0.359994\pi\)
−0.904819 + 0.425797i \(0.859994\pi\)
\(354\) 0 0
\(355\) −12.0000 + 24.0000i −0.636894 + 1.27379i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 16.0000 0.844448 0.422224 0.906492i \(-0.361250\pi\)
0.422224 + 0.906492i \(0.361250\pi\)
\(360\) 0 0
\(361\) −3.00000 −0.157895
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −3.00000 9.00000i −0.157027 0.471082i
\(366\) 0 0
\(367\) −22.0000 22.0000i −1.14839 1.14839i −0.986869 0.161521i \(-0.948360\pi\)
−0.161521 0.986869i \(-0.551640\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 28.0000i 1.45369i
\(372\) 0 0
\(373\) 21.0000 + 21.0000i 1.08734 + 1.08734i 0.995802 + 0.0915371i \(0.0291780\pi\)
0.0915371 + 0.995802i \(0.470822\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −4.00000 + 4.00000i −0.206010 + 0.206010i
\(378\) 0 0
\(379\) 28.0000 1.43826 0.719132 0.694874i \(-0.244540\pi\)
0.719132 + 0.694874i \(0.244540\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −22.0000 + 22.0000i −1.12415 + 1.12415i −0.133036 + 0.991111i \(0.542473\pi\)
−0.991111 + 0.133036i \(0.957527\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 18.0000i 0.912636i 0.889817 + 0.456318i \(0.150832\pi\)
−0.889817 + 0.456318i \(0.849168\pi\)
\(390\) 0 0
\(391\) 20.0000i 1.01144i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 32.0000 + 16.0000i 1.61009 + 0.805047i
\(396\) 0 0
\(397\) 13.0000 13.0000i 0.652451 0.652451i −0.301131 0.953583i \(-0.597364\pi\)
0.953583 + 0.301131i \(0.0973643\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −34.0000 −1.69788 −0.848939 0.528490i \(-0.822758\pi\)
−0.848939 + 0.528490i \(0.822758\pi\)
\(402\) 0 0
\(403\) 4.00000 4.00000i 0.199254 0.199254i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 2.00000i 0.0988936i −0.998777 0.0494468i \(-0.984254\pi\)
0.998777 0.0494468i \(-0.0157458\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −8.00000 8.00000i −0.393654 0.393654i
\(414\) 0 0
\(415\) 6.00000 2.00000i 0.294528 0.0981761i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 12.0000 0.586238 0.293119 0.956076i \(-0.405307\pi\)
0.293119 + 0.956076i \(0.405307\pi\)
\(420\) 0 0
\(421\) 20.0000 0.974740 0.487370 0.873195i \(-0.337956\pi\)
0.487370 + 0.873195i \(0.337956\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 35.0000 + 5.00000i 1.69775 + 0.242536i
\(426\) 0 0
\(427\) −8.00000 8.00000i −0.387147 0.387147i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 4.00000i 0.192673i 0.995349 + 0.0963366i \(0.0307125\pi\)
−0.995349 + 0.0963366i \(0.969287\pi\)
\(432\) 0 0
\(433\) −19.0000 19.0000i −0.913082 0.913082i 0.0834318 0.996513i \(-0.473412\pi\)
−0.996513 + 0.0834318i \(0.973412\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −8.00000 + 8.00000i −0.382692 + 0.382692i
\(438\) 0 0
\(439\) −16.0000 −0.763638 −0.381819 0.924237i \(-0.624702\pi\)
−0.381819 + 0.924237i \(0.624702\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −22.0000 + 22.0000i −1.04525 + 1.04525i −0.0463251 + 0.998926i \(0.514751\pi\)
−0.998926 + 0.0463251i \(0.985249\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 26.0000i 1.22702i −0.789689 0.613508i \(-0.789758\pi\)
0.789689 0.613508i \(-0.210242\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 4.00000 8.00000i 0.187523 0.375046i
\(456\) 0 0
\(457\) 15.0000 15.0000i 0.701670 0.701670i −0.263099 0.964769i \(-0.584744\pi\)
0.964769 + 0.263099i \(0.0847444\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 14.0000 0.652045 0.326023 0.945362i \(-0.394291\pi\)
0.326023 + 0.945362i \(0.394291\pi\)
\(462\) 0 0
\(463\) −22.0000 + 22.0000i −1.02243 + 1.02243i −0.0226840 + 0.999743i \(0.507221\pi\)
−0.999743 + 0.0226840i \(0.992779\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −2.00000 2.00000i −0.0925490 0.0925490i 0.659317 0.751865i \(-0.270846\pi\)
−0.751865 + 0.659317i \(0.770846\pi\)
\(468\) 0 0
\(469\) 40.0000i 1.84703i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 12.0000 + 16.0000i 0.550598 + 0.734130i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 24.0000 1.09659 0.548294 0.836286i \(-0.315277\pi\)
0.548294 + 0.836286i \(0.315277\pi\)
\(480\) 0 0
\(481\) −2.00000 −0.0911922
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −9.00000 + 3.00000i −0.408669 + 0.136223i
\(486\) 0 0
\(487\) −6.00000 6.00000i −0.271886 0.271886i 0.557973 0.829859i \(-0.311579\pi\)
−0.829859 + 0.557973i \(0.811579\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 16.0000i 0.722070i −0.932552 0.361035i \(-0.882424\pi\)
0.932552 0.361035i \(-0.117576\pi\)
\(492\) 0 0
\(493\) −20.0000 20.0000i −0.900755 0.900755i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −24.0000 + 24.0000i −1.07655 + 1.07655i
\(498\) 0 0
\(499\) 4.00000 0.179065 0.0895323 0.995984i \(-0.471463\pi\)
0.0895323 + 0.995984i \(0.471463\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −10.0000 + 10.0000i −0.445878 + 0.445878i −0.893982 0.448104i \(-0.852100\pi\)
0.448104 + 0.893982i \(0.352100\pi\)
\(504\) 0 0
\(505\) 12.0000 + 6.00000i 0.533993 + 0.266996i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 36.0000i 1.59567i 0.602875 + 0.797836i \(0.294022\pi\)
−0.602875 + 0.797836i \(0.705978\pi\)
\(510\) 0 0
\(511\) 12.0000i 0.530849i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −18.0000 + 6.00000i −0.793175 + 0.264392i
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −6.00000 −0.262865 −0.131432 0.991325i \(-0.541958\pi\)
−0.131432 + 0.991325i \(0.541958\pi\)
\(522\) 0 0
\(523\) 14.0000 14.0000i 0.612177 0.612177i −0.331336 0.943513i \(-0.607499\pi\)
0.943513 + 0.331336i \(0.107499\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 20.0000 + 20.0000i 0.871214 + 0.871214i
\(528\) 0 0
\(529\) 15.0000i 0.652174i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −6.00000 18.0000i −0.259403 0.778208i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −30.0000 −1.28980 −0.644900 0.764267i \(-0.723101\pi\)
−0.644900 + 0.764267i \(0.723101\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 10.0000 20.0000i 0.428353 0.856706i
\(546\) 0 0
\(547\) −6.00000 6.00000i −0.256541 0.256541i 0.567104 0.823646i \(-0.308064\pi\)
−0.823646 + 0.567104i \(0.808064\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 16.0000i 0.681623i
\(552\) 0 0
\(553\) 32.0000 + 32.0000i 1.36078 + 1.36078i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 15.0000 15.0000i 0.635570 0.635570i −0.313889 0.949460i \(-0.601632\pi\)
0.949460 + 0.313889i \(0.101632\pi\)
\(558\) 0 0
\(559\) 12.0000 0.507546
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 6.00000 6.00000i 0.252870 0.252870i −0.569276 0.822146i \(-0.692777\pi\)
0.822146 + 0.569276i \(0.192777\pi\)
\(564\) 0 0
\(565\) 9.00000 + 27.0000i 0.378633 + 1.13590i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 2.00000i 0.0838444i −0.999121 0.0419222i \(-0.986652\pi\)
0.999121 0.0419222i \(-0.0133482\pi\)
\(570\) 0 0
\(571\) 16.0000i 0.669579i 0.942293 + 0.334790i \(0.108665\pi\)
−0.942293 + 0.334790i \(0.891335\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −14.0000 2.00000i −0.583840 0.0834058i
\(576\) 0 0
\(577\) 15.0000 15.0000i 0.624458 0.624458i −0.322210 0.946668i \(-0.604426\pi\)
0.946668 + 0.322210i \(0.104426\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 8.00000 0.331896
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 14.0000 + 14.0000i 0.577842 + 0.577842i 0.934308 0.356466i \(-0.116019\pi\)
−0.356466 + 0.934308i \(0.616019\pi\)
\(588\) 0 0
\(589\) 16.0000i 0.659269i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −1.00000 1.00000i −0.0410651 0.0410651i 0.686276 0.727341i \(-0.259244\pi\)
−0.727341 + 0.686276i \(0.759244\pi\)
\(594\) 0 0
\(595\) 40.0000 + 20.0000i 1.63984 + 0.819920i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 8.00000 0.326871 0.163436 0.986554i \(-0.447742\pi\)
0.163436 + 0.986554i \(0.447742\pi\)
\(600\) 0 0
\(601\) −8.00000 −0.326327 −0.163163 0.986599i \(-0.552170\pi\)
−0.163163 + 0.986599i \(0.552170\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 22.0000 + 11.0000i 0.894427 + 0.447214i
\(606\) 0 0
\(607\) −18.0000 18.0000i −0.730597 0.730597i 0.240141 0.970738i \(-0.422806\pi\)
−0.970738 + 0.240141i \(0.922806\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 4.00000i 0.161823i
\(612\) 0 0
\(613\) −9.00000 9.00000i −0.363507 0.363507i 0.501596 0.865102i \(-0.332747\pi\)
−0.865102 + 0.501596i \(0.832747\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 29.0000 29.0000i 1.16750 1.16750i 0.184701 0.982795i \(-0.440868\pi\)
0.982795 0.184701i \(-0.0591318\pi\)
\(618\) 0 0
\(619\) −28.0000 −1.12542 −0.562708 0.826656i \(-0.690240\pi\)
−0.562708 + 0.826656i \(0.690240\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −7.00000 + 24.0000i −0.280000 + 0.960000i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 10.0000i 0.398726i
\(630\) 0 0
\(631\) 4.00000i 0.159237i −0.996825 0.0796187i \(-0.974630\pi\)
0.996825 0.0796187i \(-0.0253703\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 10.0000 + 30.0000i 0.396838 + 1.19051i
\(636\) 0 0
\(637\) 1.00000 1.00000i 0.0396214 0.0396214i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 48.0000 1.89589 0.947943 0.318440i \(-0.103159\pi\)
0.947943 + 0.318440i \(0.103159\pi\)
\(642\) 0 0
\(643\) −10.0000 + 10.0000i −0.394362 + 0.394362i −0.876239 0.481877i \(-0.839955\pi\)
0.481877 + 0.876239i \(0.339955\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −10.0000 10.0000i −0.393141 0.393141i 0.482665 0.875805i \(-0.339669\pi\)
−0.875805 + 0.482665i \(0.839669\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1.00000 1.00000i −0.0391330 0.0391330i 0.687270 0.726403i \(-0.258809\pi\)
−0.726403 + 0.687270i \(0.758809\pi\)
\(654\) 0 0
\(655\) −8.00000 + 16.0000i −0.312586 + 0.625172i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −20.0000 −0.779089 −0.389545 0.921008i \(-0.627368\pi\)
−0.389545 + 0.921008i \(0.627368\pi\)
\(660\) 0 0
\(661\) 12.0000 0.466746 0.233373 0.972387i \(-0.425024\pi\)
0.233373 + 0.972387i \(0.425024\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 8.00000 + 24.0000i 0.310227 + 0.930680i
\(666\) 0 0
\(667\) 8.00000 + 8.00000i 0.309761 + 0.309761i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 5.00000 + 5.00000i 0.192736 + 0.192736i 0.796877 0.604141i \(-0.206484\pi\)
−0.604141 + 0.796877i \(0.706484\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 3.00000 3.00000i 0.115299 0.115299i −0.647103 0.762402i \(-0.724020\pi\)
0.762402 + 0.647103i \(0.224020\pi\)
\(678\) 0 0
\(679\) −12.0000 −0.460518
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 22.0000 22.0000i 0.841807 0.841807i −0.147287 0.989094i \(-0.547054\pi\)
0.989094 + 0.147287i \(0.0470541\pi\)
\(684\) 0 0
\(685\) −3.00000 + 1.00000i −0.114624 + 0.0382080i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 14.0000i 0.533358i
\(690\) 0 0
\(691\) 32.0000i 1.21734i 0.793424 + 0.608669i \(0.208296\pi\)
−0.793424 + 0.608669i \(0.791704\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −24.0000 12.0000i −0.910372 0.455186i
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −20.0000 −0.755390 −0.377695 0.925930i \(-0.623283\pi\)
−0.377695 + 0.925930i \(0.623283\pi\)
\(702\) 0 0
\(703\) 4.00000 4.00000i 0.150863 0.150863i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 12.0000 + 12.0000i 0.451306 + 0.451306i
\(708\) 0 0
\(709\) 12.0000i 0.450669i 0.974281 + 0.225335i \(0.0723476\pi\)
−0.974281 + 0.225335i \(0.927652\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −8.00000 8.00000i −0.299602 0.299602i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −8.00000 −0.298350 −0.149175 0.988811i \(-0.547662\pi\)
−0.149175 + 0.988811i \(0.547662\pi\)
\(720\) 0 0
\(721\) −24.0000 −0.893807
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 16.0000 12.0000i 0.594225 0.445669i
\(726\) 0 0
\(727\) 18.0000 + 18.0000i 0.667583 + 0.667583i 0.957156 0.289573i \(-0.0935133\pi\)
−0.289573 + 0.957156i \(0.593513\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 60.0000i 2.21918i
\(732\) 0 0
\(733\) 21.0000 + 21.0000i 0.775653 + 0.775653i 0.979088 0.203436i \(-0.0652108\pi\)
−0.203436 + 0.979088i \(0.565211\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 44.0000 1.61857 0.809283 0.587419i \(-0.199856\pi\)
0.809283 + 0.587419i \(0.199856\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −30.0000 + 30.0000i −1.10059 + 1.10059i −0.106254 + 0.994339i \(0.533886\pi\)
−0.994339 + 0.106254i \(0.966114\pi\)
\(744\) 0 0
\(745\) 18.0000 36.0000i 0.659469 1.31894i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 24.0000i 0.876941i
\(750\) 0 0
\(751\) 44.0000i 1.60558i −0.596260 0.802791i \(-0.703347\pi\)
0.596260 0.802791i \(-0.296653\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 12.0000 24.0000i 0.436725 0.873449i
\(756\) 0 0
\(757\) −1.00000 + 1.00000i −0.0363456 + 0.0363456i −0.725046 0.688700i \(-0.758182\pi\)
0.688700 + 0.725046i \(0.258182\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 22.0000 0.797499 0.398750 0.917060i \(-0.369444\pi\)
0.398750 + 0.917060i \(0.369444\pi\)
\(762\) 0 0
\(763\) 20.0000 20.0000i 0.724049 0.724049i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 4.00000 + 4.00000i 0.144432 + 0.144432i
\(768\) 0 0
\(769\) 40.0000i 1.44244i −0.692708 0.721218i \(-0.743582\pi\)
0.692708 0.721218i \(-0.256418\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1.00000 + 1.00000i 0.0359675 + 0.0359675i 0.724862 0.688894i \(-0.241904\pi\)
−0.688894 + 0.724862i \(0.741904\pi\)
\(774\) 0 0
\(775\) −16.0000 + 12.0000i −0.574737 + 0.431053i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −27.0000 + 9.00000i −0.963671 + 0.321224i
\(786\) 0 0
\(787\) 30.0000 + 30.0000i 1.06938 + 1.06938i 0.997406 + 0.0719783i \(0.0229312\pi\)
0.0719783 + 0.997406i \(0.477069\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 36.0000i 1.28001i
\(792\) 0 0
\(793\) 4.00000 + 4.00000i 0.142044 + 0.142044i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 29.0000 29.0000i 1.02723 1.02723i 0.0276140 0.999619i \(-0.491209\pi\)
0.999619 0.0276140i \(-0.00879094\pi\)
\(798\) 0 0
\(799\) 20.0000 0.707549
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) −16.0000 8.00000i −0.563926 0.281963i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 24.0000i 0.843795i 0.906644 + 0.421898i \(0.138636\pi\)
−0.906644 + 0.421898i \(0.861364\pi\)
\(810\) 0 0
\(811\) 24.0000i 0.842754i 0.906886 + 0.421377i \(0.138453\pi\)
−0.906886 + 0.421377i \(0.861547\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 6.00000 2.00000i 0.210171 0.0700569i
\(816\) 0 0
\(817\) −24.0000 + 24.0000i −0.839654 + 0.839654i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 28.0000 0.977207 0.488603 0.872506i \(-0.337507\pi\)
0.488603 + 0.872506i \(0.337507\pi\)
\(822\) 0 0
\(823\) −30.0000 + 30.0000i −1.04573 + 1.04573i −0.0468315 + 0.998903i \(0.514912\pi\)
−0.998903 + 0.0468315i \(0.985088\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −2.00000 2.00000i −0.0695468 0.0695468i 0.671478 0.741025i \(-0.265660\pi\)
−0.741025 + 0.671478i \(0.765660\pi\)
\(828\) 0 0
\(829\) 6.00000i 0.208389i −0.994557 0.104194i \(-0.966774\pi\)
0.994557 0.104194i \(-0.0332264\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 5.00000 + 5.00000i 0.173240 + 0.173240i
\(834\) 0 0
\(835\) 2.00000 + 6.00000i 0.0692129 + 0.207639i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 24.0000 0.828572 0.414286 0.910147i \(-0.364031\pi\)
0.414286 + 0.910147i \(0.364031\pi\)
\(840\) 0 0
\(841\) 13.0000 0.448276
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 11.0000 22.0000i 0.378412 0.756823i
\(846\) 0 0
\(847\) 22.0000 + 22.0000i 0.755929 + 0.755929i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 4.00000i 0.137118i
\(852\) 0 0
\(853\) 15.0000 + 15.0000i 0.513590 + 0.513590i 0.915625 0.402034i \(-0.131697\pi\)
−0.402034 + 0.915625i \(0.631697\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 7.00000 7.00000i 0.239115 0.239115i −0.577368 0.816484i \(-0.695920\pi\)
0.816484 + 0.577368i \(0.195920\pi\)
\(858\) 0 0
\(859\) −28.0000 −0.955348 −0.477674 0.878537i \(-0.658520\pi\)
−0.477674 + 0.878537i \(0.658520\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −34.0000 + 34.0000i −1.15737 + 1.15737i −0.172335 + 0.985038i \(0.555131\pi\)
−0.985038 + 0.172335i \(0.944869\pi\)
\(864\) 0 0
\(865\) −13.0000 39.0000i −0.442013 1.32604i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 20.0000i 0.677674i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −18.0000 + 26.0000i −0.608511 + 0.878960i
\(876\) 0 0
\(877\) 15.0000 15.0000i 0.506514 0.506514i −0.406941 0.913455i \(-0.633404\pi\)
0.913455 + 0.406941i \(0.133404\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 40.0000 1.34763 0.673817 0.738898i \(-0.264654\pi\)
0.673817 + 0.738898i \(0.264654\pi\)
\(882\) 0 0
\(883\) 10.0000 10.0000i 0.336527 0.336527i −0.518532 0.855058i \(-0.673521\pi\)
0.855058 + 0.518532i \(0.173521\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −10.0000 10.0000i −0.335767 0.335767i 0.519004 0.854772i \(-0.326303\pi\)
−0.854772 + 0.519004i \(0.826303\pi\)
\(888\) 0 0
\(889\) 40.0000i 1.34156i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 8.00000 + 8.00000i 0.267710 + 0.267710i
\(894\) 0 0
\(895\) −24.0000 12.0000i −0.802232 0.401116i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 16.0000 0.533630
\(900\) 0 0
\(901\) 70.0000 2.33204
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −20.0000 10.0000i −0.664822 0.332411i
\(906\) 0 0
\(907\) 6.00000 + 6.00000i 0.199227 + 0.199227i 0.799668 0.600442i \(-0.205009\pi\)
−0.600442 + 0.799668i \(0.705009\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 4.00000i 0.132526i −0.997802 0.0662630i \(-0.978892\pi\)
0.997802 0.0662630i \(-0.0211076\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −16.0000 + 16.0000i −0.528367 + 0.528367i
\(918\) 0 0
\(919\) −24.0000 −0.791687 −0.395843 0.918318i \(-0.629548\pi\)
−0.395843 + 0.918318i \(0.629548\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 12.0000 12.0000i 0.394985 0.394985i
\(924\) 0 0
\(925\) 7.00000 + 1.00000i 0.230159 + 0.0328798i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 6.00000i 0.196854i −0.995144 0.0984268i \(-0.968619\pi\)
0.995144 0.0984268i \(-0.0313810\pi\)
\(930\) 0 0
\(931\) 4.00000i 0.131095i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 27.0000 27.0000i 0.882052 0.882052i −0.111691 0.993743i \(-0.535627\pi\)
0.993743 + 0.111691i \(0.0356268\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −46.0000 −1.49956 −0.749779 0.661689i \(-0.769840\pi\)
−0.749779 + 0.661689i \(0.769840\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 10.0000 + 10.0000i 0.324956 + 0.324956i 0.850665 0.525708i \(-0.176200\pi\)
−0.525708 + 0.850665i \(0.676200\pi\)
\(948\) 0 0
\(949\) 6.00000i 0.194768i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 9.00000 + 9.00000i 0.291539 + 0.291539i 0.837688 0.546149i \(-0.183907\pi\)
−0.546149 + 0.837688i \(0.683907\pi\)
\(954\) 0 0
\(955\) 20.0000 40.0000i 0.647185 1.29437i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −4.00000 −0.129167
\(960\) 0 0
\(961\) 15.0000 0.483871
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −5.00000 15.0000i −0.160956 0.482867i
\(966\) 0 0
\(967\) −10.0000 10.0000i −0.321578 0.321578i 0.527794 0.849372i \(-0.323019\pi\)
−0.849372 + 0.527794i \(0.823019\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 8.00000i 0.256732i 0.991727 + 0.128366i \(0.0409733\pi\)
−0.991727 + 0.128366i \(0.959027\pi\)
\(972\) 0 0
\(973\) −24.0000 24.0000i −0.769405 0.769405i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −21.0000 + 21.0000i −0.671850 + 0.671850i −0.958142 0.286293i \(-0.907577\pi\)
0.286293 + 0.958142i \(0.407577\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 34.0000 34.0000i 1.08443 1.08443i 0.0883413 0.996090i \(-0.471843\pi\)
0.996090 0.0883413i \(-0.0281566\pi\)
\(984\) 0 0
\(985\) −15.0000 + 5.00000i −0.477940 + 0.159313i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 24.0000i 0.763156i
\(990\) 0 0
\(991\) 4.00000i 0.127064i −0.997980 0.0635321i \(-0.979763\pi\)
0.997980 0.0635321i \(-0.0202365\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 48.0000 + 24.0000i 1.52170 + 0.760851i
\(996\) 0 0
\(997\) −21.0000 + 21.0000i −0.665077 + 0.665077i −0.956572 0.291496i \(-0.905847\pi\)
0.291496 + 0.956572i \(0.405847\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1440.2.x.j.703.1 2
3.2 odd 2 160.2.n.f.63.1 yes 2
4.3 odd 2 1440.2.x.i.703.1 2
5.2 odd 4 1440.2.x.i.127.1 2
12.11 even 2 160.2.n.a.63.1 2
15.2 even 4 160.2.n.a.127.1 yes 2
15.8 even 4 800.2.n.j.607.1 2
15.14 odd 2 800.2.n.a.543.1 2
20.7 even 4 inner 1440.2.x.j.127.1 2
24.5 odd 2 320.2.n.a.63.1 2
24.11 even 2 320.2.n.h.63.1 2
48.5 odd 4 1280.2.o.b.383.1 2
48.11 even 4 1280.2.o.p.383.1 2
48.29 odd 4 1280.2.o.o.383.1 2
48.35 even 4 1280.2.o.a.383.1 2
60.23 odd 4 800.2.n.a.607.1 2
60.47 odd 4 160.2.n.f.127.1 yes 2
60.59 even 2 800.2.n.j.543.1 2
120.29 odd 2 1600.2.n.n.1343.1 2
120.53 even 4 1600.2.n.a.1407.1 2
120.59 even 2 1600.2.n.a.1343.1 2
120.77 even 4 320.2.n.h.127.1 2
120.83 odd 4 1600.2.n.n.1407.1 2
120.107 odd 4 320.2.n.a.127.1 2
240.77 even 4 1280.2.o.p.127.1 2
240.107 odd 4 1280.2.o.o.127.1 2
240.197 even 4 1280.2.o.a.127.1 2
240.227 odd 4 1280.2.o.b.127.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
160.2.n.a.63.1 2 12.11 even 2
160.2.n.a.127.1 yes 2 15.2 even 4
160.2.n.f.63.1 yes 2 3.2 odd 2
160.2.n.f.127.1 yes 2 60.47 odd 4
320.2.n.a.63.1 2 24.5 odd 2
320.2.n.a.127.1 2 120.107 odd 4
320.2.n.h.63.1 2 24.11 even 2
320.2.n.h.127.1 2 120.77 even 4
800.2.n.a.543.1 2 15.14 odd 2
800.2.n.a.607.1 2 60.23 odd 4
800.2.n.j.543.1 2 60.59 even 2
800.2.n.j.607.1 2 15.8 even 4
1280.2.o.a.127.1 2 240.197 even 4
1280.2.o.a.383.1 2 48.35 even 4
1280.2.o.b.127.1 2 240.227 odd 4
1280.2.o.b.383.1 2 48.5 odd 4
1280.2.o.o.127.1 2 240.107 odd 4
1280.2.o.o.383.1 2 48.29 odd 4
1280.2.o.p.127.1 2 240.77 even 4
1280.2.o.p.383.1 2 48.11 even 4
1440.2.x.i.127.1 2 5.2 odd 4
1440.2.x.i.703.1 2 4.3 odd 2
1440.2.x.j.127.1 2 20.7 even 4 inner
1440.2.x.j.703.1 2 1.1 even 1 trivial
1600.2.n.a.1343.1 2 120.59 even 2
1600.2.n.a.1407.1 2 120.53 even 4
1600.2.n.n.1343.1 2 120.29 odd 2
1600.2.n.n.1407.1 2 120.83 odd 4