Properties

Label 1445.2.a.p.1.2
Level $1445$
Weight $2$
Character 1445.1
Self dual yes
Analytic conductor $11.538$
Analytic rank $1$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1445,2,Mod(1,1445)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1445, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1445.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1445 = 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1445.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.5383830921\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} - 10 x^{10} + 52 x^{9} + 21 x^{8} - 232 x^{7} + 44 x^{6} + 424 x^{5} - 137 x^{4} + \cdots + 17 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.63994\) of defining polynomial
Character \(\chi\) \(=\) 1445.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.63994 q^{2} -2.12055 q^{3} +4.96928 q^{4} +1.00000 q^{5} +5.59814 q^{6} -4.06194 q^{7} -7.83873 q^{8} +1.49675 q^{9} -2.63994 q^{10} +1.74901 q^{11} -10.5376 q^{12} +1.67715 q^{13} +10.7233 q^{14} -2.12055 q^{15} +10.7552 q^{16} -3.95133 q^{18} +0.249037 q^{19} +4.96928 q^{20} +8.61356 q^{21} -4.61727 q^{22} -0.519715 q^{23} +16.6224 q^{24} +1.00000 q^{25} -4.42758 q^{26} +3.18772 q^{27} -20.1849 q^{28} -0.486878 q^{29} +5.59814 q^{30} -9.53040 q^{31} -12.7156 q^{32} -3.70886 q^{33} -4.06194 q^{35} +7.43778 q^{36} +4.26971 q^{37} -0.657443 q^{38} -3.55649 q^{39} -7.83873 q^{40} -5.28883 q^{41} -22.7393 q^{42} +3.17951 q^{43} +8.69131 q^{44} +1.49675 q^{45} +1.37202 q^{46} +6.26212 q^{47} -22.8070 q^{48} +9.49933 q^{49} -2.63994 q^{50} +8.33425 q^{52} +10.2436 q^{53} -8.41540 q^{54} +1.74901 q^{55} +31.8404 q^{56} -0.528097 q^{57} +1.28533 q^{58} +11.5986 q^{59} -10.5376 q^{60} +4.35334 q^{61} +25.1597 q^{62} -6.07971 q^{63} +12.0581 q^{64} +1.67715 q^{65} +9.79117 q^{66} -9.73489 q^{67} +1.10208 q^{69} +10.7233 q^{70} -1.00602 q^{71} -11.7326 q^{72} +2.91508 q^{73} -11.2718 q^{74} -2.12055 q^{75} +1.23754 q^{76} -7.10435 q^{77} +9.38893 q^{78} -6.81821 q^{79} +10.7552 q^{80} -11.2500 q^{81} +13.9622 q^{82} -3.19678 q^{83} +42.8032 q^{84} -8.39371 q^{86} +1.03245 q^{87} -13.7100 q^{88} +3.30525 q^{89} -3.95133 q^{90} -6.81249 q^{91} -2.58261 q^{92} +20.2097 q^{93} -16.5316 q^{94} +0.249037 q^{95} +26.9642 q^{96} -1.70094 q^{97} -25.0777 q^{98} +2.61783 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{2} - 8 q^{3} + 12 q^{4} + 12 q^{5} - 8 q^{6} - 16 q^{7} - 12 q^{8} + 12 q^{9} - 4 q^{10} - 16 q^{11} - 16 q^{12} - 8 q^{13} + 16 q^{14} - 8 q^{15} + 12 q^{16} + 4 q^{18} + 12 q^{20} + 16 q^{21}+ \cdots - 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.63994 −1.86672 −0.933360 0.358942i \(-0.883137\pi\)
−0.933360 + 0.358942i \(0.883137\pi\)
\(3\) −2.12055 −1.22430 −0.612151 0.790741i \(-0.709696\pi\)
−0.612151 + 0.790741i \(0.709696\pi\)
\(4\) 4.96928 2.48464
\(5\) 1.00000 0.447214
\(6\) 5.59814 2.28543
\(7\) −4.06194 −1.53527 −0.767634 0.640889i \(-0.778566\pi\)
−0.767634 + 0.640889i \(0.778566\pi\)
\(8\) −7.83873 −2.77141
\(9\) 1.49675 0.498917
\(10\) −2.63994 −0.834822
\(11\) 1.74901 0.527345 0.263673 0.964612i \(-0.415066\pi\)
0.263673 + 0.964612i \(0.415066\pi\)
\(12\) −10.5376 −3.04195
\(13\) 1.67715 0.465159 0.232579 0.972577i \(-0.425283\pi\)
0.232579 + 0.972577i \(0.425283\pi\)
\(14\) 10.7233 2.86591
\(15\) −2.12055 −0.547525
\(16\) 10.7552 2.68880
\(17\) 0 0
\(18\) −3.95133 −0.931338
\(19\) 0.249037 0.0571330 0.0285665 0.999592i \(-0.490906\pi\)
0.0285665 + 0.999592i \(0.490906\pi\)
\(20\) 4.96928 1.11117
\(21\) 8.61356 1.87963
\(22\) −4.61727 −0.984405
\(23\) −0.519715 −0.108368 −0.0541841 0.998531i \(-0.517256\pi\)
−0.0541841 + 0.998531i \(0.517256\pi\)
\(24\) 16.6224 3.39304
\(25\) 1.00000 0.200000
\(26\) −4.42758 −0.868320
\(27\) 3.18772 0.613477
\(28\) −20.1849 −3.81459
\(29\) −0.486878 −0.0904109 −0.0452055 0.998978i \(-0.514394\pi\)
−0.0452055 + 0.998978i \(0.514394\pi\)
\(30\) 5.59814 1.02208
\(31\) −9.53040 −1.71171 −0.855856 0.517215i \(-0.826969\pi\)
−0.855856 + 0.517215i \(0.826969\pi\)
\(32\) −12.7156 −2.24783
\(33\) −3.70886 −0.645630
\(34\) 0 0
\(35\) −4.06194 −0.686593
\(36\) 7.43778 1.23963
\(37\) 4.26971 0.701937 0.350968 0.936387i \(-0.385852\pi\)
0.350968 + 0.936387i \(0.385852\pi\)
\(38\) −0.657443 −0.106651
\(39\) −3.55649 −0.569495
\(40\) −7.83873 −1.23941
\(41\) −5.28883 −0.825976 −0.412988 0.910736i \(-0.635515\pi\)
−0.412988 + 0.910736i \(0.635515\pi\)
\(42\) −22.7393 −3.50875
\(43\) 3.17951 0.484871 0.242435 0.970168i \(-0.422054\pi\)
0.242435 + 0.970168i \(0.422054\pi\)
\(44\) 8.69131 1.31026
\(45\) 1.49675 0.223122
\(46\) 1.37202 0.202293
\(47\) 6.26212 0.913423 0.456712 0.889615i \(-0.349027\pi\)
0.456712 + 0.889615i \(0.349027\pi\)
\(48\) −22.8070 −3.29191
\(49\) 9.49933 1.35705
\(50\) −2.63994 −0.373344
\(51\) 0 0
\(52\) 8.33425 1.15575
\(53\) 10.2436 1.40707 0.703535 0.710661i \(-0.251604\pi\)
0.703535 + 0.710661i \(0.251604\pi\)
\(54\) −8.41540 −1.14519
\(55\) 1.74901 0.235836
\(56\) 31.8404 4.25485
\(57\) −0.528097 −0.0699481
\(58\) 1.28533 0.168772
\(59\) 11.5986 1.51001 0.755003 0.655722i \(-0.227636\pi\)
0.755003 + 0.655722i \(0.227636\pi\)
\(60\) −10.5376 −1.36040
\(61\) 4.35334 0.557388 0.278694 0.960380i \(-0.410099\pi\)
0.278694 + 0.960380i \(0.410099\pi\)
\(62\) 25.1597 3.19528
\(63\) −6.07971 −0.765971
\(64\) 12.0581 1.50726
\(65\) 1.67715 0.208025
\(66\) 9.79117 1.20521
\(67\) −9.73489 −1.18931 −0.594653 0.803982i \(-0.702711\pi\)
−0.594653 + 0.803982i \(0.702711\pi\)
\(68\) 0 0
\(69\) 1.10208 0.132675
\(70\) 10.7233 1.28168
\(71\) −1.00602 −0.119392 −0.0596960 0.998217i \(-0.519013\pi\)
−0.0596960 + 0.998217i \(0.519013\pi\)
\(72\) −11.7326 −1.38270
\(73\) 2.91508 0.341184 0.170592 0.985342i \(-0.445432\pi\)
0.170592 + 0.985342i \(0.445432\pi\)
\(74\) −11.2718 −1.31032
\(75\) −2.12055 −0.244861
\(76\) 1.23754 0.141955
\(77\) −7.10435 −0.809616
\(78\) 9.38893 1.06309
\(79\) −6.81821 −0.767108 −0.383554 0.923518i \(-0.625300\pi\)
−0.383554 + 0.923518i \(0.625300\pi\)
\(80\) 10.7552 1.20247
\(81\) −11.2500 −1.25000
\(82\) 13.9622 1.54187
\(83\) −3.19678 −0.350892 −0.175446 0.984489i \(-0.556137\pi\)
−0.175446 + 0.984489i \(0.556137\pi\)
\(84\) 42.8032 4.67021
\(85\) 0 0
\(86\) −8.39371 −0.905118
\(87\) 1.03245 0.110690
\(88\) −13.7100 −1.46149
\(89\) 3.30525 0.350356 0.175178 0.984537i \(-0.443950\pi\)
0.175178 + 0.984537i \(0.443950\pi\)
\(90\) −3.95133 −0.416507
\(91\) −6.81249 −0.714143
\(92\) −2.58261 −0.269256
\(93\) 20.2097 2.09565
\(94\) −16.5316 −1.70511
\(95\) 0.249037 0.0255507
\(96\) 26.9642 2.75202
\(97\) −1.70094 −0.172705 −0.0863523 0.996265i \(-0.527521\pi\)
−0.0863523 + 0.996265i \(0.527521\pi\)
\(98\) −25.0777 −2.53323
\(99\) 2.61783 0.263101
\(100\) 4.96928 0.496928
\(101\) 9.86464 0.981569 0.490784 0.871281i \(-0.336710\pi\)
0.490784 + 0.871281i \(0.336710\pi\)
\(102\) 0 0
\(103\) −14.0029 −1.37975 −0.689875 0.723928i \(-0.742335\pi\)
−0.689875 + 0.723928i \(0.742335\pi\)
\(104\) −13.1467 −1.28914
\(105\) 8.61356 0.840597
\(106\) −27.0425 −2.62660
\(107\) 13.5272 1.30773 0.653863 0.756613i \(-0.273147\pi\)
0.653863 + 0.756613i \(0.273147\pi\)
\(108\) 15.8407 1.52427
\(109\) −6.36995 −0.610131 −0.305065 0.952331i \(-0.598678\pi\)
−0.305065 + 0.952331i \(0.598678\pi\)
\(110\) −4.61727 −0.440239
\(111\) −9.05416 −0.859383
\(112\) −43.6870 −4.12803
\(113\) 13.0583 1.22843 0.614213 0.789141i \(-0.289474\pi\)
0.614213 + 0.789141i \(0.289474\pi\)
\(114\) 1.39414 0.130574
\(115\) −0.519715 −0.0484637
\(116\) −2.41943 −0.224639
\(117\) 2.51028 0.232075
\(118\) −30.6195 −2.81876
\(119\) 0 0
\(120\) 16.6224 1.51741
\(121\) −7.94098 −0.721907
\(122\) −11.4925 −1.04049
\(123\) 11.2152 1.01124
\(124\) −47.3593 −4.25299
\(125\) 1.00000 0.0894427
\(126\) 16.0501 1.42985
\(127\) −16.1404 −1.43223 −0.716114 0.697983i \(-0.754081\pi\)
−0.716114 + 0.697983i \(0.754081\pi\)
\(128\) −6.40141 −0.565810
\(129\) −6.74232 −0.593628
\(130\) −4.42758 −0.388325
\(131\) −15.7448 −1.37563 −0.687813 0.725888i \(-0.741429\pi\)
−0.687813 + 0.725888i \(0.741429\pi\)
\(132\) −18.4304 −1.60416
\(133\) −1.01157 −0.0877145
\(134\) 25.6995 2.22010
\(135\) 3.18772 0.274355
\(136\) 0 0
\(137\) −15.5752 −1.33068 −0.665339 0.746541i \(-0.731713\pi\)
−0.665339 + 0.746541i \(0.731713\pi\)
\(138\) −2.90944 −0.247668
\(139\) −10.5208 −0.892365 −0.446183 0.894942i \(-0.647217\pi\)
−0.446183 + 0.894942i \(0.647217\pi\)
\(140\) −20.1849 −1.70594
\(141\) −13.2792 −1.11831
\(142\) 2.65582 0.222871
\(143\) 2.93335 0.245299
\(144\) 16.0979 1.34149
\(145\) −0.486878 −0.0404330
\(146\) −7.69563 −0.636895
\(147\) −20.1439 −1.66144
\(148\) 21.2174 1.74406
\(149\) 7.79902 0.638920 0.319460 0.947600i \(-0.396498\pi\)
0.319460 + 0.947600i \(0.396498\pi\)
\(150\) 5.59814 0.457086
\(151\) −3.76216 −0.306161 −0.153080 0.988214i \(-0.548919\pi\)
−0.153080 + 0.988214i \(0.548919\pi\)
\(152\) −1.95213 −0.158339
\(153\) 0 0
\(154\) 18.7551 1.51133
\(155\) −9.53040 −0.765500
\(156\) −17.6732 −1.41499
\(157\) 17.5226 1.39846 0.699229 0.714898i \(-0.253527\pi\)
0.699229 + 0.714898i \(0.253527\pi\)
\(158\) 17.9997 1.43198
\(159\) −21.7221 −1.72268
\(160\) −12.7156 −1.00526
\(161\) 2.11105 0.166374
\(162\) 29.6993 2.33340
\(163\) −16.1671 −1.26630 −0.633152 0.774027i \(-0.718239\pi\)
−0.633152 + 0.774027i \(0.718239\pi\)
\(164\) −26.2817 −2.05225
\(165\) −3.70886 −0.288735
\(166\) 8.43930 0.655017
\(167\) −14.3560 −1.11090 −0.555452 0.831549i \(-0.687455\pi\)
−0.555452 + 0.831549i \(0.687455\pi\)
\(168\) −67.5193 −5.20923
\(169\) −10.1872 −0.783628
\(170\) 0 0
\(171\) 0.372746 0.0285046
\(172\) 15.7999 1.20473
\(173\) −18.0796 −1.37457 −0.687283 0.726390i \(-0.741197\pi\)
−0.687283 + 0.726390i \(0.741197\pi\)
\(174\) −2.72561 −0.206628
\(175\) −4.06194 −0.307054
\(176\) 18.8109 1.41793
\(177\) −24.5954 −1.84870
\(178\) −8.72567 −0.654017
\(179\) 7.51774 0.561902 0.280951 0.959722i \(-0.409350\pi\)
0.280951 + 0.959722i \(0.409350\pi\)
\(180\) 7.43778 0.554379
\(181\) −4.39392 −0.326597 −0.163299 0.986577i \(-0.552213\pi\)
−0.163299 + 0.986577i \(0.552213\pi\)
\(182\) 17.9846 1.33310
\(183\) −9.23149 −0.682411
\(184\) 4.07391 0.300332
\(185\) 4.26971 0.313916
\(186\) −53.3525 −3.91199
\(187\) 0 0
\(188\) 31.1182 2.26953
\(189\) −12.9483 −0.941852
\(190\) −0.657443 −0.0476959
\(191\) −5.03076 −0.364013 −0.182007 0.983297i \(-0.558259\pi\)
−0.182007 + 0.983297i \(0.558259\pi\)
\(192\) −25.5699 −1.84535
\(193\) −26.8878 −1.93543 −0.967713 0.252053i \(-0.918894\pi\)
−0.967713 + 0.252053i \(0.918894\pi\)
\(194\) 4.49039 0.322391
\(195\) −3.55649 −0.254686
\(196\) 47.2049 3.37178
\(197\) −8.51380 −0.606583 −0.303292 0.952898i \(-0.598086\pi\)
−0.303292 + 0.952898i \(0.598086\pi\)
\(198\) −6.91090 −0.491136
\(199\) 16.7681 1.18866 0.594330 0.804221i \(-0.297417\pi\)
0.594330 + 0.804221i \(0.297417\pi\)
\(200\) −7.83873 −0.554282
\(201\) 20.6434 1.45607
\(202\) −26.0421 −1.83231
\(203\) 1.97767 0.138805
\(204\) 0 0
\(205\) −5.28883 −0.369388
\(206\) 36.9669 2.57561
\(207\) −0.777884 −0.0540667
\(208\) 18.0381 1.25072
\(209\) 0.435567 0.0301288
\(210\) −22.7393 −1.56916
\(211\) 4.75316 0.327221 0.163611 0.986525i \(-0.447686\pi\)
0.163611 + 0.986525i \(0.447686\pi\)
\(212\) 50.9034 3.49606
\(213\) 2.13331 0.146172
\(214\) −35.7111 −2.44116
\(215\) 3.17951 0.216841
\(216\) −24.9877 −1.70020
\(217\) 38.7119 2.62794
\(218\) 16.8163 1.13894
\(219\) −6.18158 −0.417712
\(220\) 8.69131 0.585968
\(221\) 0 0
\(222\) 23.9024 1.60423
\(223\) −21.7349 −1.45548 −0.727738 0.685855i \(-0.759429\pi\)
−0.727738 + 0.685855i \(0.759429\pi\)
\(224\) 51.6501 3.45102
\(225\) 1.49675 0.0997834
\(226\) −34.4732 −2.29313
\(227\) 2.81906 0.187108 0.0935539 0.995614i \(-0.470177\pi\)
0.0935539 + 0.995614i \(0.470177\pi\)
\(228\) −2.62426 −0.173796
\(229\) 23.2096 1.53373 0.766867 0.641806i \(-0.221814\pi\)
0.766867 + 0.641806i \(0.221814\pi\)
\(230\) 1.37202 0.0904681
\(231\) 15.0652 0.991215
\(232\) 3.81650 0.250566
\(233\) −9.69742 −0.635299 −0.317650 0.948208i \(-0.602894\pi\)
−0.317650 + 0.948208i \(0.602894\pi\)
\(234\) −6.62699 −0.433220
\(235\) 6.26212 0.408495
\(236\) 57.6366 3.75182
\(237\) 14.4584 0.939173
\(238\) 0 0
\(239\) 6.98497 0.451820 0.225910 0.974148i \(-0.427464\pi\)
0.225910 + 0.974148i \(0.427464\pi\)
\(240\) −22.8070 −1.47219
\(241\) −3.83215 −0.246850 −0.123425 0.992354i \(-0.539388\pi\)
−0.123425 + 0.992354i \(0.539388\pi\)
\(242\) 20.9637 1.34760
\(243\) 14.2930 0.916899
\(244\) 21.6330 1.38491
\(245\) 9.49933 0.606890
\(246\) −29.6076 −1.88771
\(247\) 0.417673 0.0265759
\(248\) 74.7062 4.74385
\(249\) 6.77894 0.429598
\(250\) −2.63994 −0.166964
\(251\) −12.5111 −0.789693 −0.394846 0.918747i \(-0.629202\pi\)
−0.394846 + 0.918747i \(0.629202\pi\)
\(252\) −30.2118 −1.90316
\(253\) −0.908985 −0.0571474
\(254\) 42.6097 2.67357
\(255\) 0 0
\(256\) −7.21688 −0.451055
\(257\) −13.8873 −0.866263 −0.433132 0.901331i \(-0.642591\pi\)
−0.433132 + 0.901331i \(0.642591\pi\)
\(258\) 17.7993 1.10814
\(259\) −17.3433 −1.07766
\(260\) 8.33425 0.516868
\(261\) −0.728735 −0.0451075
\(262\) 41.5652 2.56791
\(263\) −30.0042 −1.85014 −0.925069 0.379798i \(-0.875993\pi\)
−0.925069 + 0.379798i \(0.875993\pi\)
\(264\) 29.0728 1.78930
\(265\) 10.2436 0.629260
\(266\) 2.67049 0.163738
\(267\) −7.00897 −0.428942
\(268\) −48.3754 −2.95500
\(269\) 7.27599 0.443625 0.221812 0.975089i \(-0.428803\pi\)
0.221812 + 0.975089i \(0.428803\pi\)
\(270\) −8.41540 −0.512145
\(271\) −6.39386 −0.388399 −0.194200 0.980962i \(-0.562211\pi\)
−0.194200 + 0.980962i \(0.562211\pi\)
\(272\) 0 0
\(273\) 14.4463 0.874327
\(274\) 41.1176 2.48400
\(275\) 1.74901 0.105469
\(276\) 5.47657 0.329651
\(277\) 7.78887 0.467988 0.233994 0.972238i \(-0.424820\pi\)
0.233994 + 0.972238i \(0.424820\pi\)
\(278\) 27.7744 1.66580
\(279\) −14.2646 −0.854001
\(280\) 31.8404 1.90283
\(281\) −21.4059 −1.27697 −0.638485 0.769634i \(-0.720439\pi\)
−0.638485 + 0.769634i \(0.720439\pi\)
\(282\) 35.0562 2.08756
\(283\) −4.42397 −0.262978 −0.131489 0.991318i \(-0.541976\pi\)
−0.131489 + 0.991318i \(0.541976\pi\)
\(284\) −4.99917 −0.296646
\(285\) −0.528097 −0.0312817
\(286\) −7.74387 −0.457905
\(287\) 21.4829 1.26809
\(288\) −19.0321 −1.12148
\(289\) 0 0
\(290\) 1.28533 0.0754771
\(291\) 3.60694 0.211443
\(292\) 14.4858 0.847720
\(293\) −19.6200 −1.14621 −0.573107 0.819481i \(-0.694262\pi\)
−0.573107 + 0.819481i \(0.694262\pi\)
\(294\) 53.1786 3.10144
\(295\) 11.5986 0.675295
\(296\) −33.4691 −1.94535
\(297\) 5.57535 0.323514
\(298\) −20.5889 −1.19268
\(299\) −0.871642 −0.0504084
\(300\) −10.5376 −0.608391
\(301\) −12.9150 −0.744406
\(302\) 9.93189 0.571516
\(303\) −20.9185 −1.20174
\(304\) 2.67844 0.153619
\(305\) 4.35334 0.249271
\(306\) 0 0
\(307\) −13.3437 −0.761567 −0.380784 0.924664i \(-0.624346\pi\)
−0.380784 + 0.924664i \(0.624346\pi\)
\(308\) −35.3035 −2.01161
\(309\) 29.6940 1.68923
\(310\) 25.1597 1.42897
\(311\) 5.35095 0.303424 0.151712 0.988425i \(-0.451521\pi\)
0.151712 + 0.988425i \(0.451521\pi\)
\(312\) 27.8784 1.57830
\(313\) −15.9154 −0.899589 −0.449794 0.893132i \(-0.648503\pi\)
−0.449794 + 0.893132i \(0.648503\pi\)
\(314\) −46.2587 −2.61053
\(315\) −6.07971 −0.342553
\(316\) −33.8816 −1.90599
\(317\) 2.37447 0.133363 0.0666817 0.997774i \(-0.478759\pi\)
0.0666817 + 0.997774i \(0.478759\pi\)
\(318\) 57.3452 3.21576
\(319\) −0.851552 −0.0476778
\(320\) 12.0581 0.674069
\(321\) −28.6852 −1.60105
\(322\) −5.57305 −0.310574
\(323\) 0 0
\(324\) −55.9044 −3.10580
\(325\) 1.67715 0.0930317
\(326\) 42.6802 2.36384
\(327\) 13.5078 0.746985
\(328\) 41.4577 2.28912
\(329\) −25.4363 −1.40235
\(330\) 9.79117 0.538986
\(331\) 2.75697 0.151537 0.0757683 0.997125i \(-0.475859\pi\)
0.0757683 + 0.997125i \(0.475859\pi\)
\(332\) −15.8857 −0.871840
\(333\) 6.39070 0.350208
\(334\) 37.8991 2.07374
\(335\) −9.73489 −0.531874
\(336\) 92.6406 5.05396
\(337\) 25.2323 1.37449 0.687246 0.726425i \(-0.258820\pi\)
0.687246 + 0.726425i \(0.258820\pi\)
\(338\) 26.8935 1.46281
\(339\) −27.6909 −1.50396
\(340\) 0 0
\(341\) −16.6687 −0.902663
\(342\) −0.984028 −0.0532101
\(343\) −10.1521 −0.548164
\(344\) −24.9233 −1.34377
\(345\) 1.10208 0.0593342
\(346\) 47.7290 2.56593
\(347\) 9.61842 0.516344 0.258172 0.966099i \(-0.416880\pi\)
0.258172 + 0.966099i \(0.416880\pi\)
\(348\) 5.13054 0.275026
\(349\) 23.1581 1.23962 0.619812 0.784750i \(-0.287209\pi\)
0.619812 + 0.784750i \(0.287209\pi\)
\(350\) 10.7233 0.573183
\(351\) 5.34630 0.285364
\(352\) −22.2397 −1.18538
\(353\) 15.4317 0.821349 0.410674 0.911782i \(-0.365293\pi\)
0.410674 + 0.911782i \(0.365293\pi\)
\(354\) 64.9304 3.45101
\(355\) −1.00602 −0.0533938
\(356\) 16.4247 0.870510
\(357\) 0 0
\(358\) −19.8464 −1.04891
\(359\) 8.02467 0.423526 0.211763 0.977321i \(-0.432080\pi\)
0.211763 + 0.977321i \(0.432080\pi\)
\(360\) −11.7326 −0.618363
\(361\) −18.9380 −0.996736
\(362\) 11.5997 0.609666
\(363\) 16.8393 0.883833
\(364\) −33.8532 −1.77439
\(365\) 2.91508 0.152582
\(366\) 24.3706 1.27387
\(367\) 20.7792 1.08466 0.542332 0.840164i \(-0.317541\pi\)
0.542332 + 0.840164i \(0.317541\pi\)
\(368\) −5.58964 −0.291380
\(369\) −7.91606 −0.412093
\(370\) −11.2718 −0.585992
\(371\) −41.6089 −2.16023
\(372\) 100.428 5.20694
\(373\) 12.6951 0.657330 0.328665 0.944447i \(-0.393401\pi\)
0.328665 + 0.944447i \(0.393401\pi\)
\(374\) 0 0
\(375\) −2.12055 −0.109505
\(376\) −49.0870 −2.53147
\(377\) −0.816569 −0.0420554
\(378\) 34.1828 1.75817
\(379\) −17.6102 −0.904577 −0.452288 0.891872i \(-0.649392\pi\)
−0.452288 + 0.891872i \(0.649392\pi\)
\(380\) 1.23754 0.0634842
\(381\) 34.2266 1.75348
\(382\) 13.2809 0.679510
\(383\) −36.7734 −1.87903 −0.939516 0.342505i \(-0.888725\pi\)
−0.939516 + 0.342505i \(0.888725\pi\)
\(384\) 13.5745 0.692723
\(385\) −7.10435 −0.362071
\(386\) 70.9822 3.61290
\(387\) 4.75893 0.241910
\(388\) −8.45247 −0.429109
\(389\) −9.34410 −0.473764 −0.236882 0.971538i \(-0.576126\pi\)
−0.236882 + 0.971538i \(0.576126\pi\)
\(390\) 9.38893 0.475427
\(391\) 0 0
\(392\) −74.4627 −3.76093
\(393\) 33.3876 1.68418
\(394\) 22.4759 1.13232
\(395\) −6.81821 −0.343061
\(396\) 13.0087 0.653712
\(397\) −3.99973 −0.200740 −0.100370 0.994950i \(-0.532003\pi\)
−0.100370 + 0.994950i \(0.532003\pi\)
\(398\) −44.2668 −2.21890
\(399\) 2.14510 0.107389
\(400\) 10.7552 0.537760
\(401\) −21.4879 −1.07305 −0.536526 0.843884i \(-0.680264\pi\)
−0.536526 + 0.843884i \(0.680264\pi\)
\(402\) −54.4972 −2.71808
\(403\) −15.9839 −0.796217
\(404\) 49.0202 2.43885
\(405\) −11.2500 −0.559016
\(406\) −5.22092 −0.259110
\(407\) 7.46776 0.370163
\(408\) 0 0
\(409\) 18.4461 0.912103 0.456051 0.889954i \(-0.349263\pi\)
0.456051 + 0.889954i \(0.349263\pi\)
\(410\) 13.9622 0.689543
\(411\) 33.0280 1.62915
\(412\) −69.5846 −3.42819
\(413\) −47.1127 −2.31826
\(414\) 2.05357 0.100927
\(415\) −3.19678 −0.156924
\(416\) −21.3261 −1.04560
\(417\) 22.3100 1.09253
\(418\) −1.14987 −0.0562421
\(419\) 16.6584 0.813817 0.406908 0.913469i \(-0.366607\pi\)
0.406908 + 0.913469i \(0.366607\pi\)
\(420\) 42.8032 2.08858
\(421\) −34.9909 −1.70535 −0.852676 0.522440i \(-0.825022\pi\)
−0.852676 + 0.522440i \(0.825022\pi\)
\(422\) −12.5481 −0.610830
\(423\) 9.37282 0.455722
\(424\) −80.2969 −3.89956
\(425\) 0 0
\(426\) −5.63181 −0.272862
\(427\) −17.6830 −0.855739
\(428\) 67.2206 3.24923
\(429\) −6.22033 −0.300320
\(430\) −8.39371 −0.404781
\(431\) 4.19331 0.201985 0.100992 0.994887i \(-0.467798\pi\)
0.100992 + 0.994887i \(0.467798\pi\)
\(432\) 34.2846 1.64952
\(433\) −3.66597 −0.176175 −0.0880877 0.996113i \(-0.528076\pi\)
−0.0880877 + 0.996113i \(0.528076\pi\)
\(434\) −102.197 −4.90562
\(435\) 1.03245 0.0495022
\(436\) −31.6541 −1.51596
\(437\) −0.129428 −0.00619140
\(438\) 16.3190 0.779752
\(439\) −25.1999 −1.20273 −0.601363 0.798976i \(-0.705375\pi\)
−0.601363 + 0.798976i \(0.705375\pi\)
\(440\) −13.7100 −0.653598
\(441\) 14.2181 0.677054
\(442\) 0 0
\(443\) 35.8208 1.70190 0.850949 0.525248i \(-0.176027\pi\)
0.850949 + 0.525248i \(0.176027\pi\)
\(444\) −44.9927 −2.13526
\(445\) 3.30525 0.156684
\(446\) 57.3788 2.71697
\(447\) −16.5382 −0.782232
\(448\) −48.9793 −2.31405
\(449\) 4.85930 0.229325 0.114662 0.993405i \(-0.463421\pi\)
0.114662 + 0.993405i \(0.463421\pi\)
\(450\) −3.95133 −0.186268
\(451\) −9.25019 −0.435575
\(452\) 64.8906 3.05220
\(453\) 7.97787 0.374833
\(454\) −7.44216 −0.349278
\(455\) −6.81249 −0.319374
\(456\) 4.13961 0.193855
\(457\) −8.16176 −0.381791 −0.190895 0.981610i \(-0.561139\pi\)
−0.190895 + 0.981610i \(0.561139\pi\)
\(458\) −61.2720 −2.86305
\(459\) 0 0
\(460\) −2.58261 −0.120415
\(461\) 25.8811 1.20540 0.602702 0.797967i \(-0.294091\pi\)
0.602702 + 0.797967i \(0.294091\pi\)
\(462\) −39.7711 −1.85032
\(463\) −2.13987 −0.0994481 −0.0497240 0.998763i \(-0.515834\pi\)
−0.0497240 + 0.998763i \(0.515834\pi\)
\(464\) −5.23647 −0.243097
\(465\) 20.2097 0.937204
\(466\) 25.6006 1.18593
\(467\) −13.2163 −0.611578 −0.305789 0.952099i \(-0.598920\pi\)
−0.305789 + 0.952099i \(0.598920\pi\)
\(468\) 12.4743 0.576624
\(469\) 39.5425 1.82590
\(470\) −16.5316 −0.762546
\(471\) −37.1577 −1.71214
\(472\) −90.9180 −4.18484
\(473\) 5.56098 0.255694
\(474\) −38.1693 −1.75317
\(475\) 0.249037 0.0114266
\(476\) 0 0
\(477\) 15.3321 0.702010
\(478\) −18.4399 −0.843421
\(479\) −23.5864 −1.07769 −0.538845 0.842405i \(-0.681139\pi\)
−0.538845 + 0.842405i \(0.681139\pi\)
\(480\) 26.9642 1.23074
\(481\) 7.16096 0.326512
\(482\) 10.1166 0.460800
\(483\) −4.47660 −0.203692
\(484\) −39.4610 −1.79368
\(485\) −1.70094 −0.0772358
\(486\) −37.7328 −1.71159
\(487\) 28.9667 1.31261 0.656304 0.754497i \(-0.272119\pi\)
0.656304 + 0.754497i \(0.272119\pi\)
\(488\) −34.1246 −1.54475
\(489\) 34.2832 1.55034
\(490\) −25.0777 −1.13289
\(491\) −35.5262 −1.60328 −0.801638 0.597810i \(-0.796038\pi\)
−0.801638 + 0.597810i \(0.796038\pi\)
\(492\) 55.7317 2.51258
\(493\) 0 0
\(494\) −1.10263 −0.0496098
\(495\) 2.61783 0.117663
\(496\) −102.501 −4.60245
\(497\) 4.08637 0.183299
\(498\) −17.8960 −0.801939
\(499\) 33.9551 1.52004 0.760019 0.649901i \(-0.225190\pi\)
0.760019 + 0.649901i \(0.225190\pi\)
\(500\) 4.96928 0.222233
\(501\) 30.4428 1.36008
\(502\) 33.0285 1.47413
\(503\) 19.6084 0.874295 0.437147 0.899390i \(-0.355989\pi\)
0.437147 + 0.899390i \(0.355989\pi\)
\(504\) 47.6572 2.12282
\(505\) 9.86464 0.438971
\(506\) 2.39967 0.106678
\(507\) 21.6024 0.959397
\(508\) −80.2062 −3.55857
\(509\) −1.06322 −0.0471265 −0.0235632 0.999722i \(-0.507501\pi\)
−0.0235632 + 0.999722i \(0.507501\pi\)
\(510\) 0 0
\(511\) −11.8409 −0.523809
\(512\) 31.8550 1.40780
\(513\) 0.793861 0.0350498
\(514\) 36.6615 1.61707
\(515\) −14.0029 −0.617043
\(516\) −33.5045 −1.47495
\(517\) 10.9525 0.481689
\(518\) 45.7853 2.01169
\(519\) 38.3387 1.68288
\(520\) −13.1467 −0.576523
\(521\) 20.3011 0.889409 0.444705 0.895677i \(-0.353309\pi\)
0.444705 + 0.895677i \(0.353309\pi\)
\(522\) 1.92382 0.0842031
\(523\) 27.3245 1.19482 0.597408 0.801937i \(-0.296197\pi\)
0.597408 + 0.801937i \(0.296197\pi\)
\(524\) −78.2402 −3.41794
\(525\) 8.61356 0.375926
\(526\) 79.2093 3.45369
\(527\) 0 0
\(528\) −39.8896 −1.73597
\(529\) −22.7299 −0.988256
\(530\) −27.0425 −1.17465
\(531\) 17.3602 0.753367
\(532\) −5.02679 −0.217939
\(533\) −8.87017 −0.384210
\(534\) 18.5033 0.800715
\(535\) 13.5272 0.584833
\(536\) 76.3092 3.29605
\(537\) −15.9418 −0.687938
\(538\) −19.2082 −0.828123
\(539\) 16.6144 0.715632
\(540\) 15.8407 0.681675
\(541\) 25.8819 1.11275 0.556375 0.830931i \(-0.312192\pi\)
0.556375 + 0.830931i \(0.312192\pi\)
\(542\) 16.8794 0.725033
\(543\) 9.31754 0.399854
\(544\) 0 0
\(545\) −6.36995 −0.272859
\(546\) −38.1372 −1.63212
\(547\) −35.5746 −1.52106 −0.760531 0.649302i \(-0.775061\pi\)
−0.760531 + 0.649302i \(0.775061\pi\)
\(548\) −77.3975 −3.30626
\(549\) 6.51586 0.278090
\(550\) −4.61727 −0.196881
\(551\) −0.121251 −0.00516545
\(552\) −8.63894 −0.367698
\(553\) 27.6951 1.17772
\(554\) −20.5622 −0.873602
\(555\) −9.05416 −0.384328
\(556\) −52.2810 −2.21721
\(557\) −13.1772 −0.558337 −0.279168 0.960242i \(-0.590059\pi\)
−0.279168 + 0.960242i \(0.590059\pi\)
\(558\) 37.6578 1.59418
\(559\) 5.33252 0.225542
\(560\) −43.6870 −1.84611
\(561\) 0 0
\(562\) 56.5103 2.38374
\(563\) −4.35207 −0.183418 −0.0917089 0.995786i \(-0.529233\pi\)
−0.0917089 + 0.995786i \(0.529233\pi\)
\(564\) −65.9879 −2.77859
\(565\) 13.0583 0.549369
\(566\) 11.6790 0.490906
\(567\) 45.6967 1.91908
\(568\) 7.88588 0.330884
\(569\) −19.4637 −0.815960 −0.407980 0.912991i \(-0.633767\pi\)
−0.407980 + 0.912991i \(0.633767\pi\)
\(570\) 1.39414 0.0583942
\(571\) 18.3772 0.769060 0.384530 0.923112i \(-0.374363\pi\)
0.384530 + 0.923112i \(0.374363\pi\)
\(572\) 14.5766 0.609480
\(573\) 10.6680 0.445662
\(574\) −56.7135 −2.36718
\(575\) −0.519715 −0.0216736
\(576\) 18.0480 0.751999
\(577\) −23.8985 −0.994906 −0.497453 0.867491i \(-0.665731\pi\)
−0.497453 + 0.867491i \(0.665731\pi\)
\(578\) 0 0
\(579\) 57.0171 2.36955
\(580\) −2.41943 −0.100462
\(581\) 12.9851 0.538713
\(582\) −9.52211 −0.394704
\(583\) 17.9161 0.742011
\(584\) −22.8505 −0.945560
\(585\) 2.51028 0.103787
\(586\) 51.7957 2.13966
\(587\) −0.749317 −0.0309276 −0.0154638 0.999880i \(-0.504922\pi\)
−0.0154638 + 0.999880i \(0.504922\pi\)
\(588\) −100.100 −4.12807
\(589\) −2.37342 −0.0977952
\(590\) −30.6195 −1.26059
\(591\) 18.0540 0.742642
\(592\) 45.9216 1.88737
\(593\) −20.0311 −0.822579 −0.411289 0.911505i \(-0.634921\pi\)
−0.411289 + 0.911505i \(0.634921\pi\)
\(594\) −14.7186 −0.603911
\(595\) 0 0
\(596\) 38.7555 1.58749
\(597\) −35.5577 −1.45528
\(598\) 2.30108 0.0940983
\(599\) −12.9934 −0.530897 −0.265449 0.964125i \(-0.585520\pi\)
−0.265449 + 0.964125i \(0.585520\pi\)
\(600\) 16.6224 0.678609
\(601\) −7.62279 −0.310940 −0.155470 0.987841i \(-0.549689\pi\)
−0.155470 + 0.987841i \(0.549689\pi\)
\(602\) 34.0947 1.38960
\(603\) −14.5707 −0.593365
\(604\) −18.6953 −0.760699
\(605\) −7.94098 −0.322847
\(606\) 55.2236 2.24331
\(607\) 48.5958 1.97244 0.986222 0.165426i \(-0.0528998\pi\)
0.986222 + 0.165426i \(0.0528998\pi\)
\(608\) −3.16667 −0.128425
\(609\) −4.19375 −0.169939
\(610\) −11.4925 −0.465320
\(611\) 10.5025 0.424887
\(612\) 0 0
\(613\) 5.92605 0.239351 0.119675 0.992813i \(-0.461815\pi\)
0.119675 + 0.992813i \(0.461815\pi\)
\(614\) 35.2267 1.42163
\(615\) 11.2152 0.452242
\(616\) 55.6891 2.24378
\(617\) 39.5840 1.59359 0.796796 0.604249i \(-0.206527\pi\)
0.796796 + 0.604249i \(0.206527\pi\)
\(618\) −78.3904 −3.15332
\(619\) −44.1102 −1.77294 −0.886470 0.462787i \(-0.846850\pi\)
−0.886470 + 0.462787i \(0.846850\pi\)
\(620\) −47.3593 −1.90199
\(621\) −1.65671 −0.0664814
\(622\) −14.1262 −0.566408
\(623\) −13.4257 −0.537891
\(624\) −38.2508 −1.53126
\(625\) 1.00000 0.0400000
\(626\) 42.0156 1.67928
\(627\) −0.923644 −0.0368868
\(628\) 87.0749 3.47467
\(629\) 0 0
\(630\) 16.0501 0.639450
\(631\) 2.25974 0.0899590 0.0449795 0.998988i \(-0.485678\pi\)
0.0449795 + 0.998988i \(0.485678\pi\)
\(632\) 53.4461 2.12597
\(633\) −10.0793 −0.400618
\(634\) −6.26845 −0.248952
\(635\) −16.1404 −0.640512
\(636\) −107.943 −4.28024
\(637\) 15.9318 0.631242
\(638\) 2.24805 0.0890010
\(639\) −1.50575 −0.0595667
\(640\) −6.40141 −0.253038
\(641\) 36.7897 1.45311 0.726553 0.687110i \(-0.241121\pi\)
0.726553 + 0.687110i \(0.241121\pi\)
\(642\) 75.7272 2.98872
\(643\) −24.5736 −0.969090 −0.484545 0.874766i \(-0.661015\pi\)
−0.484545 + 0.874766i \(0.661015\pi\)
\(644\) 10.4904 0.413380
\(645\) −6.74232 −0.265479
\(646\) 0 0
\(647\) 39.0064 1.53350 0.766750 0.641946i \(-0.221873\pi\)
0.766750 + 0.641946i \(0.221873\pi\)
\(648\) 88.1856 3.46426
\(649\) 20.2860 0.796294
\(650\) −4.42758 −0.173664
\(651\) −82.0907 −3.21739
\(652\) −80.3389 −3.14631
\(653\) 27.9254 1.09281 0.546403 0.837522i \(-0.315997\pi\)
0.546403 + 0.837522i \(0.315997\pi\)
\(654\) −35.6598 −1.39441
\(655\) −15.7448 −0.615199
\(656\) −56.8824 −2.22089
\(657\) 4.36314 0.170222
\(658\) 67.1504 2.61779
\(659\) −19.5830 −0.762847 −0.381423 0.924400i \(-0.624566\pi\)
−0.381423 + 0.924400i \(0.624566\pi\)
\(660\) −18.4304 −0.717402
\(661\) 27.0356 1.05156 0.525782 0.850620i \(-0.323773\pi\)
0.525782 + 0.850620i \(0.323773\pi\)
\(662\) −7.27823 −0.282876
\(663\) 0 0
\(664\) 25.0587 0.972465
\(665\) −1.01157 −0.0392271
\(666\) −16.8711 −0.653740
\(667\) 0.253038 0.00979766
\(668\) −71.3392 −2.76020
\(669\) 46.0900 1.78194
\(670\) 25.6995 0.992859
\(671\) 7.61401 0.293936
\(672\) −109.527 −4.22509
\(673\) −50.1210 −1.93202 −0.966011 0.258499i \(-0.916772\pi\)
−0.966011 + 0.258499i \(0.916772\pi\)
\(674\) −66.6118 −2.56579
\(675\) 3.18772 0.122695
\(676\) −50.6229 −1.94703
\(677\) 2.14778 0.0825458 0.0412729 0.999148i \(-0.486859\pi\)
0.0412729 + 0.999148i \(0.486859\pi\)
\(678\) 73.1024 2.80748
\(679\) 6.90912 0.265148
\(680\) 0 0
\(681\) −5.97798 −0.229077
\(682\) 44.0045 1.68502
\(683\) −3.40533 −0.130301 −0.0651507 0.997875i \(-0.520753\pi\)
−0.0651507 + 0.997875i \(0.520753\pi\)
\(684\) 1.85228 0.0708238
\(685\) −15.5752 −0.595097
\(686\) 26.8010 1.02327
\(687\) −49.2172 −1.87776
\(688\) 34.1963 1.30372
\(689\) 17.1801 0.654510
\(690\) −2.90944 −0.110760
\(691\) 1.51390 0.0575916 0.0287958 0.999585i \(-0.490833\pi\)
0.0287958 + 0.999585i \(0.490833\pi\)
\(692\) −89.8426 −3.41530
\(693\) −10.6334 −0.403931
\(694\) −25.3920 −0.963869
\(695\) −10.5208 −0.399078
\(696\) −8.09310 −0.306768
\(697\) 0 0
\(698\) −61.1360 −2.31403
\(699\) 20.5639 0.777798
\(700\) −20.1849 −0.762918
\(701\) −46.4213 −1.75331 −0.876654 0.481121i \(-0.840230\pi\)
−0.876654 + 0.481121i \(0.840230\pi\)
\(702\) −14.1139 −0.532695
\(703\) 1.06332 0.0401038
\(704\) 21.0897 0.794848
\(705\) −13.2792 −0.500122
\(706\) −40.7389 −1.53323
\(707\) −40.0696 −1.50697
\(708\) −122.221 −4.59336
\(709\) −13.4799 −0.506248 −0.253124 0.967434i \(-0.581458\pi\)
−0.253124 + 0.967434i \(0.581458\pi\)
\(710\) 2.65582 0.0996712
\(711\) −10.2052 −0.382723
\(712\) −25.9090 −0.970981
\(713\) 4.95310 0.185495
\(714\) 0 0
\(715\) 2.93335 0.109701
\(716\) 37.3578 1.39612
\(717\) −14.8120 −0.553165
\(718\) −21.1846 −0.790604
\(719\) 35.0421 1.30685 0.653426 0.756991i \(-0.273331\pi\)
0.653426 + 0.756991i \(0.273331\pi\)
\(720\) 16.0979 0.599932
\(721\) 56.8791 2.11829
\(722\) 49.9951 1.86063
\(723\) 8.12628 0.302219
\(724\) −21.8346 −0.811477
\(725\) −0.486878 −0.0180822
\(726\) −44.4547 −1.64987
\(727\) −15.6299 −0.579682 −0.289841 0.957075i \(-0.593602\pi\)
−0.289841 + 0.957075i \(0.593602\pi\)
\(728\) 53.4012 1.97918
\(729\) 3.44079 0.127437
\(730\) −7.69563 −0.284828
\(731\) 0 0
\(732\) −45.8739 −1.69555
\(733\) −9.63543 −0.355893 −0.177946 0.984040i \(-0.556945\pi\)
−0.177946 + 0.984040i \(0.556945\pi\)
\(734\) −54.8558 −2.02476
\(735\) −20.1439 −0.743017
\(736\) 6.60851 0.243593
\(737\) −17.0264 −0.627175
\(738\) 20.8979 0.769263
\(739\) −0.106025 −0.00390019 −0.00195010 0.999998i \(-0.500621\pi\)
−0.00195010 + 0.999998i \(0.500621\pi\)
\(740\) 21.2174 0.779968
\(741\) −0.885699 −0.0325370
\(742\) 109.845 4.03254
\(743\) 3.59689 0.131957 0.0659786 0.997821i \(-0.478983\pi\)
0.0659786 + 0.997821i \(0.478983\pi\)
\(744\) −158.419 −5.80791
\(745\) 7.79902 0.285734
\(746\) −33.5144 −1.22705
\(747\) −4.78478 −0.175066
\(748\) 0 0
\(749\) −54.9467 −2.00771
\(750\) 5.59814 0.204415
\(751\) 17.0397 0.621788 0.310894 0.950445i \(-0.399372\pi\)
0.310894 + 0.950445i \(0.399372\pi\)
\(752\) 67.3503 2.45601
\(753\) 26.5304 0.966823
\(754\) 2.15569 0.0785057
\(755\) −3.76216 −0.136919
\(756\) −64.3439 −2.34017
\(757\) −45.5016 −1.65378 −0.826891 0.562362i \(-0.809893\pi\)
−0.826891 + 0.562362i \(0.809893\pi\)
\(758\) 46.4899 1.68859
\(759\) 1.92755 0.0699657
\(760\) −1.95213 −0.0708113
\(761\) −11.3019 −0.409693 −0.204846 0.978794i \(-0.565670\pi\)
−0.204846 + 0.978794i \(0.565670\pi\)
\(762\) −90.3561 −3.27326
\(763\) 25.8743 0.936714
\(764\) −24.9993 −0.904442
\(765\) 0 0
\(766\) 97.0795 3.50763
\(767\) 19.4526 0.702392
\(768\) 15.3038 0.552228
\(769\) 9.75206 0.351668 0.175834 0.984420i \(-0.443738\pi\)
0.175834 + 0.984420i \(0.443738\pi\)
\(770\) 18.7551 0.675886
\(771\) 29.4487 1.06057
\(772\) −133.613 −4.80884
\(773\) −2.26624 −0.0815111 −0.0407555 0.999169i \(-0.512976\pi\)
−0.0407555 + 0.999169i \(0.512976\pi\)
\(774\) −12.5633 −0.451578
\(775\) −9.53040 −0.342342
\(776\) 13.3332 0.478635
\(777\) 36.7774 1.31938
\(778\) 24.6679 0.884385
\(779\) −1.31711 −0.0471905
\(780\) −17.6732 −0.632803
\(781\) −1.75953 −0.0629608
\(782\) 0 0
\(783\) −1.55203 −0.0554651
\(784\) 102.167 3.64883
\(785\) 17.5226 0.625409
\(786\) −88.1413 −3.14390
\(787\) 19.6778 0.701437 0.350718 0.936481i \(-0.385937\pi\)
0.350718 + 0.936481i \(0.385937\pi\)
\(788\) −42.3075 −1.50714
\(789\) 63.6255 2.26513
\(790\) 17.9997 0.640399
\(791\) −53.0422 −1.88596
\(792\) −20.5204 −0.729161
\(793\) 7.30121 0.259274
\(794\) 10.5590 0.374726
\(795\) −21.7221 −0.770405
\(796\) 83.3255 2.95340
\(797\) −46.7746 −1.65684 −0.828422 0.560105i \(-0.810761\pi\)
−0.828422 + 0.560105i \(0.810761\pi\)
\(798\) −5.66292 −0.200465
\(799\) 0 0
\(800\) −12.7156 −0.449566
\(801\) 4.94714 0.174799
\(802\) 56.7266 2.00309
\(803\) 5.09849 0.179922
\(804\) 102.583 3.61781
\(805\) 2.11105 0.0744048
\(806\) 42.1967 1.48631
\(807\) −15.4291 −0.543131
\(808\) −77.3263 −2.72033
\(809\) 6.87875 0.241844 0.120922 0.992662i \(-0.461415\pi\)
0.120922 + 0.992662i \(0.461415\pi\)
\(810\) 29.6993 1.04353
\(811\) −9.88871 −0.347240 −0.173620 0.984813i \(-0.555546\pi\)
−0.173620 + 0.984813i \(0.555546\pi\)
\(812\) 9.82759 0.344881
\(813\) 13.5585 0.475518
\(814\) −19.7144 −0.690990
\(815\) −16.1671 −0.566309
\(816\) 0 0
\(817\) 0.791816 0.0277021
\(818\) −48.6967 −1.70264
\(819\) −10.1966 −0.356298
\(820\) −26.2817 −0.917796
\(821\) 3.99072 0.139277 0.0696386 0.997572i \(-0.477815\pi\)
0.0696386 + 0.997572i \(0.477815\pi\)
\(822\) −87.1920 −3.04117
\(823\) 34.4402 1.20051 0.600254 0.799809i \(-0.295066\pi\)
0.600254 + 0.799809i \(0.295066\pi\)
\(824\) 109.765 3.82385
\(825\) −3.70886 −0.129126
\(826\) 124.375 4.32755
\(827\) −42.8760 −1.49095 −0.745473 0.666536i \(-0.767776\pi\)
−0.745473 + 0.666536i \(0.767776\pi\)
\(828\) −3.86553 −0.134336
\(829\) 26.1065 0.906716 0.453358 0.891328i \(-0.350226\pi\)
0.453358 + 0.891328i \(0.350226\pi\)
\(830\) 8.43930 0.292932
\(831\) −16.5167 −0.572959
\(832\) 20.2233 0.701117
\(833\) 0 0
\(834\) −58.8970 −2.03944
\(835\) −14.3560 −0.496811
\(836\) 2.16446 0.0748593
\(837\) −30.3803 −1.05010
\(838\) −43.9772 −1.51917
\(839\) 11.1671 0.385530 0.192765 0.981245i \(-0.438254\pi\)
0.192765 + 0.981245i \(0.438254\pi\)
\(840\) −67.5193 −2.32964
\(841\) −28.7629 −0.991826
\(842\) 92.3739 3.18341
\(843\) 45.3924 1.56340
\(844\) 23.6198 0.813027
\(845\) −10.1872 −0.350449
\(846\) −24.7437 −0.850706
\(847\) 32.2558 1.10832
\(848\) 110.172 3.78333
\(849\) 9.38128 0.321965
\(850\) 0 0
\(851\) −2.21904 −0.0760676
\(852\) 10.6010 0.363185
\(853\) 21.1150 0.722965 0.361483 0.932379i \(-0.382271\pi\)
0.361483 + 0.932379i \(0.382271\pi\)
\(854\) 46.6820 1.59743
\(855\) 0.372746 0.0127477
\(856\) −106.036 −3.62424
\(857\) −55.5913 −1.89896 −0.949481 0.313826i \(-0.898389\pi\)
−0.949481 + 0.313826i \(0.898389\pi\)
\(858\) 16.4213 0.560614
\(859\) 1.84599 0.0629843 0.0314921 0.999504i \(-0.489974\pi\)
0.0314921 + 0.999504i \(0.489974\pi\)
\(860\) 15.7999 0.538772
\(861\) −45.5556 −1.55253
\(862\) −11.0701 −0.377049
\(863\) 13.2346 0.450512 0.225256 0.974300i \(-0.427678\pi\)
0.225256 + 0.974300i \(0.427678\pi\)
\(864\) −40.5339 −1.37899
\(865\) −18.0796 −0.614724
\(866\) 9.67794 0.328870
\(867\) 0 0
\(868\) 192.370 6.52948
\(869\) −11.9251 −0.404531
\(870\) −2.72561 −0.0924068
\(871\) −16.3269 −0.553216
\(872\) 49.9323 1.69092
\(873\) −2.54589 −0.0861652
\(874\) 0.341683 0.0115576
\(875\) −4.06194 −0.137319
\(876\) −30.7180 −1.03787
\(877\) −36.5039 −1.23265 −0.616325 0.787492i \(-0.711379\pi\)
−0.616325 + 0.787492i \(0.711379\pi\)
\(878\) 66.5262 2.24515
\(879\) 41.6053 1.40331
\(880\) 18.8109 0.634116
\(881\) −24.0208 −0.809282 −0.404641 0.914476i \(-0.632603\pi\)
−0.404641 + 0.914476i \(0.632603\pi\)
\(882\) −37.5350 −1.26387
\(883\) 42.2659 1.42236 0.711181 0.703009i \(-0.248161\pi\)
0.711181 + 0.703009i \(0.248161\pi\)
\(884\) 0 0
\(885\) −24.5954 −0.826765
\(886\) −94.5648 −3.17697
\(887\) −7.41066 −0.248826 −0.124413 0.992231i \(-0.539705\pi\)
−0.124413 + 0.992231i \(0.539705\pi\)
\(888\) 70.9731 2.38170
\(889\) 65.5613 2.19885
\(890\) −8.72567 −0.292485
\(891\) −19.6763 −0.659181
\(892\) −108.007 −3.61634
\(893\) 1.55950 0.0521866
\(894\) 43.6600 1.46021
\(895\) 7.51774 0.251290
\(896\) 26.0021 0.868670
\(897\) 1.84836 0.0617151
\(898\) −12.8283 −0.428085
\(899\) 4.64014 0.154757
\(900\) 7.43778 0.247926
\(901\) 0 0
\(902\) 24.4200 0.813096
\(903\) 27.3869 0.911379
\(904\) −102.361 −3.40447
\(905\) −4.39392 −0.146059
\(906\) −21.0611 −0.699708
\(907\) 10.6440 0.353429 0.176714 0.984262i \(-0.443453\pi\)
0.176714 + 0.984262i \(0.443453\pi\)
\(908\) 14.0087 0.464896
\(909\) 14.7649 0.489721
\(910\) 17.9846 0.596182
\(911\) −6.49745 −0.215270 −0.107635 0.994190i \(-0.534328\pi\)
−0.107635 + 0.994190i \(0.534328\pi\)
\(912\) −5.67979 −0.188077
\(913\) −5.59118 −0.185041
\(914\) 21.5466 0.712697
\(915\) −9.23149 −0.305184
\(916\) 115.335 3.81078
\(917\) 63.9542 2.11195
\(918\) 0 0
\(919\) −9.77664 −0.322502 −0.161251 0.986913i \(-0.551553\pi\)
−0.161251 + 0.986913i \(0.551553\pi\)
\(920\) 4.07391 0.134313
\(921\) 28.2961 0.932388
\(922\) −68.3246 −2.25015
\(923\) −1.68724 −0.0555362
\(924\) 74.8631 2.46281
\(925\) 4.26971 0.140387
\(926\) 5.64912 0.185642
\(927\) −20.9589 −0.688381
\(928\) 6.19096 0.203228
\(929\) 22.6724 0.743857 0.371929 0.928261i \(-0.378697\pi\)
0.371929 + 0.928261i \(0.378697\pi\)
\(930\) −53.3525 −1.74950
\(931\) 2.36569 0.0775322
\(932\) −48.1892 −1.57849
\(933\) −11.3470 −0.371483
\(934\) 34.8903 1.14164
\(935\) 0 0
\(936\) −19.6774 −0.643176
\(937\) −22.7132 −0.742007 −0.371003 0.928632i \(-0.620986\pi\)
−0.371003 + 0.928632i \(0.620986\pi\)
\(938\) −104.390 −3.40845
\(939\) 33.7494 1.10137
\(940\) 31.1182 1.01496
\(941\) −37.4675 −1.22141 −0.610703 0.791860i \(-0.709113\pi\)
−0.610703 + 0.791860i \(0.709113\pi\)
\(942\) 98.0940 3.19608
\(943\) 2.74869 0.0895095
\(944\) 124.745 4.06010
\(945\) −12.9483 −0.421209
\(946\) −14.6807 −0.477309
\(947\) 27.1585 0.882533 0.441267 0.897376i \(-0.354529\pi\)
0.441267 + 0.897376i \(0.354529\pi\)
\(948\) 71.8478 2.33351
\(949\) 4.88903 0.158705
\(950\) −0.657443 −0.0213303
\(951\) −5.03519 −0.163277
\(952\) 0 0
\(953\) −0.783845 −0.0253912 −0.0126956 0.999919i \(-0.504041\pi\)
−0.0126956 + 0.999919i \(0.504041\pi\)
\(954\) −40.4759 −1.31046
\(955\) −5.03076 −0.162792
\(956\) 34.7103 1.12261
\(957\) 1.80576 0.0583720
\(958\) 62.2667 2.01175
\(959\) 63.2654 2.04295
\(960\) −25.5699 −0.825264
\(961\) 59.8286 1.92995
\(962\) −18.9045 −0.609506
\(963\) 20.2469 0.652446
\(964\) −19.0430 −0.613335
\(965\) −26.8878 −0.865549
\(966\) 11.8179 0.380236
\(967\) 52.9690 1.70337 0.851684 0.524056i \(-0.175582\pi\)
0.851684 + 0.524056i \(0.175582\pi\)
\(968\) 62.2472 2.00070
\(969\) 0 0
\(970\) 4.49039 0.144178
\(971\) −7.21188 −0.231440 −0.115720 0.993282i \(-0.536918\pi\)
−0.115720 + 0.993282i \(0.536918\pi\)
\(972\) 71.0262 2.27817
\(973\) 42.7350 1.37002
\(974\) −76.4704 −2.45027
\(975\) −3.55649 −0.113899
\(976\) 46.8210 1.49870
\(977\) 10.0232 0.320669 0.160335 0.987063i \(-0.448743\pi\)
0.160335 + 0.987063i \(0.448743\pi\)
\(978\) −90.5056 −2.89405
\(979\) 5.78091 0.184759
\(980\) 47.2049 1.50790
\(981\) −9.53423 −0.304404
\(982\) 93.7871 2.99287
\(983\) 2.65289 0.0846141 0.0423071 0.999105i \(-0.486529\pi\)
0.0423071 + 0.999105i \(0.486529\pi\)
\(984\) −87.9133 −2.80257
\(985\) −8.51380 −0.271272
\(986\) 0 0
\(987\) 53.9391 1.71690
\(988\) 2.07554 0.0660316
\(989\) −1.65244 −0.0525445
\(990\) −6.91090 −0.219643
\(991\) −27.9374 −0.887460 −0.443730 0.896160i \(-0.646345\pi\)
−0.443730 + 0.896160i \(0.646345\pi\)
\(992\) 121.185 3.84763
\(993\) −5.84630 −0.185527
\(994\) −10.7878 −0.342167
\(995\) 16.7681 0.531585
\(996\) 33.6865 1.06740
\(997\) 25.9891 0.823082 0.411541 0.911391i \(-0.364991\pi\)
0.411541 + 0.911391i \(0.364991\pi\)
\(998\) −89.6394 −2.83748
\(999\) 13.6107 0.430622
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1445.2.a.p.1.2 12
5.4 even 2 7225.2.a.bs.1.11 12
17.4 even 4 1445.2.d.j.866.22 24
17.10 odd 16 85.2.l.a.66.6 24
17.12 odd 16 85.2.l.a.76.6 yes 24
17.13 even 4 1445.2.d.j.866.21 24
17.16 even 2 1445.2.a.q.1.2 12
51.29 even 16 765.2.be.b.586.1 24
51.44 even 16 765.2.be.b.406.1 24
85.12 even 16 425.2.n.f.399.6 24
85.27 even 16 425.2.n.c.49.1 24
85.29 odd 16 425.2.m.b.76.1 24
85.44 odd 16 425.2.m.b.151.1 24
85.63 even 16 425.2.n.c.399.1 24
85.78 even 16 425.2.n.f.49.6 24
85.84 even 2 7225.2.a.bq.1.11 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.l.a.66.6 24 17.10 odd 16
85.2.l.a.76.6 yes 24 17.12 odd 16
425.2.m.b.76.1 24 85.29 odd 16
425.2.m.b.151.1 24 85.44 odd 16
425.2.n.c.49.1 24 85.27 even 16
425.2.n.c.399.1 24 85.63 even 16
425.2.n.f.49.6 24 85.78 even 16
425.2.n.f.399.6 24 85.12 even 16
765.2.be.b.406.1 24 51.44 even 16
765.2.be.b.586.1 24 51.29 even 16
1445.2.a.p.1.2 12 1.1 even 1 trivial
1445.2.a.q.1.2 12 17.16 even 2
1445.2.d.j.866.21 24 17.13 even 4
1445.2.d.j.866.22 24 17.4 even 4
7225.2.a.bq.1.11 12 85.84 even 2
7225.2.a.bs.1.11 12 5.4 even 2