Properties

Label 1445.2.a.q.1.6
Level $1445$
Weight $2$
Character 1445.1
Self dual yes
Analytic conductor $11.538$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1445,2,Mod(1,1445)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1445, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1445.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1445 = 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1445.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.5383830921\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 4 x^{11} - 10 x^{10} + 52 x^{9} + 21 x^{8} - 232 x^{7} + 44 x^{6} + 424 x^{5} - 137 x^{4} + \cdots + 17 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(0.962871\) of defining polynomial
Character \(\chi\) \(=\) 1445.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.962871 q^{2} -2.64897 q^{3} -1.07288 q^{4} -1.00000 q^{5} +2.55062 q^{6} +3.09463 q^{7} +2.95879 q^{8} +4.01706 q^{9} +0.962871 q^{10} +6.13071 q^{11} +2.84203 q^{12} +1.16017 q^{13} -2.97973 q^{14} +2.64897 q^{15} -0.703170 q^{16} -3.86791 q^{18} -5.42585 q^{19} +1.07288 q^{20} -8.19759 q^{21} -5.90308 q^{22} -3.11745 q^{23} -7.83775 q^{24} +1.00000 q^{25} -1.11710 q^{26} -2.69417 q^{27} -3.32016 q^{28} +4.99698 q^{29} -2.55062 q^{30} +3.72804 q^{31} -5.24051 q^{32} -16.2401 q^{33} -3.09463 q^{35} -4.30982 q^{36} -0.396716 q^{37} +5.22439 q^{38} -3.07327 q^{39} -2.95879 q^{40} +1.70263 q^{41} +7.89322 q^{42} -0.0268304 q^{43} -6.57751 q^{44} -4.01706 q^{45} +3.00170 q^{46} -5.43715 q^{47} +1.86268 q^{48} +2.57672 q^{49} -0.962871 q^{50} -1.24473 q^{52} +0.345087 q^{53} +2.59413 q^{54} -6.13071 q^{55} +9.15634 q^{56} +14.3729 q^{57} -4.81144 q^{58} +4.06060 q^{59} -2.84203 q^{60} +12.4424 q^{61} -3.58962 q^{62} +12.4313 q^{63} +6.45228 q^{64} -1.16017 q^{65} +15.6371 q^{66} +5.62508 q^{67} +8.25804 q^{69} +2.97973 q^{70} +10.7794 q^{71} +11.8856 q^{72} -1.65433 q^{73} +0.381986 q^{74} -2.64897 q^{75} +5.82128 q^{76} +18.9723 q^{77} +2.95916 q^{78} -5.27290 q^{79} +0.703170 q^{80} -4.91441 q^{81} -1.63941 q^{82} -12.4258 q^{83} +8.79502 q^{84} +0.0258342 q^{86} -13.2369 q^{87} +18.1394 q^{88} -3.22930 q^{89} +3.86791 q^{90} +3.59031 q^{91} +3.34465 q^{92} -9.87549 q^{93} +5.23528 q^{94} +5.42585 q^{95} +13.8820 q^{96} -12.9349 q^{97} -2.48105 q^{98} +24.6274 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{2} + 8 q^{3} + 12 q^{4} - 12 q^{5} + 8 q^{6} + 16 q^{7} - 12 q^{8} + 12 q^{9} + 4 q^{10} + 16 q^{11} + 16 q^{12} - 8 q^{13} - 16 q^{14} - 8 q^{15} + 12 q^{16} + 4 q^{18} - 12 q^{20} + 16 q^{21}+ \cdots + 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.962871 −0.680853 −0.340426 0.940271i \(-0.610571\pi\)
−0.340426 + 0.940271i \(0.610571\pi\)
\(3\) −2.64897 −1.52939 −0.764693 0.644395i \(-0.777109\pi\)
−0.764693 + 0.644395i \(0.777109\pi\)
\(4\) −1.07288 −0.536440
\(5\) −1.00000 −0.447214
\(6\) 2.55062 1.04129
\(7\) 3.09463 1.16966 0.584830 0.811156i \(-0.301161\pi\)
0.584830 + 0.811156i \(0.301161\pi\)
\(8\) 2.95879 1.04609
\(9\) 4.01706 1.33902
\(10\) 0.962871 0.304487
\(11\) 6.13071 1.84848 0.924239 0.381815i \(-0.124701\pi\)
0.924239 + 0.381815i \(0.124701\pi\)
\(12\) 2.84203 0.820423
\(13\) 1.16017 0.321775 0.160887 0.986973i \(-0.448564\pi\)
0.160887 + 0.986973i \(0.448564\pi\)
\(14\) −2.97973 −0.796366
\(15\) 2.64897 0.683962
\(16\) −0.703170 −0.175793
\(17\) 0 0
\(18\) −3.86791 −0.911675
\(19\) −5.42585 −1.24477 −0.622387 0.782709i \(-0.713837\pi\)
−0.622387 + 0.782709i \(0.713837\pi\)
\(20\) 1.07288 0.239903
\(21\) −8.19759 −1.78886
\(22\) −5.90308 −1.25854
\(23\) −3.11745 −0.650033 −0.325017 0.945708i \(-0.605370\pi\)
−0.325017 + 0.945708i \(0.605370\pi\)
\(24\) −7.83775 −1.59987
\(25\) 1.00000 0.200000
\(26\) −1.11710 −0.219081
\(27\) −2.69417 −0.518492
\(28\) −3.32016 −0.627452
\(29\) 4.99698 0.927915 0.463958 0.885857i \(-0.346429\pi\)
0.463958 + 0.885857i \(0.346429\pi\)
\(30\) −2.55062 −0.465677
\(31\) 3.72804 0.669576 0.334788 0.942293i \(-0.391335\pi\)
0.334788 + 0.942293i \(0.391335\pi\)
\(32\) −5.24051 −0.926400
\(33\) −16.2401 −2.82703
\(34\) 0 0
\(35\) −3.09463 −0.523088
\(36\) −4.30982 −0.718304
\(37\) −0.396716 −0.0652197 −0.0326098 0.999468i \(-0.510382\pi\)
−0.0326098 + 0.999468i \(0.510382\pi\)
\(38\) 5.22439 0.847508
\(39\) −3.07327 −0.492117
\(40\) −2.95879 −0.467825
\(41\) 1.70263 0.265906 0.132953 0.991122i \(-0.457554\pi\)
0.132953 + 0.991122i \(0.457554\pi\)
\(42\) 7.89322 1.21795
\(43\) −0.0268304 −0.00409160 −0.00204580 0.999998i \(-0.500651\pi\)
−0.00204580 + 0.999998i \(0.500651\pi\)
\(44\) −6.57751 −0.991597
\(45\) −4.01706 −0.598828
\(46\) 3.00170 0.442577
\(47\) −5.43715 −0.793090 −0.396545 0.918015i \(-0.629791\pi\)
−0.396545 + 0.918015i \(0.629791\pi\)
\(48\) 1.86268 0.268855
\(49\) 2.57672 0.368103
\(50\) −0.962871 −0.136171
\(51\) 0 0
\(52\) −1.24473 −0.172613
\(53\) 0.345087 0.0474014 0.0237007 0.999719i \(-0.492455\pi\)
0.0237007 + 0.999719i \(0.492455\pi\)
\(54\) 2.59413 0.353017
\(55\) −6.13071 −0.826664
\(56\) 9.15634 1.22357
\(57\) 14.3729 1.90374
\(58\) −4.81144 −0.631773
\(59\) 4.06060 0.528645 0.264322 0.964434i \(-0.414852\pi\)
0.264322 + 0.964434i \(0.414852\pi\)
\(60\) −2.84203 −0.366904
\(61\) 12.4424 1.59308 0.796541 0.604584i \(-0.206661\pi\)
0.796541 + 0.604584i \(0.206661\pi\)
\(62\) −3.58962 −0.455883
\(63\) 12.4313 1.56620
\(64\) 6.45228 0.806534
\(65\) −1.16017 −0.143902
\(66\) 15.6371 1.92479
\(67\) 5.62508 0.687213 0.343607 0.939114i \(-0.388351\pi\)
0.343607 + 0.939114i \(0.388351\pi\)
\(68\) 0 0
\(69\) 8.25804 0.994152
\(70\) 2.97973 0.356146
\(71\) 10.7794 1.27928 0.639640 0.768674i \(-0.279083\pi\)
0.639640 + 0.768674i \(0.279083\pi\)
\(72\) 11.8856 1.40073
\(73\) −1.65433 −0.193624 −0.0968121 0.995303i \(-0.530865\pi\)
−0.0968121 + 0.995303i \(0.530865\pi\)
\(74\) 0.381986 0.0444050
\(75\) −2.64897 −0.305877
\(76\) 5.82128 0.667747
\(77\) 18.9723 2.16209
\(78\) 2.95916 0.335059
\(79\) −5.27290 −0.593248 −0.296624 0.954994i \(-0.595861\pi\)
−0.296624 + 0.954994i \(0.595861\pi\)
\(80\) 0.703170 0.0786168
\(81\) −4.91441 −0.546045
\(82\) −1.63941 −0.181043
\(83\) −12.4258 −1.36391 −0.681955 0.731394i \(-0.738870\pi\)
−0.681955 + 0.731394i \(0.738870\pi\)
\(84\) 8.79502 0.959616
\(85\) 0 0
\(86\) 0.0258342 0.00278577
\(87\) −13.2369 −1.41914
\(88\) 18.1394 1.93367
\(89\) −3.22930 −0.342305 −0.171152 0.985245i \(-0.554749\pi\)
−0.171152 + 0.985245i \(0.554749\pi\)
\(90\) 3.86791 0.407714
\(91\) 3.59031 0.376367
\(92\) 3.34465 0.348704
\(93\) −9.87549 −1.02404
\(94\) 5.23528 0.539978
\(95\) 5.42585 0.556680
\(96\) 13.8820 1.41682
\(97\) −12.9349 −1.31334 −0.656668 0.754180i \(-0.728035\pi\)
−0.656668 + 0.754180i \(0.728035\pi\)
\(98\) −2.48105 −0.250624
\(99\) 24.6274 2.47515
\(100\) −1.07288 −0.107288
\(101\) −1.46947 −0.146218 −0.0731088 0.997324i \(-0.523292\pi\)
−0.0731088 + 0.997324i \(0.523292\pi\)
\(102\) 0 0
\(103\) 9.80978 0.966586 0.483293 0.875459i \(-0.339441\pi\)
0.483293 + 0.875459i \(0.339441\pi\)
\(104\) 3.43271 0.336605
\(105\) 8.19759 0.800003
\(106\) −0.332275 −0.0322734
\(107\) −2.88742 −0.279137 −0.139569 0.990212i \(-0.544572\pi\)
−0.139569 + 0.990212i \(0.544572\pi\)
\(108\) 2.89052 0.278140
\(109\) 5.76330 0.552024 0.276012 0.961154i \(-0.410987\pi\)
0.276012 + 0.961154i \(0.410987\pi\)
\(110\) 5.90308 0.562836
\(111\) 1.05089 0.0997460
\(112\) −2.17605 −0.205617
\(113\) −9.02043 −0.848571 −0.424285 0.905529i \(-0.639475\pi\)
−0.424285 + 0.905529i \(0.639475\pi\)
\(114\) −13.8393 −1.29617
\(115\) 3.11745 0.290704
\(116\) −5.36115 −0.497771
\(117\) 4.66049 0.430863
\(118\) −3.90983 −0.359929
\(119\) 0 0
\(120\) 7.83775 0.715485
\(121\) 26.5856 2.41687
\(122\) −11.9804 −1.08465
\(123\) −4.51022 −0.406673
\(124\) −3.99974 −0.359187
\(125\) −1.00000 −0.0894427
\(126\) −11.9697 −1.06635
\(127\) −13.9992 −1.24223 −0.621114 0.783720i \(-0.713319\pi\)
−0.621114 + 0.783720i \(0.713319\pi\)
\(128\) 4.26831 0.377269
\(129\) 0.0710730 0.00625763
\(130\) 1.11710 0.0979760
\(131\) −12.6704 −1.10702 −0.553509 0.832843i \(-0.686712\pi\)
−0.553509 + 0.832843i \(0.686712\pi\)
\(132\) 17.4236 1.51653
\(133\) −16.7910 −1.45596
\(134\) −5.41623 −0.467891
\(135\) 2.69417 0.231877
\(136\) 0 0
\(137\) 2.97888 0.254503 0.127251 0.991870i \(-0.459384\pi\)
0.127251 + 0.991870i \(0.459384\pi\)
\(138\) −7.95143 −0.676871
\(139\) 19.6413 1.66595 0.832977 0.553308i \(-0.186635\pi\)
0.832977 + 0.553308i \(0.186635\pi\)
\(140\) 3.32016 0.280605
\(141\) 14.4029 1.21294
\(142\) −10.3792 −0.871002
\(143\) 7.11269 0.594793
\(144\) −2.82468 −0.235390
\(145\) −4.99698 −0.414976
\(146\) 1.59290 0.131830
\(147\) −6.82567 −0.562972
\(148\) 0.425628 0.0349864
\(149\) 2.95573 0.242143 0.121072 0.992644i \(-0.461367\pi\)
0.121072 + 0.992644i \(0.461367\pi\)
\(150\) 2.55062 0.208257
\(151\) 22.0403 1.79361 0.896807 0.442422i \(-0.145881\pi\)
0.896807 + 0.442422i \(0.145881\pi\)
\(152\) −16.0539 −1.30214
\(153\) 0 0
\(154\) −18.2678 −1.47206
\(155\) −3.72804 −0.299444
\(156\) 3.29725 0.263991
\(157\) 12.8666 1.02686 0.513432 0.858130i \(-0.328374\pi\)
0.513432 + 0.858130i \(0.328374\pi\)
\(158\) 5.07713 0.403914
\(159\) −0.914127 −0.0724950
\(160\) 5.24051 0.414299
\(161\) −9.64735 −0.760318
\(162\) 4.73194 0.371776
\(163\) 19.2925 1.51110 0.755551 0.655089i \(-0.227369\pi\)
0.755551 + 0.655089i \(0.227369\pi\)
\(164\) −1.82672 −0.142643
\(165\) 16.2401 1.26429
\(166\) 11.9645 0.928622
\(167\) 18.8591 1.45936 0.729681 0.683787i \(-0.239668\pi\)
0.729681 + 0.683787i \(0.239668\pi\)
\(168\) −24.2549 −1.87131
\(169\) −11.6540 −0.896461
\(170\) 0 0
\(171\) −21.7960 −1.66678
\(172\) 0.0287858 0.00219490
\(173\) −22.5770 −1.71650 −0.858249 0.513233i \(-0.828448\pi\)
−0.858249 + 0.513233i \(0.828448\pi\)
\(174\) 12.7454 0.966225
\(175\) 3.09463 0.233932
\(176\) −4.31093 −0.324949
\(177\) −10.7564 −0.808502
\(178\) 3.10940 0.233059
\(179\) 1.96068 0.146548 0.0732740 0.997312i \(-0.476655\pi\)
0.0732740 + 0.997312i \(0.476655\pi\)
\(180\) 4.30982 0.321235
\(181\) −0.711719 −0.0529016 −0.0264508 0.999650i \(-0.508421\pi\)
−0.0264508 + 0.999650i \(0.508421\pi\)
\(182\) −3.45700 −0.256250
\(183\) −32.9595 −2.43644
\(184\) −9.22387 −0.679993
\(185\) 0.396716 0.0291671
\(186\) 9.50882 0.697220
\(187\) 0 0
\(188\) 5.83341 0.425445
\(189\) −8.33744 −0.606460
\(190\) −5.22439 −0.379017
\(191\) −5.26341 −0.380847 −0.190423 0.981702i \(-0.560986\pi\)
−0.190423 + 0.981702i \(0.560986\pi\)
\(192\) −17.0919 −1.23350
\(193\) 14.9301 1.07469 0.537347 0.843361i \(-0.319426\pi\)
0.537347 + 0.843361i \(0.319426\pi\)
\(194\) 12.4546 0.894188
\(195\) 3.07327 0.220082
\(196\) −2.76451 −0.197465
\(197\) −6.33014 −0.451004 −0.225502 0.974243i \(-0.572402\pi\)
−0.225502 + 0.974243i \(0.572402\pi\)
\(198\) −23.7130 −1.68521
\(199\) 14.9149 1.05729 0.528645 0.848843i \(-0.322700\pi\)
0.528645 + 0.848843i \(0.322700\pi\)
\(200\) 2.95879 0.209218
\(201\) −14.9007 −1.05101
\(202\) 1.41491 0.0995526
\(203\) 15.4638 1.08534
\(204\) 0 0
\(205\) −1.70263 −0.118917
\(206\) −9.44555 −0.658103
\(207\) −12.5230 −0.870408
\(208\) −0.815800 −0.0565656
\(209\) −33.2643 −2.30094
\(210\) −7.89322 −0.544684
\(211\) 13.3987 0.922404 0.461202 0.887295i \(-0.347418\pi\)
0.461202 + 0.887295i \(0.347418\pi\)
\(212\) −0.370237 −0.0254280
\(213\) −28.5544 −1.95651
\(214\) 2.78021 0.190051
\(215\) 0.0268304 0.00182982
\(216\) −7.97146 −0.542389
\(217\) 11.5369 0.783176
\(218\) −5.54932 −0.375847
\(219\) 4.38227 0.296126
\(220\) 6.57751 0.443456
\(221\) 0 0
\(222\) −1.01187 −0.0679123
\(223\) −2.11298 −0.141496 −0.0707478 0.997494i \(-0.522539\pi\)
−0.0707478 + 0.997494i \(0.522539\pi\)
\(224\) −16.2174 −1.08357
\(225\) 4.01706 0.267804
\(226\) 8.68551 0.577752
\(227\) 14.5595 0.966348 0.483174 0.875524i \(-0.339484\pi\)
0.483174 + 0.875524i \(0.339484\pi\)
\(228\) −15.4204 −1.02124
\(229\) −2.65040 −0.175143 −0.0875716 0.996158i \(-0.527911\pi\)
−0.0875716 + 0.996158i \(0.527911\pi\)
\(230\) −3.00170 −0.197926
\(231\) −50.2570 −3.30667
\(232\) 14.7850 0.970682
\(233\) 3.13924 0.205658 0.102829 0.994699i \(-0.467210\pi\)
0.102829 + 0.994699i \(0.467210\pi\)
\(234\) −4.48745 −0.293354
\(235\) 5.43715 0.354681
\(236\) −4.35653 −0.283586
\(237\) 13.9678 0.907305
\(238\) 0 0
\(239\) 13.7090 0.886760 0.443380 0.896334i \(-0.353779\pi\)
0.443380 + 0.896334i \(0.353779\pi\)
\(240\) −1.86268 −0.120235
\(241\) −12.4877 −0.804404 −0.402202 0.915551i \(-0.631755\pi\)
−0.402202 + 0.915551i \(0.631755\pi\)
\(242\) −25.5985 −1.64553
\(243\) 21.1006 1.35361
\(244\) −13.3492 −0.854593
\(245\) −2.57672 −0.164621
\(246\) 4.34276 0.276884
\(247\) −6.29493 −0.400537
\(248\) 11.0305 0.700436
\(249\) 32.9157 2.08595
\(250\) 0.962871 0.0608973
\(251\) 17.4413 1.10088 0.550441 0.834874i \(-0.314459\pi\)
0.550441 + 0.834874i \(0.314459\pi\)
\(252\) −13.3373 −0.840171
\(253\) −19.1122 −1.20157
\(254\) 13.4794 0.845774
\(255\) 0 0
\(256\) −17.0144 −1.06340
\(257\) 6.88101 0.429226 0.214613 0.976699i \(-0.431151\pi\)
0.214613 + 0.976699i \(0.431151\pi\)
\(258\) −0.0684341 −0.00426052
\(259\) −1.22769 −0.0762848
\(260\) 1.24473 0.0771947
\(261\) 20.0732 1.24250
\(262\) 12.2000 0.753716
\(263\) 6.23809 0.384657 0.192329 0.981331i \(-0.438396\pi\)
0.192329 + 0.981331i \(0.438396\pi\)
\(264\) −48.0509 −2.95733
\(265\) −0.345087 −0.0211986
\(266\) 16.1675 0.991296
\(267\) 8.55432 0.523516
\(268\) −6.03504 −0.368648
\(269\) −1.29087 −0.0787059 −0.0393530 0.999225i \(-0.512530\pi\)
−0.0393530 + 0.999225i \(0.512530\pi\)
\(270\) −2.59413 −0.157874
\(271\) 10.2849 0.624764 0.312382 0.949957i \(-0.398873\pi\)
0.312382 + 0.949957i \(0.398873\pi\)
\(272\) 0 0
\(273\) −9.51063 −0.575610
\(274\) −2.86828 −0.173279
\(275\) 6.13071 0.369695
\(276\) −8.85989 −0.533302
\(277\) 25.3802 1.52495 0.762474 0.647019i \(-0.223985\pi\)
0.762474 + 0.647019i \(0.223985\pi\)
\(278\) −18.9120 −1.13427
\(279\) 14.9758 0.896576
\(280\) −9.15634 −0.547196
\(281\) 5.89557 0.351700 0.175850 0.984417i \(-0.443733\pi\)
0.175850 + 0.984417i \(0.443733\pi\)
\(282\) −13.8681 −0.825834
\(283\) 18.4663 1.09771 0.548854 0.835918i \(-0.315064\pi\)
0.548854 + 0.835918i \(0.315064\pi\)
\(284\) −11.5650 −0.686257
\(285\) −14.3729 −0.851378
\(286\) −6.84860 −0.404966
\(287\) 5.26901 0.311020
\(288\) −21.0514 −1.24047
\(289\) 0 0
\(290\) 4.81144 0.282538
\(291\) 34.2641 2.00860
\(292\) 1.77489 0.103868
\(293\) 8.31894 0.485998 0.242999 0.970027i \(-0.421869\pi\)
0.242999 + 0.970027i \(0.421869\pi\)
\(294\) 6.57224 0.383301
\(295\) −4.06060 −0.236417
\(296\) −1.17380 −0.0682256
\(297\) −16.5171 −0.958422
\(298\) −2.84599 −0.164864
\(299\) −3.61679 −0.209164
\(300\) 2.84203 0.164085
\(301\) −0.0830301 −0.00478577
\(302\) −21.2220 −1.22119
\(303\) 3.89258 0.223623
\(304\) 3.81529 0.218822
\(305\) −12.4424 −0.712448
\(306\) 0 0
\(307\) −12.2369 −0.698398 −0.349199 0.937049i \(-0.613546\pi\)
−0.349199 + 0.937049i \(0.613546\pi\)
\(308\) −20.3549 −1.15983
\(309\) −25.9858 −1.47828
\(310\) 3.58962 0.203877
\(311\) −32.6368 −1.85066 −0.925331 0.379160i \(-0.876213\pi\)
−0.925331 + 0.379160i \(0.876213\pi\)
\(312\) −9.09315 −0.514799
\(313\) −13.4290 −0.759053 −0.379526 0.925181i \(-0.623913\pi\)
−0.379526 + 0.925181i \(0.623913\pi\)
\(314\) −12.3889 −0.699143
\(315\) −12.4313 −0.700425
\(316\) 5.65719 0.318242
\(317\) 9.87357 0.554555 0.277278 0.960790i \(-0.410568\pi\)
0.277278 + 0.960790i \(0.410568\pi\)
\(318\) 0.880187 0.0493584
\(319\) 30.6350 1.71523
\(320\) −6.45228 −0.360693
\(321\) 7.64869 0.426909
\(322\) 9.28915 0.517664
\(323\) 0 0
\(324\) 5.27257 0.292920
\(325\) 1.16017 0.0643549
\(326\) −18.5762 −1.02884
\(327\) −15.2668 −0.844258
\(328\) 5.03772 0.278162
\(329\) −16.8260 −0.927646
\(330\) −15.6371 −0.860794
\(331\) −5.64305 −0.310170 −0.155085 0.987901i \(-0.549565\pi\)
−0.155085 + 0.987901i \(0.549565\pi\)
\(332\) 13.3314 0.731656
\(333\) −1.59363 −0.0873304
\(334\) −18.1589 −0.993611
\(335\) −5.62508 −0.307331
\(336\) 5.76430 0.314468
\(337\) −16.5925 −0.903853 −0.451927 0.892055i \(-0.649263\pi\)
−0.451927 + 0.892055i \(0.649263\pi\)
\(338\) 11.2213 0.610358
\(339\) 23.8949 1.29779
\(340\) 0 0
\(341\) 22.8555 1.23770
\(342\) 20.9867 1.13483
\(343\) −13.6884 −0.739104
\(344\) −0.0793854 −0.00428017
\(345\) −8.25804 −0.444598
\(346\) 21.7387 1.16868
\(347\) 9.24424 0.496257 0.248129 0.968727i \(-0.420184\pi\)
0.248129 + 0.968727i \(0.420184\pi\)
\(348\) 14.2016 0.761283
\(349\) 26.9273 1.44139 0.720694 0.693254i \(-0.243823\pi\)
0.720694 + 0.693254i \(0.243823\pi\)
\(350\) −2.97973 −0.159273
\(351\) −3.12570 −0.166838
\(352\) −32.1280 −1.71243
\(353\) −22.9722 −1.22269 −0.611343 0.791366i \(-0.709370\pi\)
−0.611343 + 0.791366i \(0.709370\pi\)
\(354\) 10.3570 0.550470
\(355\) −10.7794 −0.572112
\(356\) 3.46465 0.183626
\(357\) 0 0
\(358\) −1.88788 −0.0997775
\(359\) 34.1089 1.80020 0.900101 0.435682i \(-0.143493\pi\)
0.900101 + 0.435682i \(0.143493\pi\)
\(360\) −11.8856 −0.626427
\(361\) 10.4398 0.549463
\(362\) 0.685293 0.0360182
\(363\) −70.4244 −3.69632
\(364\) −3.85197 −0.201898
\(365\) 1.65433 0.0865914
\(366\) 31.7358 1.65885
\(367\) −9.27610 −0.484209 −0.242104 0.970250i \(-0.577838\pi\)
−0.242104 + 0.970250i \(0.577838\pi\)
\(368\) 2.19210 0.114271
\(369\) 6.83957 0.356054
\(370\) −0.381986 −0.0198585
\(371\) 1.06792 0.0554435
\(372\) 10.5952 0.549336
\(373\) −3.06857 −0.158884 −0.0794422 0.996839i \(-0.525314\pi\)
−0.0794422 + 0.996839i \(0.525314\pi\)
\(374\) 0 0
\(375\) 2.64897 0.136792
\(376\) −16.0874 −0.829643
\(377\) 5.79736 0.298579
\(378\) 8.02788 0.412910
\(379\) 36.5339 1.87662 0.938310 0.345795i \(-0.112391\pi\)
0.938310 + 0.345795i \(0.112391\pi\)
\(380\) −5.82128 −0.298625
\(381\) 37.0835 1.89984
\(382\) 5.06798 0.259301
\(383\) −9.32150 −0.476306 −0.238153 0.971228i \(-0.576542\pi\)
−0.238153 + 0.971228i \(0.576542\pi\)
\(384\) −11.3066 −0.576990
\(385\) −18.9723 −0.966916
\(386\) −14.3758 −0.731709
\(387\) −0.107779 −0.00547873
\(388\) 13.8775 0.704525
\(389\) 33.1623 1.68139 0.840697 0.541507i \(-0.182146\pi\)
0.840697 + 0.541507i \(0.182146\pi\)
\(390\) −2.95916 −0.149843
\(391\) 0 0
\(392\) 7.62397 0.385069
\(393\) 33.5636 1.69306
\(394\) 6.09511 0.307067
\(395\) 5.27290 0.265309
\(396\) −26.4223 −1.32777
\(397\) −8.82540 −0.442934 −0.221467 0.975168i \(-0.571085\pi\)
−0.221467 + 0.975168i \(0.571085\pi\)
\(398\) −14.3611 −0.719859
\(399\) 44.4789 2.22673
\(400\) −0.703170 −0.0351585
\(401\) −19.5190 −0.974732 −0.487366 0.873198i \(-0.662042\pi\)
−0.487366 + 0.873198i \(0.662042\pi\)
\(402\) 14.3474 0.715585
\(403\) 4.32518 0.215453
\(404\) 1.57656 0.0784369
\(405\) 4.91441 0.244199
\(406\) −14.8896 −0.738960
\(407\) −2.43215 −0.120557
\(408\) 0 0
\(409\) 10.4152 0.514998 0.257499 0.966279i \(-0.417102\pi\)
0.257499 + 0.966279i \(0.417102\pi\)
\(410\) 1.63941 0.0809649
\(411\) −7.89097 −0.389233
\(412\) −10.5247 −0.518515
\(413\) 12.5660 0.618334
\(414\) 12.0580 0.592619
\(415\) 12.4258 0.609959
\(416\) −6.07991 −0.298092
\(417\) −52.0293 −2.54789
\(418\) 32.0292 1.56660
\(419\) −35.3206 −1.72552 −0.862762 0.505610i \(-0.831267\pi\)
−0.862762 + 0.505610i \(0.831267\pi\)
\(420\) −8.79502 −0.429153
\(421\) −15.0205 −0.732052 −0.366026 0.930605i \(-0.619282\pi\)
−0.366026 + 0.930605i \(0.619282\pi\)
\(422\) −12.9012 −0.628021
\(423\) −21.8414 −1.06196
\(424\) 1.02104 0.0495861
\(425\) 0 0
\(426\) 27.4942 1.33210
\(427\) 38.5045 1.86336
\(428\) 3.09785 0.149740
\(429\) −18.8413 −0.909668
\(430\) −0.0258342 −0.00124584
\(431\) −23.3518 −1.12481 −0.562407 0.826860i \(-0.690125\pi\)
−0.562407 + 0.826860i \(0.690125\pi\)
\(432\) 1.89446 0.0911471
\(433\) −18.3077 −0.879811 −0.439906 0.898044i \(-0.644988\pi\)
−0.439906 + 0.898044i \(0.644988\pi\)
\(434\) −11.1086 −0.533228
\(435\) 13.2369 0.634659
\(436\) −6.18333 −0.296128
\(437\) 16.9148 0.809145
\(438\) −4.21956 −0.201618
\(439\) −20.2697 −0.967421 −0.483711 0.875228i \(-0.660711\pi\)
−0.483711 + 0.875228i \(0.660711\pi\)
\(440\) −18.1394 −0.864764
\(441\) 10.3509 0.492898
\(442\) 0 0
\(443\) 29.3849 1.39612 0.698058 0.716041i \(-0.254048\pi\)
0.698058 + 0.716041i \(0.254048\pi\)
\(444\) −1.12748 −0.0535077
\(445\) 3.22930 0.153083
\(446\) 2.03453 0.0963376
\(447\) −7.82966 −0.370330
\(448\) 19.9674 0.943371
\(449\) −32.6419 −1.54047 −0.770234 0.637761i \(-0.779861\pi\)
−0.770234 + 0.637761i \(0.779861\pi\)
\(450\) −3.86791 −0.182335
\(451\) 10.4383 0.491522
\(452\) 9.67784 0.455207
\(453\) −58.3842 −2.74313
\(454\) −14.0189 −0.657940
\(455\) −3.59031 −0.168316
\(456\) 42.5264 1.99148
\(457\) −8.45112 −0.395327 −0.197663 0.980270i \(-0.563335\pi\)
−0.197663 + 0.980270i \(0.563335\pi\)
\(458\) 2.55199 0.119247
\(459\) 0 0
\(460\) −3.34465 −0.155945
\(461\) −38.2583 −1.78187 −0.890933 0.454134i \(-0.849949\pi\)
−0.890933 + 0.454134i \(0.849949\pi\)
\(462\) 48.3910 2.25135
\(463\) 27.1761 1.26298 0.631491 0.775383i \(-0.282443\pi\)
0.631491 + 0.775383i \(0.282443\pi\)
\(464\) −3.51373 −0.163121
\(465\) 9.87549 0.457965
\(466\) −3.02268 −0.140023
\(467\) 3.44525 0.159427 0.0797136 0.996818i \(-0.474599\pi\)
0.0797136 + 0.996818i \(0.474599\pi\)
\(468\) −5.00015 −0.231132
\(469\) 17.4075 0.803805
\(470\) −5.23528 −0.241485
\(471\) −34.0832 −1.57047
\(472\) 12.0144 0.553009
\(473\) −0.164489 −0.00756322
\(474\) −13.4492 −0.617741
\(475\) −5.42585 −0.248955
\(476\) 0 0
\(477\) 1.38624 0.0634714
\(478\) −13.2000 −0.603753
\(479\) 15.3593 0.701785 0.350893 0.936416i \(-0.385878\pi\)
0.350893 + 0.936416i \(0.385878\pi\)
\(480\) −13.8820 −0.633622
\(481\) −0.460260 −0.0209860
\(482\) 12.0241 0.547681
\(483\) 25.5556 1.16282
\(484\) −28.5231 −1.29650
\(485\) 12.9349 0.587341
\(486\) −20.3172 −0.921606
\(487\) 26.3095 1.19220 0.596099 0.802911i \(-0.296717\pi\)
0.596099 + 0.802911i \(0.296717\pi\)
\(488\) 36.8143 1.66651
\(489\) −51.1052 −2.31106
\(490\) 2.48105 0.112083
\(491\) −29.0366 −1.31040 −0.655202 0.755454i \(-0.727417\pi\)
−0.655202 + 0.755454i \(0.727417\pi\)
\(492\) 4.83893 0.218156
\(493\) 0 0
\(494\) 6.06120 0.272706
\(495\) −24.6274 −1.10692
\(496\) −2.62145 −0.117707
\(497\) 33.3583 1.49632
\(498\) −31.6935 −1.42022
\(499\) 32.5905 1.45895 0.729475 0.684007i \(-0.239764\pi\)
0.729475 + 0.684007i \(0.239764\pi\)
\(500\) 1.07288 0.0479806
\(501\) −49.9573 −2.23193
\(502\) −16.7937 −0.749539
\(503\) −23.5391 −1.04956 −0.524779 0.851239i \(-0.675852\pi\)
−0.524779 + 0.851239i \(0.675852\pi\)
\(504\) 36.7816 1.63838
\(505\) 1.46947 0.0653905
\(506\) 18.4026 0.818093
\(507\) 30.8711 1.37103
\(508\) 15.0194 0.666380
\(509\) −17.5818 −0.779300 −0.389650 0.920963i \(-0.627404\pi\)
−0.389650 + 0.920963i \(0.627404\pi\)
\(510\) 0 0
\(511\) −5.11953 −0.226474
\(512\) 7.84603 0.346749
\(513\) 14.6181 0.645406
\(514\) −6.62553 −0.292239
\(515\) −9.80978 −0.432271
\(516\) −0.0762528 −0.00335684
\(517\) −33.3336 −1.46601
\(518\) 1.18210 0.0519387
\(519\) 59.8059 2.62519
\(520\) −3.43271 −0.150534
\(521\) 20.5061 0.898388 0.449194 0.893434i \(-0.351711\pi\)
0.449194 + 0.893434i \(0.351711\pi\)
\(522\) −19.3279 −0.845957
\(523\) 9.19853 0.402224 0.201112 0.979568i \(-0.435545\pi\)
0.201112 + 0.979568i \(0.435545\pi\)
\(524\) 13.5938 0.593849
\(525\) −8.19759 −0.357772
\(526\) −6.00648 −0.261895
\(527\) 0 0
\(528\) 11.4195 0.496972
\(529\) −13.2815 −0.577457
\(530\) 0.332275 0.0144331
\(531\) 16.3117 0.707866
\(532\) 18.0147 0.781036
\(533\) 1.97535 0.0855618
\(534\) −8.23671 −0.356437
\(535\) 2.88742 0.124834
\(536\) 16.6434 0.718886
\(537\) −5.19378 −0.224128
\(538\) 1.24294 0.0535871
\(539\) 15.7971 0.680431
\(540\) −2.89052 −0.124388
\(541\) 14.2880 0.614291 0.307145 0.951663i \(-0.400626\pi\)
0.307145 + 0.951663i \(0.400626\pi\)
\(542\) −9.90305 −0.425372
\(543\) 1.88532 0.0809070
\(544\) 0 0
\(545\) −5.76330 −0.246873
\(546\) 9.15751 0.391905
\(547\) 23.7010 1.01338 0.506691 0.862128i \(-0.330869\pi\)
0.506691 + 0.862128i \(0.330869\pi\)
\(548\) −3.19598 −0.136525
\(549\) 49.9818 2.13317
\(550\) −5.90308 −0.251708
\(551\) −27.1128 −1.15505
\(552\) 24.4338 1.03997
\(553\) −16.3177 −0.693898
\(554\) −24.4378 −1.03826
\(555\) −1.05089 −0.0446078
\(556\) −21.0728 −0.893684
\(557\) 0.399812 0.0169406 0.00847028 0.999964i \(-0.497304\pi\)
0.00847028 + 0.999964i \(0.497304\pi\)
\(558\) −14.4197 −0.610436
\(559\) −0.0311279 −0.00131657
\(560\) 2.17605 0.0919549
\(561\) 0 0
\(562\) −5.67668 −0.239456
\(563\) 9.26358 0.390413 0.195207 0.980762i \(-0.437462\pi\)
0.195207 + 0.980762i \(0.437462\pi\)
\(564\) −15.4525 −0.650670
\(565\) 9.02043 0.379492
\(566\) −17.7807 −0.747377
\(567\) −15.2083 −0.638687
\(568\) 31.8940 1.33824
\(569\) 5.75650 0.241325 0.120662 0.992694i \(-0.461498\pi\)
0.120662 + 0.992694i \(0.461498\pi\)
\(570\) 13.8393 0.579663
\(571\) 13.9987 0.585825 0.292913 0.956139i \(-0.405375\pi\)
0.292913 + 0.956139i \(0.405375\pi\)
\(572\) −7.63106 −0.319071
\(573\) 13.9426 0.582462
\(574\) −5.07337 −0.211759
\(575\) −3.11745 −0.130007
\(576\) 25.9192 1.07997
\(577\) 18.4417 0.767736 0.383868 0.923388i \(-0.374592\pi\)
0.383868 + 0.923388i \(0.374592\pi\)
\(578\) 0 0
\(579\) −39.5495 −1.64362
\(580\) 5.36115 0.222610
\(581\) −38.4533 −1.59531
\(582\) −32.9919 −1.36756
\(583\) 2.11563 0.0876204
\(584\) −4.89480 −0.202548
\(585\) −4.66049 −0.192688
\(586\) −8.01007 −0.330893
\(587\) 4.03167 0.166405 0.0832024 0.996533i \(-0.473485\pi\)
0.0832024 + 0.996533i \(0.473485\pi\)
\(588\) 7.32312 0.302001
\(589\) −20.2278 −0.833471
\(590\) 3.90983 0.160965
\(591\) 16.7684 0.689758
\(592\) 0.278959 0.0114651
\(593\) −6.52416 −0.267915 −0.133958 0.990987i \(-0.542769\pi\)
−0.133958 + 0.990987i \(0.542769\pi\)
\(594\) 15.9039 0.652544
\(595\) 0 0
\(596\) −3.17114 −0.129895
\(597\) −39.5092 −1.61700
\(598\) 3.48250 0.142410
\(599\) 6.81189 0.278326 0.139163 0.990269i \(-0.455559\pi\)
0.139163 + 0.990269i \(0.455559\pi\)
\(600\) −7.83775 −0.319975
\(601\) 38.1591 1.55654 0.778272 0.627927i \(-0.216096\pi\)
0.778272 + 0.627927i \(0.216096\pi\)
\(602\) 0.0799473 0.00325841
\(603\) 22.5963 0.920192
\(604\) −23.6466 −0.962166
\(605\) −26.5856 −1.08086
\(606\) −3.74805 −0.152254
\(607\) 27.1567 1.10226 0.551129 0.834420i \(-0.314197\pi\)
0.551129 + 0.834420i \(0.314197\pi\)
\(608\) 28.4342 1.15316
\(609\) −40.9632 −1.65991
\(610\) 11.9804 0.485072
\(611\) −6.30805 −0.255196
\(612\) 0 0
\(613\) 2.48591 0.100405 0.0502025 0.998739i \(-0.484013\pi\)
0.0502025 + 0.998739i \(0.484013\pi\)
\(614\) 11.7826 0.475506
\(615\) 4.51022 0.181870
\(616\) 56.1349 2.26174
\(617\) 43.1941 1.73893 0.869465 0.493994i \(-0.164464\pi\)
0.869465 + 0.493994i \(0.164464\pi\)
\(618\) 25.0210 1.00649
\(619\) −1.37692 −0.0553430 −0.0276715 0.999617i \(-0.508809\pi\)
−0.0276715 + 0.999617i \(0.508809\pi\)
\(620\) 3.99974 0.160633
\(621\) 8.39893 0.337037
\(622\) 31.4250 1.26003
\(623\) −9.99347 −0.400380
\(624\) 2.16103 0.0865106
\(625\) 1.00000 0.0400000
\(626\) 12.9304 0.516803
\(627\) 88.1162 3.51902
\(628\) −13.8043 −0.550851
\(629\) 0 0
\(630\) 11.9697 0.476886
\(631\) −32.4351 −1.29122 −0.645611 0.763667i \(-0.723397\pi\)
−0.645611 + 0.763667i \(0.723397\pi\)
\(632\) −15.6014 −0.620590
\(633\) −35.4928 −1.41071
\(634\) −9.50698 −0.377570
\(635\) 13.9992 0.555541
\(636\) 0.980749 0.0388892
\(637\) 2.98945 0.118446
\(638\) −29.4975 −1.16782
\(639\) 43.3015 1.71298
\(640\) −4.26831 −0.168720
\(641\) −22.2992 −0.880764 −0.440382 0.897811i \(-0.645157\pi\)
−0.440382 + 0.897811i \(0.645157\pi\)
\(642\) −7.36471 −0.290662
\(643\) 11.7260 0.462430 0.231215 0.972903i \(-0.425730\pi\)
0.231215 + 0.972903i \(0.425730\pi\)
\(644\) 10.3504 0.407865
\(645\) −0.0710730 −0.00279850
\(646\) 0 0
\(647\) −37.3217 −1.46727 −0.733634 0.679544i \(-0.762177\pi\)
−0.733634 + 0.679544i \(0.762177\pi\)
\(648\) −14.5407 −0.571212
\(649\) 24.8943 0.977188
\(650\) −1.11710 −0.0438162
\(651\) −30.5610 −1.19778
\(652\) −20.6985 −0.810616
\(653\) −1.75573 −0.0687071 −0.0343535 0.999410i \(-0.510937\pi\)
−0.0343535 + 0.999410i \(0.510937\pi\)
\(654\) 14.7000 0.574815
\(655\) 12.6704 0.495074
\(656\) −1.19724 −0.0467443
\(657\) −6.64553 −0.259267
\(658\) 16.2012 0.631590
\(659\) 6.02834 0.234831 0.117415 0.993083i \(-0.462539\pi\)
0.117415 + 0.993083i \(0.462539\pi\)
\(660\) −17.4236 −0.678215
\(661\) 32.0199 1.24543 0.622715 0.782449i \(-0.286030\pi\)
0.622715 + 0.782449i \(0.286030\pi\)
\(662\) 5.43353 0.211180
\(663\) 0 0
\(664\) −36.7653 −1.42677
\(665\) 16.7910 0.651126
\(666\) 1.53446 0.0594592
\(667\) −15.5778 −0.603176
\(668\) −20.2336 −0.782860
\(669\) 5.59723 0.216401
\(670\) 5.41623 0.209247
\(671\) 76.2805 2.94478
\(672\) 42.9595 1.65720
\(673\) 39.5902 1.52609 0.763044 0.646346i \(-0.223704\pi\)
0.763044 + 0.646346i \(0.223704\pi\)
\(674\) 15.9765 0.615391
\(675\) −2.69417 −0.103698
\(676\) 12.5033 0.480897
\(677\) −6.99467 −0.268827 −0.134413 0.990925i \(-0.542915\pi\)
−0.134413 + 0.990925i \(0.542915\pi\)
\(678\) −23.0077 −0.883605
\(679\) −40.0286 −1.53616
\(680\) 0 0
\(681\) −38.5677 −1.47792
\(682\) −22.0069 −0.842689
\(683\) 37.2155 1.42401 0.712005 0.702174i \(-0.247787\pi\)
0.712005 + 0.702174i \(0.247787\pi\)
\(684\) 23.3844 0.894126
\(685\) −2.97888 −0.113817
\(686\) 13.1802 0.503221
\(687\) 7.02084 0.267862
\(688\) 0.0188663 0.000719272 0
\(689\) 0.400362 0.0152526
\(690\) 7.95143 0.302706
\(691\) 15.6482 0.595286 0.297643 0.954677i \(-0.403800\pi\)
0.297643 + 0.954677i \(0.403800\pi\)
\(692\) 24.2224 0.920798
\(693\) 76.2127 2.89508
\(694\) −8.90101 −0.337878
\(695\) −19.6413 −0.745037
\(696\) −39.1650 −1.48455
\(697\) 0 0
\(698\) −25.9276 −0.981372
\(699\) −8.31576 −0.314531
\(700\) −3.32016 −0.125490
\(701\) −6.08551 −0.229847 −0.114923 0.993374i \(-0.536662\pi\)
−0.114923 + 0.993374i \(0.536662\pi\)
\(702\) 3.00965 0.113592
\(703\) 2.15252 0.0811838
\(704\) 39.5570 1.49086
\(705\) −14.4029 −0.542444
\(706\) 22.1193 0.832469
\(707\) −4.54746 −0.171025
\(708\) 11.5403 0.433712
\(709\) −19.7081 −0.740154 −0.370077 0.929001i \(-0.620669\pi\)
−0.370077 + 0.929001i \(0.620669\pi\)
\(710\) 10.3792 0.389524
\(711\) −21.1816 −0.794371
\(712\) −9.55480 −0.358081
\(713\) −11.6220 −0.435247
\(714\) 0 0
\(715\) −7.11269 −0.266000
\(716\) −2.10357 −0.0786141
\(717\) −36.3147 −1.35620
\(718\) −32.8425 −1.22567
\(719\) −15.9164 −0.593583 −0.296791 0.954942i \(-0.595917\pi\)
−0.296791 + 0.954942i \(0.595917\pi\)
\(720\) 2.82468 0.105270
\(721\) 30.3576 1.13058
\(722\) −10.0522 −0.374104
\(723\) 33.0796 1.23024
\(724\) 0.763588 0.0283785
\(725\) 4.99698 0.185583
\(726\) 67.8096 2.51665
\(727\) 22.2643 0.825736 0.412868 0.910791i \(-0.364527\pi\)
0.412868 + 0.910791i \(0.364527\pi\)
\(728\) 10.6230 0.393713
\(729\) −41.1518 −1.52414
\(730\) −1.59290 −0.0589560
\(731\) 0 0
\(732\) 35.3616 1.30700
\(733\) −5.67351 −0.209556 −0.104778 0.994496i \(-0.533413\pi\)
−0.104778 + 0.994496i \(0.533413\pi\)
\(734\) 8.93169 0.329675
\(735\) 6.82567 0.251769
\(736\) 16.3370 0.602191
\(737\) 34.4857 1.27030
\(738\) −6.58562 −0.242420
\(739\) −39.7975 −1.46397 −0.731987 0.681319i \(-0.761407\pi\)
−0.731987 + 0.681319i \(0.761407\pi\)
\(740\) −0.425628 −0.0156464
\(741\) 16.6751 0.612575
\(742\) −1.02827 −0.0377488
\(743\) 10.6500 0.390709 0.195355 0.980733i \(-0.437414\pi\)
0.195355 + 0.980733i \(0.437414\pi\)
\(744\) −29.2195 −1.07124
\(745\) −2.95573 −0.108290
\(746\) 2.95464 0.108177
\(747\) −49.9153 −1.82630
\(748\) 0 0
\(749\) −8.93549 −0.326496
\(750\) −2.55062 −0.0931355
\(751\) 18.1195 0.661190 0.330595 0.943773i \(-0.392751\pi\)
0.330595 + 0.943773i \(0.392751\pi\)
\(752\) 3.82324 0.139419
\(753\) −46.2014 −1.68367
\(754\) −5.58211 −0.203289
\(755\) −22.0403 −0.802128
\(756\) 8.94507 0.325329
\(757\) −17.0771 −0.620676 −0.310338 0.950626i \(-0.600442\pi\)
−0.310338 + 0.950626i \(0.600442\pi\)
\(758\) −35.1774 −1.27770
\(759\) 50.6276 1.83767
\(760\) 16.0539 0.582337
\(761\) −31.9719 −1.15898 −0.579491 0.814979i \(-0.696749\pi\)
−0.579491 + 0.814979i \(0.696749\pi\)
\(762\) −35.7066 −1.29351
\(763\) 17.8353 0.645681
\(764\) 5.64701 0.204301
\(765\) 0 0
\(766\) 8.97540 0.324294
\(767\) 4.71100 0.170104
\(768\) 45.0707 1.62635
\(769\) −34.9147 −1.25906 −0.629529 0.776977i \(-0.716752\pi\)
−0.629529 + 0.776977i \(0.716752\pi\)
\(770\) 18.2678 0.658327
\(771\) −18.2276 −0.656452
\(772\) −16.0182 −0.576509
\(773\) 4.49160 0.161552 0.0807758 0.996732i \(-0.474260\pi\)
0.0807758 + 0.996732i \(0.474260\pi\)
\(774\) 0.103778 0.00373021
\(775\) 3.72804 0.133915
\(776\) −38.2715 −1.37387
\(777\) 3.25211 0.116669
\(778\) −31.9310 −1.14478
\(779\) −9.23821 −0.330993
\(780\) −3.29725 −0.118061
\(781\) 66.0854 2.36472
\(782\) 0 0
\(783\) −13.4627 −0.481117
\(784\) −1.81188 −0.0647098
\(785\) −12.8666 −0.459228
\(786\) −32.3174 −1.15272
\(787\) −8.65141 −0.308390 −0.154195 0.988040i \(-0.549278\pi\)
−0.154195 + 0.988040i \(0.549278\pi\)
\(788\) 6.79148 0.241936
\(789\) −16.5245 −0.588289
\(790\) −5.07713 −0.180636
\(791\) −27.9149 −0.992539
\(792\) 72.8673 2.58923
\(793\) 14.4353 0.512613
\(794\) 8.49772 0.301573
\(795\) 0.914127 0.0324208
\(796\) −16.0019 −0.567173
\(797\) 19.0137 0.673500 0.336750 0.941594i \(-0.390672\pi\)
0.336750 + 0.941594i \(0.390672\pi\)
\(798\) −42.8274 −1.51607
\(799\) 0 0
\(800\) −5.24051 −0.185280
\(801\) −12.9723 −0.458353
\(802\) 18.7943 0.663649
\(803\) −10.1422 −0.357910
\(804\) 15.9866 0.563806
\(805\) 9.64735 0.340024
\(806\) −4.16459 −0.146691
\(807\) 3.41949 0.120372
\(808\) −4.34784 −0.152957
\(809\) 22.6712 0.797077 0.398538 0.917152i \(-0.369518\pi\)
0.398538 + 0.917152i \(0.369518\pi\)
\(810\) −4.73194 −0.166263
\(811\) 24.1167 0.846850 0.423425 0.905931i \(-0.360828\pi\)
0.423425 + 0.905931i \(0.360828\pi\)
\(812\) −16.5908 −0.582222
\(813\) −27.2445 −0.955505
\(814\) 2.34184 0.0820816
\(815\) −19.2925 −0.675786
\(816\) 0 0
\(817\) 0.145578 0.00509311
\(818\) −10.0285 −0.350638
\(819\) 14.4225 0.503963
\(820\) 1.82672 0.0637917
\(821\) −0.114687 −0.00400260 −0.00200130 0.999998i \(-0.500637\pi\)
−0.00200130 + 0.999998i \(0.500637\pi\)
\(822\) 7.59799 0.265010
\(823\) −33.8610 −1.18032 −0.590161 0.807286i \(-0.700936\pi\)
−0.590161 + 0.807286i \(0.700936\pi\)
\(824\) 29.0250 1.01114
\(825\) −16.2401 −0.565407
\(826\) −12.0995 −0.420995
\(827\) 20.5646 0.715102 0.357551 0.933894i \(-0.383612\pi\)
0.357551 + 0.933894i \(0.383612\pi\)
\(828\) 13.4357 0.466921
\(829\) 26.7935 0.930576 0.465288 0.885159i \(-0.345951\pi\)
0.465288 + 0.885159i \(0.345951\pi\)
\(830\) −11.9645 −0.415292
\(831\) −67.2314 −2.33223
\(832\) 7.48577 0.259522
\(833\) 0 0
\(834\) 50.0975 1.73473
\(835\) −18.8591 −0.652647
\(836\) 35.6886 1.23431
\(837\) −10.0440 −0.347170
\(838\) 34.0092 1.17483
\(839\) 13.8332 0.477575 0.238788 0.971072i \(-0.423250\pi\)
0.238788 + 0.971072i \(0.423250\pi\)
\(840\) 24.2549 0.836874
\(841\) −4.03023 −0.138973
\(842\) 14.4628 0.498419
\(843\) −15.6172 −0.537886
\(844\) −14.3752 −0.494814
\(845\) 11.6540 0.400910
\(846\) 21.0304 0.723041
\(847\) 82.2724 2.82691
\(848\) −0.242655 −0.00833281
\(849\) −48.9168 −1.67882
\(850\) 0 0
\(851\) 1.23674 0.0423950
\(852\) 30.6354 1.04955
\(853\) 12.7815 0.437631 0.218816 0.975766i \(-0.429781\pi\)
0.218816 + 0.975766i \(0.429781\pi\)
\(854\) −37.0749 −1.26868
\(855\) 21.7960 0.745406
\(856\) −8.54325 −0.292002
\(857\) 6.31557 0.215736 0.107868 0.994165i \(-0.465598\pi\)
0.107868 + 0.994165i \(0.465598\pi\)
\(858\) 18.1418 0.619350
\(859\) −35.1334 −1.19874 −0.599369 0.800473i \(-0.704582\pi\)
−0.599369 + 0.800473i \(0.704582\pi\)
\(860\) −0.0287858 −0.000981587 0
\(861\) −13.9575 −0.475669
\(862\) 22.4847 0.765833
\(863\) −44.2102 −1.50493 −0.752466 0.658632i \(-0.771136\pi\)
−0.752466 + 0.658632i \(0.771136\pi\)
\(864\) 14.1188 0.480331
\(865\) 22.5770 0.767641
\(866\) 17.6279 0.599022
\(867\) 0 0
\(868\) −12.3777 −0.420127
\(869\) −32.3266 −1.09661
\(870\) −12.7454 −0.432109
\(871\) 6.52608 0.221128
\(872\) 17.0524 0.577467
\(873\) −51.9601 −1.75858
\(874\) −16.2868 −0.550908
\(875\) −3.09463 −0.104618
\(876\) −4.70164 −0.158854
\(877\) −23.6073 −0.797164 −0.398582 0.917133i \(-0.630497\pi\)
−0.398582 + 0.917133i \(0.630497\pi\)
\(878\) 19.5171 0.658671
\(879\) −22.0367 −0.743278
\(880\) 4.31093 0.145321
\(881\) 33.0624 1.11390 0.556950 0.830546i \(-0.311971\pi\)
0.556950 + 0.830546i \(0.311971\pi\)
\(882\) −9.96654 −0.335591
\(883\) 58.1141 1.95569 0.977847 0.209320i \(-0.0671251\pi\)
0.977847 + 0.209320i \(0.0671251\pi\)
\(884\) 0 0
\(885\) 10.7564 0.361573
\(886\) −28.2938 −0.950550
\(887\) −28.0097 −0.940474 −0.470237 0.882540i \(-0.655832\pi\)
−0.470237 + 0.882540i \(0.655832\pi\)
\(888\) 3.10936 0.104343
\(889\) −43.3223 −1.45298
\(890\) −3.10940 −0.104227
\(891\) −30.1288 −1.00935
\(892\) 2.26697 0.0759039
\(893\) 29.5012 0.987219
\(894\) 7.53895 0.252140
\(895\) −1.96068 −0.0655382
\(896\) 13.2088 0.441276
\(897\) 9.58077 0.319893
\(898\) 31.4300 1.04883
\(899\) 18.6289 0.621310
\(900\) −4.30982 −0.143661
\(901\) 0 0
\(902\) −10.0508 −0.334654
\(903\) 0.219944 0.00731929
\(904\) −26.6895 −0.887680
\(905\) 0.711719 0.0236583
\(906\) 56.2164 1.86766
\(907\) 49.9204 1.65758 0.828790 0.559560i \(-0.189030\pi\)
0.828790 + 0.559560i \(0.189030\pi\)
\(908\) −15.6206 −0.518387
\(909\) −5.90294 −0.195788
\(910\) 3.45700 0.114599
\(911\) 21.8797 0.724908 0.362454 0.932002i \(-0.381939\pi\)
0.362454 + 0.932002i \(0.381939\pi\)
\(912\) −10.1066 −0.334663
\(913\) −76.1790 −2.52116
\(914\) 8.13734 0.269159
\(915\) 32.9595 1.08961
\(916\) 2.84356 0.0939538
\(917\) −39.2102 −1.29483
\(918\) 0 0
\(919\) −11.0529 −0.364600 −0.182300 0.983243i \(-0.558354\pi\)
−0.182300 + 0.983243i \(0.558354\pi\)
\(920\) 9.22387 0.304102
\(921\) 32.4153 1.06812
\(922\) 36.8378 1.21319
\(923\) 12.5060 0.411640
\(924\) 53.9197 1.77383
\(925\) −0.396716 −0.0130439
\(926\) −26.1671 −0.859905
\(927\) 39.4065 1.29428
\(928\) −26.1867 −0.859621
\(929\) −33.1333 −1.08707 −0.543534 0.839387i \(-0.682914\pi\)
−0.543534 + 0.839387i \(0.682914\pi\)
\(930\) −9.50882 −0.311806
\(931\) −13.9809 −0.458206
\(932\) −3.36803 −0.110323
\(933\) 86.4540 2.83038
\(934\) −3.31733 −0.108546
\(935\) 0 0
\(936\) 13.7894 0.450721
\(937\) −58.3815 −1.90724 −0.953621 0.301011i \(-0.902676\pi\)
−0.953621 + 0.301011i \(0.902676\pi\)
\(938\) −16.7612 −0.547273
\(939\) 35.5731 1.16088
\(940\) −5.83341 −0.190265
\(941\) −6.09945 −0.198836 −0.0994181 0.995046i \(-0.531698\pi\)
−0.0994181 + 0.995046i \(0.531698\pi\)
\(942\) 32.8177 1.06926
\(943\) −5.30787 −0.172848
\(944\) −2.85529 −0.0929318
\(945\) 8.33744 0.271217
\(946\) 0.158382 0.00514944
\(947\) −47.1485 −1.53212 −0.766060 0.642769i \(-0.777785\pi\)
−0.766060 + 0.642769i \(0.777785\pi\)
\(948\) −14.9857 −0.486714
\(949\) −1.91931 −0.0623034
\(950\) 5.22439 0.169502
\(951\) −26.1548 −0.848129
\(952\) 0 0
\(953\) 26.8459 0.869625 0.434812 0.900521i \(-0.356815\pi\)
0.434812 + 0.900521i \(0.356815\pi\)
\(954\) −1.33477 −0.0432147
\(955\) 5.26341 0.170320
\(956\) −14.7081 −0.475694
\(957\) −81.1513 −2.62325
\(958\) −14.7890 −0.477812
\(959\) 9.21852 0.297682
\(960\) 17.0919 0.551639
\(961\) −17.1017 −0.551668
\(962\) 0.443171 0.0142884
\(963\) −11.5989 −0.373770
\(964\) 13.3978 0.431514
\(965\) −14.9301 −0.480618
\(966\) −24.6067 −0.791708
\(967\) −34.1142 −1.09704 −0.548519 0.836138i \(-0.684808\pi\)
−0.548519 + 0.836138i \(0.684808\pi\)
\(968\) 78.6610 2.52826
\(969\) 0 0
\(970\) −12.4546 −0.399893
\(971\) 22.9516 0.736551 0.368276 0.929717i \(-0.379948\pi\)
0.368276 + 0.929717i \(0.379948\pi\)
\(972\) −22.6384 −0.726128
\(973\) 60.7825 1.94860
\(974\) −25.3327 −0.811711
\(975\) −3.07327 −0.0984235
\(976\) −8.74911 −0.280052
\(977\) 19.8739 0.635823 0.317912 0.948120i \(-0.397018\pi\)
0.317912 + 0.948120i \(0.397018\pi\)
\(978\) 49.2077 1.57349
\(979\) −19.7979 −0.632743
\(980\) 2.76451 0.0883092
\(981\) 23.1515 0.739172
\(982\) 27.9585 0.892192
\(983\) 59.0708 1.88407 0.942034 0.335518i \(-0.108911\pi\)
0.942034 + 0.335518i \(0.108911\pi\)
\(984\) −13.3448 −0.425416
\(985\) 6.33014 0.201695
\(986\) 0 0
\(987\) 44.5715 1.41873
\(988\) 6.75370 0.214864
\(989\) 0.0836424 0.00265967
\(990\) 23.7130 0.753649
\(991\) −10.5941 −0.336534 −0.168267 0.985741i \(-0.553817\pi\)
−0.168267 + 0.985741i \(0.553817\pi\)
\(992\) −19.5368 −0.620296
\(993\) 14.9483 0.474370
\(994\) −32.1197 −1.01878
\(995\) −14.9149 −0.472835
\(996\) −35.3145 −1.11898
\(997\) −40.7864 −1.29172 −0.645860 0.763456i \(-0.723501\pi\)
−0.645860 + 0.763456i \(0.723501\pi\)
\(998\) −31.3804 −0.993331
\(999\) 1.06882 0.0338159
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1445.2.a.q.1.6 12
5.4 even 2 7225.2.a.bq.1.7 12
17.4 even 4 1445.2.d.j.866.14 24
17.10 odd 16 85.2.l.a.66.4 24
17.12 odd 16 85.2.l.a.76.4 yes 24
17.13 even 4 1445.2.d.j.866.13 24
17.16 even 2 1445.2.a.p.1.6 12
51.29 even 16 765.2.be.b.586.3 24
51.44 even 16 765.2.be.b.406.3 24
85.12 even 16 425.2.n.f.399.4 24
85.27 even 16 425.2.n.c.49.3 24
85.29 odd 16 425.2.m.b.76.3 24
85.44 odd 16 425.2.m.b.151.3 24
85.63 even 16 425.2.n.c.399.3 24
85.78 even 16 425.2.n.f.49.4 24
85.84 even 2 7225.2.a.bs.1.7 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.l.a.66.4 24 17.10 odd 16
85.2.l.a.76.4 yes 24 17.12 odd 16
425.2.m.b.76.3 24 85.29 odd 16
425.2.m.b.151.3 24 85.44 odd 16
425.2.n.c.49.3 24 85.27 even 16
425.2.n.c.399.3 24 85.63 even 16
425.2.n.f.49.4 24 85.78 even 16
425.2.n.f.399.4 24 85.12 even 16
765.2.be.b.406.3 24 51.44 even 16
765.2.be.b.586.3 24 51.29 even 16
1445.2.a.p.1.6 12 17.16 even 2
1445.2.a.q.1.6 12 1.1 even 1 trivial
1445.2.d.j.866.13 24 17.13 even 4
1445.2.d.j.866.14 24 17.4 even 4
7225.2.a.bq.1.7 12 5.4 even 2
7225.2.a.bs.1.7 12 85.84 even 2