Properties

Label 1445.2.a.q.1.6
Level 14451445
Weight 22
Character 1445.1
Self dual yes
Analytic conductor 11.53811.538
Analytic rank 00
Dimension 1212
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1445,2,Mod(1,1445)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1445, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1445.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1445=5172 1445 = 5 \cdot 17^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1445.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 11.538383092111.5383830921
Analytic rank: 00
Dimension: 1212
Coefficient field: Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x124x1110x10+52x9+21x8232x7+44x6+424x5137x4++17 x^{12} - 4 x^{11} - 10 x^{10} + 52 x^{9} + 21 x^{8} - 232 x^{7} + 44 x^{6} + 424 x^{5} - 137 x^{4} + \cdots + 17 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 85)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.6
Root 0.9628710.962871 of defining polynomial
Character χ\chi == 1445.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q0.962871q22.64897q31.07288q41.00000q5+2.55062q6+3.09463q7+2.95879q8+4.01706q9+0.962871q10+6.13071q11+2.84203q12+1.16017q132.97973q14+2.64897q150.703170q163.86791q185.42585q19+1.07288q208.19759q215.90308q223.11745q237.83775q24+1.00000q251.11710q262.69417q273.32016q28+4.99698q292.55062q30+3.72804q315.24051q3216.2401q333.09463q354.30982q360.396716q37+5.22439q383.07327q392.95879q40+1.70263q41+7.89322q420.0268304q436.57751q444.01706q45+3.00170q465.43715q47+1.86268q48+2.57672q490.962871q501.24473q52+0.345087q53+2.59413q546.13071q55+9.15634q56+14.3729q574.81144q58+4.06060q592.84203q60+12.4424q613.58962q62+12.4313q63+6.45228q641.16017q65+15.6371q66+5.62508q67+8.25804q69+2.97973q70+10.7794q71+11.8856q721.65433q73+0.381986q742.64897q75+5.82128q76+18.9723q77+2.95916q785.27290q79+0.703170q804.91441q811.63941q8212.4258q83+8.79502q84+0.0258342q8613.2369q87+18.1394q883.22930q89+3.86791q90+3.59031q91+3.34465q929.87549q93+5.23528q94+5.42585q95+13.8820q9612.9349q972.48105q98+24.6274q99+O(q100)q-0.962871 q^{2} -2.64897 q^{3} -1.07288 q^{4} -1.00000 q^{5} +2.55062 q^{6} +3.09463 q^{7} +2.95879 q^{8} +4.01706 q^{9} +0.962871 q^{10} +6.13071 q^{11} +2.84203 q^{12} +1.16017 q^{13} -2.97973 q^{14} +2.64897 q^{15} -0.703170 q^{16} -3.86791 q^{18} -5.42585 q^{19} +1.07288 q^{20} -8.19759 q^{21} -5.90308 q^{22} -3.11745 q^{23} -7.83775 q^{24} +1.00000 q^{25} -1.11710 q^{26} -2.69417 q^{27} -3.32016 q^{28} +4.99698 q^{29} -2.55062 q^{30} +3.72804 q^{31} -5.24051 q^{32} -16.2401 q^{33} -3.09463 q^{35} -4.30982 q^{36} -0.396716 q^{37} +5.22439 q^{38} -3.07327 q^{39} -2.95879 q^{40} +1.70263 q^{41} +7.89322 q^{42} -0.0268304 q^{43} -6.57751 q^{44} -4.01706 q^{45} +3.00170 q^{46} -5.43715 q^{47} +1.86268 q^{48} +2.57672 q^{49} -0.962871 q^{50} -1.24473 q^{52} +0.345087 q^{53} +2.59413 q^{54} -6.13071 q^{55} +9.15634 q^{56} +14.3729 q^{57} -4.81144 q^{58} +4.06060 q^{59} -2.84203 q^{60} +12.4424 q^{61} -3.58962 q^{62} +12.4313 q^{63} +6.45228 q^{64} -1.16017 q^{65} +15.6371 q^{66} +5.62508 q^{67} +8.25804 q^{69} +2.97973 q^{70} +10.7794 q^{71} +11.8856 q^{72} -1.65433 q^{73} +0.381986 q^{74} -2.64897 q^{75} +5.82128 q^{76} +18.9723 q^{77} +2.95916 q^{78} -5.27290 q^{79} +0.703170 q^{80} -4.91441 q^{81} -1.63941 q^{82} -12.4258 q^{83} +8.79502 q^{84} +0.0258342 q^{86} -13.2369 q^{87} +18.1394 q^{88} -3.22930 q^{89} +3.86791 q^{90} +3.59031 q^{91} +3.34465 q^{92} -9.87549 q^{93} +5.23528 q^{94} +5.42585 q^{95} +13.8820 q^{96} -12.9349 q^{97} -2.48105 q^{98} +24.6274 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 12q4q2+8q3+12q412q5+8q6+16q712q8+12q9+4q10+16q11+16q128q1316q148q15+12q16+4q1812q20+16q21++56q99+O(q100) 12 q - 4 q^{2} + 8 q^{3} + 12 q^{4} - 12 q^{5} + 8 q^{6} + 16 q^{7} - 12 q^{8} + 12 q^{9} + 4 q^{10} + 16 q^{11} + 16 q^{12} - 8 q^{13} - 16 q^{14} - 8 q^{15} + 12 q^{16} + 4 q^{18} - 12 q^{20} + 16 q^{21}+ \cdots + 56 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.962871 −0.680853 −0.340426 0.940271i 0.610571π-0.610571\pi
−0.340426 + 0.940271i 0.610571π0.610571\pi
33 −2.64897 −1.52939 −0.764693 0.644395i 0.777109π-0.777109\pi
−0.764693 + 0.644395i 0.777109π0.777109\pi
44 −1.07288 −0.536440
55 −1.00000 −0.447214
66 2.55062 1.04129
77 3.09463 1.16966 0.584830 0.811156i 0.301161π-0.301161\pi
0.584830 + 0.811156i 0.301161π0.301161\pi
88 2.95879 1.04609
99 4.01706 1.33902
1010 0.962871 0.304487
1111 6.13071 1.84848 0.924239 0.381815i 0.124701π-0.124701\pi
0.924239 + 0.381815i 0.124701π0.124701\pi
1212 2.84203 0.820423
1313 1.16017 0.321775 0.160887 0.986973i 0.448564π-0.448564\pi
0.160887 + 0.986973i 0.448564π0.448564\pi
1414 −2.97973 −0.796366
1515 2.64897 0.683962
1616 −0.703170 −0.175793
1717 0 0
1818 −3.86791 −0.911675
1919 −5.42585 −1.24477 −0.622387 0.782709i 0.713837π-0.713837\pi
−0.622387 + 0.782709i 0.713837π0.713837\pi
2020 1.07288 0.239903
2121 −8.19759 −1.78886
2222 −5.90308 −1.25854
2323 −3.11745 −0.650033 −0.325017 0.945708i 0.605370π-0.605370\pi
−0.325017 + 0.945708i 0.605370π0.605370\pi
2424 −7.83775 −1.59987
2525 1.00000 0.200000
2626 −1.11710 −0.219081
2727 −2.69417 −0.518492
2828 −3.32016 −0.627452
2929 4.99698 0.927915 0.463958 0.885857i 0.346429π-0.346429\pi
0.463958 + 0.885857i 0.346429π0.346429\pi
3030 −2.55062 −0.465677
3131 3.72804 0.669576 0.334788 0.942293i 0.391335π-0.391335\pi
0.334788 + 0.942293i 0.391335π0.391335\pi
3232 −5.24051 −0.926400
3333 −16.2401 −2.82703
3434 0 0
3535 −3.09463 −0.523088
3636 −4.30982 −0.718304
3737 −0.396716 −0.0652197 −0.0326098 0.999468i 0.510382π-0.510382\pi
−0.0326098 + 0.999468i 0.510382π0.510382\pi
3838 5.22439 0.847508
3939 −3.07327 −0.492117
4040 −2.95879 −0.467825
4141 1.70263 0.265906 0.132953 0.991122i 0.457554π-0.457554\pi
0.132953 + 0.991122i 0.457554π0.457554\pi
4242 7.89322 1.21795
4343 −0.0268304 −0.00409160 −0.00204580 0.999998i 0.500651π-0.500651\pi
−0.00204580 + 0.999998i 0.500651π0.500651\pi
4444 −6.57751 −0.991597
4545 −4.01706 −0.598828
4646 3.00170 0.442577
4747 −5.43715 −0.793090 −0.396545 0.918015i 0.629791π-0.629791\pi
−0.396545 + 0.918015i 0.629791π0.629791\pi
4848 1.86268 0.268855
4949 2.57672 0.368103
5050 −0.962871 −0.136171
5151 0 0
5252 −1.24473 −0.172613
5353 0.345087 0.0474014 0.0237007 0.999719i 0.492455π-0.492455\pi
0.0237007 + 0.999719i 0.492455π0.492455\pi
5454 2.59413 0.353017
5555 −6.13071 −0.826664
5656 9.15634 1.22357
5757 14.3729 1.90374
5858 −4.81144 −0.631773
5959 4.06060 0.528645 0.264322 0.964434i 0.414852π-0.414852\pi
0.264322 + 0.964434i 0.414852π0.414852\pi
6060 −2.84203 −0.366904
6161 12.4424 1.59308 0.796541 0.604584i 0.206661π-0.206661\pi
0.796541 + 0.604584i 0.206661π0.206661\pi
6262 −3.58962 −0.455883
6363 12.4313 1.56620
6464 6.45228 0.806534
6565 −1.16017 −0.143902
6666 15.6371 1.92479
6767 5.62508 0.687213 0.343607 0.939114i 0.388351π-0.388351\pi
0.343607 + 0.939114i 0.388351π0.388351\pi
6868 0 0
6969 8.25804 0.994152
7070 2.97973 0.356146
7171 10.7794 1.27928 0.639640 0.768674i 0.279083π-0.279083\pi
0.639640 + 0.768674i 0.279083π0.279083\pi
7272 11.8856 1.40073
7373 −1.65433 −0.193624 −0.0968121 0.995303i 0.530865π-0.530865\pi
−0.0968121 + 0.995303i 0.530865π0.530865\pi
7474 0.381986 0.0444050
7575 −2.64897 −0.305877
7676 5.82128 0.667747
7777 18.9723 2.16209
7878 2.95916 0.335059
7979 −5.27290 −0.593248 −0.296624 0.954994i 0.595861π-0.595861\pi
−0.296624 + 0.954994i 0.595861π0.595861\pi
8080 0.703170 0.0786168
8181 −4.91441 −0.546045
8282 −1.63941 −0.181043
8383 −12.4258 −1.36391 −0.681955 0.731394i 0.738870π-0.738870\pi
−0.681955 + 0.731394i 0.738870π0.738870\pi
8484 8.79502 0.959616
8585 0 0
8686 0.0258342 0.00278577
8787 −13.2369 −1.41914
8888 18.1394 1.93367
8989 −3.22930 −0.342305 −0.171152 0.985245i 0.554749π-0.554749\pi
−0.171152 + 0.985245i 0.554749π0.554749\pi
9090 3.86791 0.407714
9191 3.59031 0.376367
9292 3.34465 0.348704
9393 −9.87549 −1.02404
9494 5.23528 0.539978
9595 5.42585 0.556680
9696 13.8820 1.41682
9797 −12.9349 −1.31334 −0.656668 0.754180i 0.728035π-0.728035\pi
−0.656668 + 0.754180i 0.728035π0.728035\pi
9898 −2.48105 −0.250624
9999 24.6274 2.47515
100100 −1.07288 −0.107288
101101 −1.46947 −0.146218 −0.0731088 0.997324i 0.523292π-0.523292\pi
−0.0731088 + 0.997324i 0.523292π0.523292\pi
102102 0 0
103103 9.80978 0.966586 0.483293 0.875459i 0.339441π-0.339441\pi
0.483293 + 0.875459i 0.339441π0.339441\pi
104104 3.43271 0.336605
105105 8.19759 0.800003
106106 −0.332275 −0.0322734
107107 −2.88742 −0.279137 −0.139569 0.990212i 0.544572π-0.544572\pi
−0.139569 + 0.990212i 0.544572π0.544572\pi
108108 2.89052 0.278140
109109 5.76330 0.552024 0.276012 0.961154i 0.410987π-0.410987\pi
0.276012 + 0.961154i 0.410987π0.410987\pi
110110 5.90308 0.562836
111111 1.05089 0.0997460
112112 −2.17605 −0.205617
113113 −9.02043 −0.848571 −0.424285 0.905529i 0.639475π-0.639475\pi
−0.424285 + 0.905529i 0.639475π0.639475\pi
114114 −13.8393 −1.29617
115115 3.11745 0.290704
116116 −5.36115 −0.497771
117117 4.66049 0.430863
118118 −3.90983 −0.359929
119119 0 0
120120 7.83775 0.715485
121121 26.5856 2.41687
122122 −11.9804 −1.08465
123123 −4.51022 −0.406673
124124 −3.99974 −0.359187
125125 −1.00000 −0.0894427
126126 −11.9697 −1.06635
127127 −13.9992 −1.24223 −0.621114 0.783720i 0.713319π-0.713319\pi
−0.621114 + 0.783720i 0.713319π0.713319\pi
128128 4.26831 0.377269
129129 0.0710730 0.00625763
130130 1.11710 0.0979760
131131 −12.6704 −1.10702 −0.553509 0.832843i 0.686712π-0.686712\pi
−0.553509 + 0.832843i 0.686712π0.686712\pi
132132 17.4236 1.51653
133133 −16.7910 −1.45596
134134 −5.41623 −0.467891
135135 2.69417 0.231877
136136 0 0
137137 2.97888 0.254503 0.127251 0.991870i 0.459384π-0.459384\pi
0.127251 + 0.991870i 0.459384π0.459384\pi
138138 −7.95143 −0.676871
139139 19.6413 1.66595 0.832977 0.553308i 0.186635π-0.186635\pi
0.832977 + 0.553308i 0.186635π0.186635\pi
140140 3.32016 0.280605
141141 14.4029 1.21294
142142 −10.3792 −0.871002
143143 7.11269 0.594793
144144 −2.82468 −0.235390
145145 −4.99698 −0.414976
146146 1.59290 0.131830
147147 −6.82567 −0.562972
148148 0.425628 0.0349864
149149 2.95573 0.242143 0.121072 0.992644i 0.461367π-0.461367\pi
0.121072 + 0.992644i 0.461367π0.461367\pi
150150 2.55062 0.208257
151151 22.0403 1.79361 0.896807 0.442422i 0.145881π-0.145881\pi
0.896807 + 0.442422i 0.145881π0.145881\pi
152152 −16.0539 −1.30214
153153 0 0
154154 −18.2678 −1.47206
155155 −3.72804 −0.299444
156156 3.29725 0.263991
157157 12.8666 1.02686 0.513432 0.858130i 0.328374π-0.328374\pi
0.513432 + 0.858130i 0.328374π0.328374\pi
158158 5.07713 0.403914
159159 −0.914127 −0.0724950
160160 5.24051 0.414299
161161 −9.64735 −0.760318
162162 4.73194 0.371776
163163 19.2925 1.51110 0.755551 0.655089i 0.227369π-0.227369\pi
0.755551 + 0.655089i 0.227369π0.227369\pi
164164 −1.82672 −0.142643
165165 16.2401 1.26429
166166 11.9645 0.928622
167167 18.8591 1.45936 0.729681 0.683787i 0.239668π-0.239668\pi
0.729681 + 0.683787i 0.239668π0.239668\pi
168168 −24.2549 −1.87131
169169 −11.6540 −0.896461
170170 0 0
171171 −21.7960 −1.66678
172172 0.0287858 0.00219490
173173 −22.5770 −1.71650 −0.858249 0.513233i 0.828448π-0.828448\pi
−0.858249 + 0.513233i 0.828448π0.828448\pi
174174 12.7454 0.966225
175175 3.09463 0.233932
176176 −4.31093 −0.324949
177177 −10.7564 −0.808502
178178 3.10940 0.233059
179179 1.96068 0.146548 0.0732740 0.997312i 0.476655π-0.476655\pi
0.0732740 + 0.997312i 0.476655π0.476655\pi
180180 4.30982 0.321235
181181 −0.711719 −0.0529016 −0.0264508 0.999650i 0.508421π-0.508421\pi
−0.0264508 + 0.999650i 0.508421π0.508421\pi
182182 −3.45700 −0.256250
183183 −32.9595 −2.43644
184184 −9.22387 −0.679993
185185 0.396716 0.0291671
186186 9.50882 0.697220
187187 0 0
188188 5.83341 0.425445
189189 −8.33744 −0.606460
190190 −5.22439 −0.379017
191191 −5.26341 −0.380847 −0.190423 0.981702i 0.560986π-0.560986\pi
−0.190423 + 0.981702i 0.560986π0.560986\pi
192192 −17.0919 −1.23350
193193 14.9301 1.07469 0.537347 0.843361i 0.319426π-0.319426\pi
0.537347 + 0.843361i 0.319426π0.319426\pi
194194 12.4546 0.894188
195195 3.07327 0.220082
196196 −2.76451 −0.197465
197197 −6.33014 −0.451004 −0.225502 0.974243i 0.572402π-0.572402\pi
−0.225502 + 0.974243i 0.572402π0.572402\pi
198198 −23.7130 −1.68521
199199 14.9149 1.05729 0.528645 0.848843i 0.322700π-0.322700\pi
0.528645 + 0.848843i 0.322700π0.322700\pi
200200 2.95879 0.209218
201201 −14.9007 −1.05101
202202 1.41491 0.0995526
203203 15.4638 1.08534
204204 0 0
205205 −1.70263 −0.118917
206206 −9.44555 −0.658103
207207 −12.5230 −0.870408
208208 −0.815800 −0.0565656
209209 −33.2643 −2.30094
210210 −7.89322 −0.544684
211211 13.3987 0.922404 0.461202 0.887295i 0.347418π-0.347418\pi
0.461202 + 0.887295i 0.347418π0.347418\pi
212212 −0.370237 −0.0254280
213213 −28.5544 −1.95651
214214 2.78021 0.190051
215215 0.0268304 0.00182982
216216 −7.97146 −0.542389
217217 11.5369 0.783176
218218 −5.54932 −0.375847
219219 4.38227 0.296126
220220 6.57751 0.443456
221221 0 0
222222 −1.01187 −0.0679123
223223 −2.11298 −0.141496 −0.0707478 0.997494i 0.522539π-0.522539\pi
−0.0707478 + 0.997494i 0.522539π0.522539\pi
224224 −16.2174 −1.08357
225225 4.01706 0.267804
226226 8.68551 0.577752
227227 14.5595 0.966348 0.483174 0.875524i 0.339484π-0.339484\pi
0.483174 + 0.875524i 0.339484π0.339484\pi
228228 −15.4204 −1.02124
229229 −2.65040 −0.175143 −0.0875716 0.996158i 0.527911π-0.527911\pi
−0.0875716 + 0.996158i 0.527911π0.527911\pi
230230 −3.00170 −0.197926
231231 −50.2570 −3.30667
232232 14.7850 0.970682
233233 3.13924 0.205658 0.102829 0.994699i 0.467210π-0.467210\pi
0.102829 + 0.994699i 0.467210π0.467210\pi
234234 −4.48745 −0.293354
235235 5.43715 0.354681
236236 −4.35653 −0.283586
237237 13.9678 0.907305
238238 0 0
239239 13.7090 0.886760 0.443380 0.896334i 0.353779π-0.353779\pi
0.443380 + 0.896334i 0.353779π0.353779\pi
240240 −1.86268 −0.120235
241241 −12.4877 −0.804404 −0.402202 0.915551i 0.631755π-0.631755\pi
−0.402202 + 0.915551i 0.631755π0.631755\pi
242242 −25.5985 −1.64553
243243 21.1006 1.35361
244244 −13.3492 −0.854593
245245 −2.57672 −0.164621
246246 4.34276 0.276884
247247 −6.29493 −0.400537
248248 11.0305 0.700436
249249 32.9157 2.08595
250250 0.962871 0.0608973
251251 17.4413 1.10088 0.550441 0.834874i 0.314459π-0.314459\pi
0.550441 + 0.834874i 0.314459π0.314459\pi
252252 −13.3373 −0.840171
253253 −19.1122 −1.20157
254254 13.4794 0.845774
255255 0 0
256256 −17.0144 −1.06340
257257 6.88101 0.429226 0.214613 0.976699i 0.431151π-0.431151\pi
0.214613 + 0.976699i 0.431151π0.431151\pi
258258 −0.0684341 −0.00426052
259259 −1.22769 −0.0762848
260260 1.24473 0.0771947
261261 20.0732 1.24250
262262 12.2000 0.753716
263263 6.23809 0.384657 0.192329 0.981331i 0.438396π-0.438396\pi
0.192329 + 0.981331i 0.438396π0.438396\pi
264264 −48.0509 −2.95733
265265 −0.345087 −0.0211986
266266 16.1675 0.991296
267267 8.55432 0.523516
268268 −6.03504 −0.368648
269269 −1.29087 −0.0787059 −0.0393530 0.999225i 0.512530π-0.512530\pi
−0.0393530 + 0.999225i 0.512530π0.512530\pi
270270 −2.59413 −0.157874
271271 10.2849 0.624764 0.312382 0.949957i 0.398873π-0.398873\pi
0.312382 + 0.949957i 0.398873π0.398873\pi
272272 0 0
273273 −9.51063 −0.575610
274274 −2.86828 −0.173279
275275 6.13071 0.369695
276276 −8.85989 −0.533302
277277 25.3802 1.52495 0.762474 0.647019i 0.223985π-0.223985\pi
0.762474 + 0.647019i 0.223985π0.223985\pi
278278 −18.9120 −1.13427
279279 14.9758 0.896576
280280 −9.15634 −0.547196
281281 5.89557 0.351700 0.175850 0.984417i 0.443733π-0.443733\pi
0.175850 + 0.984417i 0.443733π0.443733\pi
282282 −13.8681 −0.825834
283283 18.4663 1.09771 0.548854 0.835918i 0.315064π-0.315064\pi
0.548854 + 0.835918i 0.315064π0.315064\pi
284284 −11.5650 −0.686257
285285 −14.3729 −0.851378
286286 −6.84860 −0.404966
287287 5.26901 0.311020
288288 −21.0514 −1.24047
289289 0 0
290290 4.81144 0.282538
291291 34.2641 2.00860
292292 1.77489 0.103868
293293 8.31894 0.485998 0.242999 0.970027i 0.421869π-0.421869\pi
0.242999 + 0.970027i 0.421869π0.421869\pi
294294 6.57224 0.383301
295295 −4.06060 −0.236417
296296 −1.17380 −0.0682256
297297 −16.5171 −0.958422
298298 −2.84599 −0.164864
299299 −3.61679 −0.209164
300300 2.84203 0.164085
301301 −0.0830301 −0.00478577
302302 −21.2220 −1.22119
303303 3.89258 0.223623
304304 3.81529 0.218822
305305 −12.4424 −0.712448
306306 0 0
307307 −12.2369 −0.698398 −0.349199 0.937049i 0.613546π-0.613546\pi
−0.349199 + 0.937049i 0.613546π0.613546\pi
308308 −20.3549 −1.15983
309309 −25.9858 −1.47828
310310 3.58962 0.203877
311311 −32.6368 −1.85066 −0.925331 0.379160i 0.876213π-0.876213\pi
−0.925331 + 0.379160i 0.876213π0.876213\pi
312312 −9.09315 −0.514799
313313 −13.4290 −0.759053 −0.379526 0.925181i 0.623913π-0.623913\pi
−0.379526 + 0.925181i 0.623913π0.623913\pi
314314 −12.3889 −0.699143
315315 −12.4313 −0.700425
316316 5.65719 0.318242
317317 9.87357 0.554555 0.277278 0.960790i 0.410568π-0.410568\pi
0.277278 + 0.960790i 0.410568π0.410568\pi
318318 0.880187 0.0493584
319319 30.6350 1.71523
320320 −6.45228 −0.360693
321321 7.64869 0.426909
322322 9.28915 0.517664
323323 0 0
324324 5.27257 0.292920
325325 1.16017 0.0643549
326326 −18.5762 −1.02884
327327 −15.2668 −0.844258
328328 5.03772 0.278162
329329 −16.8260 −0.927646
330330 −15.6371 −0.860794
331331 −5.64305 −0.310170 −0.155085 0.987901i 0.549565π-0.549565\pi
−0.155085 + 0.987901i 0.549565π0.549565\pi
332332 13.3314 0.731656
333333 −1.59363 −0.0873304
334334 −18.1589 −0.993611
335335 −5.62508 −0.307331
336336 5.76430 0.314468
337337 −16.5925 −0.903853 −0.451927 0.892055i 0.649263π-0.649263\pi
−0.451927 + 0.892055i 0.649263π0.649263\pi
338338 11.2213 0.610358
339339 23.8949 1.29779
340340 0 0
341341 22.8555 1.23770
342342 20.9867 1.13483
343343 −13.6884 −0.739104
344344 −0.0793854 −0.00428017
345345 −8.25804 −0.444598
346346 21.7387 1.16868
347347 9.24424 0.496257 0.248129 0.968727i 0.420184π-0.420184\pi
0.248129 + 0.968727i 0.420184π0.420184\pi
348348 14.2016 0.761283
349349 26.9273 1.44139 0.720694 0.693254i 0.243823π-0.243823\pi
0.720694 + 0.693254i 0.243823π0.243823\pi
350350 −2.97973 −0.159273
351351 −3.12570 −0.166838
352352 −32.1280 −1.71243
353353 −22.9722 −1.22269 −0.611343 0.791366i 0.709370π-0.709370\pi
−0.611343 + 0.791366i 0.709370π0.709370\pi
354354 10.3570 0.550470
355355 −10.7794 −0.572112
356356 3.46465 0.183626
357357 0 0
358358 −1.88788 −0.0997775
359359 34.1089 1.80020 0.900101 0.435682i 0.143493π-0.143493\pi
0.900101 + 0.435682i 0.143493π0.143493\pi
360360 −11.8856 −0.626427
361361 10.4398 0.549463
362362 0.685293 0.0360182
363363 −70.4244 −3.69632
364364 −3.85197 −0.201898
365365 1.65433 0.0865914
366366 31.7358 1.65885
367367 −9.27610 −0.484209 −0.242104 0.970250i 0.577838π-0.577838\pi
−0.242104 + 0.970250i 0.577838π0.577838\pi
368368 2.19210 0.114271
369369 6.83957 0.356054
370370 −0.381986 −0.0198585
371371 1.06792 0.0554435
372372 10.5952 0.549336
373373 −3.06857 −0.158884 −0.0794422 0.996839i 0.525314π-0.525314\pi
−0.0794422 + 0.996839i 0.525314π0.525314\pi
374374 0 0
375375 2.64897 0.136792
376376 −16.0874 −0.829643
377377 5.79736 0.298579
378378 8.02788 0.412910
379379 36.5339 1.87662 0.938310 0.345795i 0.112391π-0.112391\pi
0.938310 + 0.345795i 0.112391π0.112391\pi
380380 −5.82128 −0.298625
381381 37.0835 1.89984
382382 5.06798 0.259301
383383 −9.32150 −0.476306 −0.238153 0.971228i 0.576542π-0.576542\pi
−0.238153 + 0.971228i 0.576542π0.576542\pi
384384 −11.3066 −0.576990
385385 −18.9723 −0.966916
386386 −14.3758 −0.731709
387387 −0.107779 −0.00547873
388388 13.8775 0.704525
389389 33.1623 1.68139 0.840697 0.541507i 0.182146π-0.182146\pi
0.840697 + 0.541507i 0.182146π0.182146\pi
390390 −2.95916 −0.149843
391391 0 0
392392 7.62397 0.385069
393393 33.5636 1.69306
394394 6.09511 0.307067
395395 5.27290 0.265309
396396 −26.4223 −1.32777
397397 −8.82540 −0.442934 −0.221467 0.975168i 0.571085π-0.571085\pi
−0.221467 + 0.975168i 0.571085π0.571085\pi
398398 −14.3611 −0.719859
399399 44.4789 2.22673
400400 −0.703170 −0.0351585
401401 −19.5190 −0.974732 −0.487366 0.873198i 0.662042π-0.662042\pi
−0.487366 + 0.873198i 0.662042π0.662042\pi
402402 14.3474 0.715585
403403 4.32518 0.215453
404404 1.57656 0.0784369
405405 4.91441 0.244199
406406 −14.8896 −0.738960
407407 −2.43215 −0.120557
408408 0 0
409409 10.4152 0.514998 0.257499 0.966279i 0.417102π-0.417102\pi
0.257499 + 0.966279i 0.417102π0.417102\pi
410410 1.63941 0.0809649
411411 −7.89097 −0.389233
412412 −10.5247 −0.518515
413413 12.5660 0.618334
414414 12.0580 0.592619
415415 12.4258 0.609959
416416 −6.07991 −0.298092
417417 −52.0293 −2.54789
418418 32.0292 1.56660
419419 −35.3206 −1.72552 −0.862762 0.505610i 0.831267π-0.831267\pi
−0.862762 + 0.505610i 0.831267π0.831267\pi
420420 −8.79502 −0.429153
421421 −15.0205 −0.732052 −0.366026 0.930605i 0.619282π-0.619282\pi
−0.366026 + 0.930605i 0.619282π0.619282\pi
422422 −12.9012 −0.628021
423423 −21.8414 −1.06196
424424 1.02104 0.0495861
425425 0 0
426426 27.4942 1.33210
427427 38.5045 1.86336
428428 3.09785 0.149740
429429 −18.8413 −0.909668
430430 −0.0258342 −0.00124584
431431 −23.3518 −1.12481 −0.562407 0.826860i 0.690125π-0.690125\pi
−0.562407 + 0.826860i 0.690125π0.690125\pi
432432 1.89446 0.0911471
433433 −18.3077 −0.879811 −0.439906 0.898044i 0.644988π-0.644988\pi
−0.439906 + 0.898044i 0.644988π0.644988\pi
434434 −11.1086 −0.533228
435435 13.2369 0.634659
436436 −6.18333 −0.296128
437437 16.9148 0.809145
438438 −4.21956 −0.201618
439439 −20.2697 −0.967421 −0.483711 0.875228i 0.660711π-0.660711\pi
−0.483711 + 0.875228i 0.660711π0.660711\pi
440440 −18.1394 −0.864764
441441 10.3509 0.492898
442442 0 0
443443 29.3849 1.39612 0.698058 0.716041i 0.254048π-0.254048\pi
0.698058 + 0.716041i 0.254048π0.254048\pi
444444 −1.12748 −0.0535077
445445 3.22930 0.153083
446446 2.03453 0.0963376
447447 −7.82966 −0.370330
448448 19.9674 0.943371
449449 −32.6419 −1.54047 −0.770234 0.637761i 0.779861π-0.779861\pi
−0.770234 + 0.637761i 0.779861π0.779861\pi
450450 −3.86791 −0.182335
451451 10.4383 0.491522
452452 9.67784 0.455207
453453 −58.3842 −2.74313
454454 −14.0189 −0.657940
455455 −3.59031 −0.168316
456456 42.5264 1.99148
457457 −8.45112 −0.395327 −0.197663 0.980270i 0.563335π-0.563335\pi
−0.197663 + 0.980270i 0.563335π0.563335\pi
458458 2.55199 0.119247
459459 0 0
460460 −3.34465 −0.155945
461461 −38.2583 −1.78187 −0.890933 0.454134i 0.849949π-0.849949\pi
−0.890933 + 0.454134i 0.849949π0.849949\pi
462462 48.3910 2.25135
463463 27.1761 1.26298 0.631491 0.775383i 0.282443π-0.282443\pi
0.631491 + 0.775383i 0.282443π0.282443\pi
464464 −3.51373 −0.163121
465465 9.87549 0.457965
466466 −3.02268 −0.140023
467467 3.44525 0.159427 0.0797136 0.996818i 0.474599π-0.474599\pi
0.0797136 + 0.996818i 0.474599π0.474599\pi
468468 −5.00015 −0.231132
469469 17.4075 0.803805
470470 −5.23528 −0.241485
471471 −34.0832 −1.57047
472472 12.0144 0.553009
473473 −0.164489 −0.00756322
474474 −13.4492 −0.617741
475475 −5.42585 −0.248955
476476 0 0
477477 1.38624 0.0634714
478478 −13.2000 −0.603753
479479 15.3593 0.701785 0.350893 0.936416i 0.385878π-0.385878\pi
0.350893 + 0.936416i 0.385878π0.385878\pi
480480 −13.8820 −0.633622
481481 −0.460260 −0.0209860
482482 12.0241 0.547681
483483 25.5556 1.16282
484484 −28.5231 −1.29650
485485 12.9349 0.587341
486486 −20.3172 −0.921606
487487 26.3095 1.19220 0.596099 0.802911i 0.296717π-0.296717\pi
0.596099 + 0.802911i 0.296717π0.296717\pi
488488 36.8143 1.66651
489489 −51.1052 −2.31106
490490 2.48105 0.112083
491491 −29.0366 −1.31040 −0.655202 0.755454i 0.727417π-0.727417\pi
−0.655202 + 0.755454i 0.727417π0.727417\pi
492492 4.83893 0.218156
493493 0 0
494494 6.06120 0.272706
495495 −24.6274 −1.10692
496496 −2.62145 −0.117707
497497 33.3583 1.49632
498498 −31.6935 −1.42022
499499 32.5905 1.45895 0.729475 0.684007i 0.239764π-0.239764\pi
0.729475 + 0.684007i 0.239764π0.239764\pi
500500 1.07288 0.0479806
501501 −49.9573 −2.23193
502502 −16.7937 −0.749539
503503 −23.5391 −1.04956 −0.524779 0.851239i 0.675852π-0.675852\pi
−0.524779 + 0.851239i 0.675852π0.675852\pi
504504 36.7816 1.63838
505505 1.46947 0.0653905
506506 18.4026 0.818093
507507 30.8711 1.37103
508508 15.0194 0.666380
509509 −17.5818 −0.779300 −0.389650 0.920963i 0.627404π-0.627404\pi
−0.389650 + 0.920963i 0.627404π0.627404\pi
510510 0 0
511511 −5.11953 −0.226474
512512 7.84603 0.346749
513513 14.6181 0.645406
514514 −6.62553 −0.292239
515515 −9.80978 −0.432271
516516 −0.0762528 −0.00335684
517517 −33.3336 −1.46601
518518 1.18210 0.0519387
519519 59.8059 2.62519
520520 −3.43271 −0.150534
521521 20.5061 0.898388 0.449194 0.893434i 0.351711π-0.351711\pi
0.449194 + 0.893434i 0.351711π0.351711\pi
522522 −19.3279 −0.845957
523523 9.19853 0.402224 0.201112 0.979568i 0.435545π-0.435545\pi
0.201112 + 0.979568i 0.435545π0.435545\pi
524524 13.5938 0.593849
525525 −8.19759 −0.357772
526526 −6.00648 −0.261895
527527 0 0
528528 11.4195 0.496972
529529 −13.2815 −0.577457
530530 0.332275 0.0144331
531531 16.3117 0.707866
532532 18.0147 0.781036
533533 1.97535 0.0855618
534534 −8.23671 −0.356437
535535 2.88742 0.124834
536536 16.6434 0.718886
537537 −5.19378 −0.224128
538538 1.24294 0.0535871
539539 15.7971 0.680431
540540 −2.89052 −0.124388
541541 14.2880 0.614291 0.307145 0.951663i 0.400626π-0.400626\pi
0.307145 + 0.951663i 0.400626π0.400626\pi
542542 −9.90305 −0.425372
543543 1.88532 0.0809070
544544 0 0
545545 −5.76330 −0.246873
546546 9.15751 0.391905
547547 23.7010 1.01338 0.506691 0.862128i 0.330869π-0.330869\pi
0.506691 + 0.862128i 0.330869π0.330869\pi
548548 −3.19598 −0.136525
549549 49.9818 2.13317
550550 −5.90308 −0.251708
551551 −27.1128 −1.15505
552552 24.4338 1.03997
553553 −16.3177 −0.693898
554554 −24.4378 −1.03826
555555 −1.05089 −0.0446078
556556 −21.0728 −0.893684
557557 0.399812 0.0169406 0.00847028 0.999964i 0.497304π-0.497304\pi
0.00847028 + 0.999964i 0.497304π0.497304\pi
558558 −14.4197 −0.610436
559559 −0.0311279 −0.00131657
560560 2.17605 0.0919549
561561 0 0
562562 −5.67668 −0.239456
563563 9.26358 0.390413 0.195207 0.980762i 0.437462π-0.437462\pi
0.195207 + 0.980762i 0.437462π0.437462\pi
564564 −15.4525 −0.650670
565565 9.02043 0.379492
566566 −17.7807 −0.747377
567567 −15.2083 −0.638687
568568 31.8940 1.33824
569569 5.75650 0.241325 0.120662 0.992694i 0.461498π-0.461498\pi
0.120662 + 0.992694i 0.461498π0.461498\pi
570570 13.8393 0.579663
571571 13.9987 0.585825 0.292913 0.956139i 0.405375π-0.405375\pi
0.292913 + 0.956139i 0.405375π0.405375\pi
572572 −7.63106 −0.319071
573573 13.9426 0.582462
574574 −5.07337 −0.211759
575575 −3.11745 −0.130007
576576 25.9192 1.07997
577577 18.4417 0.767736 0.383868 0.923388i 0.374592π-0.374592\pi
0.383868 + 0.923388i 0.374592π0.374592\pi
578578 0 0
579579 −39.5495 −1.64362
580580 5.36115 0.222610
581581 −38.4533 −1.59531
582582 −32.9919 −1.36756
583583 2.11563 0.0876204
584584 −4.89480 −0.202548
585585 −4.66049 −0.192688
586586 −8.01007 −0.330893
587587 4.03167 0.166405 0.0832024 0.996533i 0.473485π-0.473485\pi
0.0832024 + 0.996533i 0.473485π0.473485\pi
588588 7.32312 0.302001
589589 −20.2278 −0.833471
590590 3.90983 0.160965
591591 16.7684 0.689758
592592 0.278959 0.0114651
593593 −6.52416 −0.267915 −0.133958 0.990987i 0.542769π-0.542769\pi
−0.133958 + 0.990987i 0.542769π0.542769\pi
594594 15.9039 0.652544
595595 0 0
596596 −3.17114 −0.129895
597597 −39.5092 −1.61700
598598 3.48250 0.142410
599599 6.81189 0.278326 0.139163 0.990269i 0.455559π-0.455559\pi
0.139163 + 0.990269i 0.455559π0.455559\pi
600600 −7.83775 −0.319975
601601 38.1591 1.55654 0.778272 0.627927i 0.216096π-0.216096\pi
0.778272 + 0.627927i 0.216096π0.216096\pi
602602 0.0799473 0.00325841
603603 22.5963 0.920192
604604 −23.6466 −0.962166
605605 −26.5856 −1.08086
606606 −3.74805 −0.152254
607607 27.1567 1.10226 0.551129 0.834420i 0.314197π-0.314197\pi
0.551129 + 0.834420i 0.314197π0.314197\pi
608608 28.4342 1.15316
609609 −40.9632 −1.65991
610610 11.9804 0.485072
611611 −6.30805 −0.255196
612612 0 0
613613 2.48591 0.100405 0.0502025 0.998739i 0.484013π-0.484013\pi
0.0502025 + 0.998739i 0.484013π0.484013\pi
614614 11.7826 0.475506
615615 4.51022 0.181870
616616 56.1349 2.26174
617617 43.1941 1.73893 0.869465 0.493994i 0.164464π-0.164464\pi
0.869465 + 0.493994i 0.164464π0.164464\pi
618618 25.0210 1.00649
619619 −1.37692 −0.0553430 −0.0276715 0.999617i 0.508809π-0.508809\pi
−0.0276715 + 0.999617i 0.508809π0.508809\pi
620620 3.99974 0.160633
621621 8.39893 0.337037
622622 31.4250 1.26003
623623 −9.99347 −0.400380
624624 2.16103 0.0865106
625625 1.00000 0.0400000
626626 12.9304 0.516803
627627 88.1162 3.51902
628628 −13.8043 −0.550851
629629 0 0
630630 11.9697 0.476886
631631 −32.4351 −1.29122 −0.645611 0.763667i 0.723397π-0.723397\pi
−0.645611 + 0.763667i 0.723397π0.723397\pi
632632 −15.6014 −0.620590
633633 −35.4928 −1.41071
634634 −9.50698 −0.377570
635635 13.9992 0.555541
636636 0.980749 0.0388892
637637 2.98945 0.118446
638638 −29.4975 −1.16782
639639 43.3015 1.71298
640640 −4.26831 −0.168720
641641 −22.2992 −0.880764 −0.440382 0.897811i 0.645157π-0.645157\pi
−0.440382 + 0.897811i 0.645157π0.645157\pi
642642 −7.36471 −0.290662
643643 11.7260 0.462430 0.231215 0.972903i 0.425730π-0.425730\pi
0.231215 + 0.972903i 0.425730π0.425730\pi
644644 10.3504 0.407865
645645 −0.0710730 −0.00279850
646646 0 0
647647 −37.3217 −1.46727 −0.733634 0.679544i 0.762177π-0.762177\pi
−0.733634 + 0.679544i 0.762177π0.762177\pi
648648 −14.5407 −0.571212
649649 24.8943 0.977188
650650 −1.11710 −0.0438162
651651 −30.5610 −1.19778
652652 −20.6985 −0.810616
653653 −1.75573 −0.0687071 −0.0343535 0.999410i 0.510937π-0.510937\pi
−0.0343535 + 0.999410i 0.510937π0.510937\pi
654654 14.7000 0.574815
655655 12.6704 0.495074
656656 −1.19724 −0.0467443
657657 −6.64553 −0.259267
658658 16.2012 0.631590
659659 6.02834 0.234831 0.117415 0.993083i 0.462539π-0.462539\pi
0.117415 + 0.993083i 0.462539π0.462539\pi
660660 −17.4236 −0.678215
661661 32.0199 1.24543 0.622715 0.782449i 0.286030π-0.286030\pi
0.622715 + 0.782449i 0.286030π0.286030\pi
662662 5.43353 0.211180
663663 0 0
664664 −36.7653 −1.42677
665665 16.7910 0.651126
666666 1.53446 0.0594592
667667 −15.5778 −0.603176
668668 −20.2336 −0.782860
669669 5.59723 0.216401
670670 5.41623 0.209247
671671 76.2805 2.94478
672672 42.9595 1.65720
673673 39.5902 1.52609 0.763044 0.646346i 0.223704π-0.223704\pi
0.763044 + 0.646346i 0.223704π0.223704\pi
674674 15.9765 0.615391
675675 −2.69417 −0.103698
676676 12.5033 0.480897
677677 −6.99467 −0.268827 −0.134413 0.990925i 0.542915π-0.542915\pi
−0.134413 + 0.990925i 0.542915π0.542915\pi
678678 −23.0077 −0.883605
679679 −40.0286 −1.53616
680680 0 0
681681 −38.5677 −1.47792
682682 −22.0069 −0.842689
683683 37.2155 1.42401 0.712005 0.702174i 0.247787π-0.247787\pi
0.712005 + 0.702174i 0.247787π0.247787\pi
684684 23.3844 0.894126
685685 −2.97888 −0.113817
686686 13.1802 0.503221
687687 7.02084 0.267862
688688 0.0188663 0.000719272 0
689689 0.400362 0.0152526
690690 7.95143 0.302706
691691 15.6482 0.595286 0.297643 0.954677i 0.403800π-0.403800\pi
0.297643 + 0.954677i 0.403800π0.403800\pi
692692 24.2224 0.920798
693693 76.2127 2.89508
694694 −8.90101 −0.337878
695695 −19.6413 −0.745037
696696 −39.1650 −1.48455
697697 0 0
698698 −25.9276 −0.981372
699699 −8.31576 −0.314531
700700 −3.32016 −0.125490
701701 −6.08551 −0.229847 −0.114923 0.993374i 0.536662π-0.536662\pi
−0.114923 + 0.993374i 0.536662π0.536662\pi
702702 3.00965 0.113592
703703 2.15252 0.0811838
704704 39.5570 1.49086
705705 −14.4029 −0.542444
706706 22.1193 0.832469
707707 −4.54746 −0.171025
708708 11.5403 0.433712
709709 −19.7081 −0.740154 −0.370077 0.929001i 0.620669π-0.620669\pi
−0.370077 + 0.929001i 0.620669π0.620669\pi
710710 10.3792 0.389524
711711 −21.1816 −0.794371
712712 −9.55480 −0.358081
713713 −11.6220 −0.435247
714714 0 0
715715 −7.11269 −0.266000
716716 −2.10357 −0.0786141
717717 −36.3147 −1.35620
718718 −32.8425 −1.22567
719719 −15.9164 −0.593583 −0.296791 0.954942i 0.595917π-0.595917\pi
−0.296791 + 0.954942i 0.595917π0.595917\pi
720720 2.82468 0.105270
721721 30.3576 1.13058
722722 −10.0522 −0.374104
723723 33.0796 1.23024
724724 0.763588 0.0283785
725725 4.99698 0.185583
726726 67.8096 2.51665
727727 22.2643 0.825736 0.412868 0.910791i 0.364527π-0.364527\pi
0.412868 + 0.910791i 0.364527π0.364527\pi
728728 10.6230 0.393713
729729 −41.1518 −1.52414
730730 −1.59290 −0.0589560
731731 0 0
732732 35.3616 1.30700
733733 −5.67351 −0.209556 −0.104778 0.994496i 0.533413π-0.533413\pi
−0.104778 + 0.994496i 0.533413π0.533413\pi
734734 8.93169 0.329675
735735 6.82567 0.251769
736736 16.3370 0.602191
737737 34.4857 1.27030
738738 −6.58562 −0.242420
739739 −39.7975 −1.46397 −0.731987 0.681319i 0.761407π-0.761407\pi
−0.731987 + 0.681319i 0.761407π0.761407\pi
740740 −0.425628 −0.0156464
741741 16.6751 0.612575
742742 −1.02827 −0.0377488
743743 10.6500 0.390709 0.195355 0.980733i 0.437414π-0.437414\pi
0.195355 + 0.980733i 0.437414π0.437414\pi
744744 −29.2195 −1.07124
745745 −2.95573 −0.108290
746746 2.95464 0.108177
747747 −49.9153 −1.82630
748748 0 0
749749 −8.93549 −0.326496
750750 −2.55062 −0.0931355
751751 18.1195 0.661190 0.330595 0.943773i 0.392751π-0.392751\pi
0.330595 + 0.943773i 0.392751π0.392751\pi
752752 3.82324 0.139419
753753 −46.2014 −1.68367
754754 −5.58211 −0.203289
755755 −22.0403 −0.802128
756756 8.94507 0.325329
757757 −17.0771 −0.620676 −0.310338 0.950626i 0.600442π-0.600442\pi
−0.310338 + 0.950626i 0.600442π0.600442\pi
758758 −35.1774 −1.27770
759759 50.6276 1.83767
760760 16.0539 0.582337
761761 −31.9719 −1.15898 −0.579491 0.814979i 0.696749π-0.696749\pi
−0.579491 + 0.814979i 0.696749π0.696749\pi
762762 −35.7066 −1.29351
763763 17.8353 0.645681
764764 5.64701 0.204301
765765 0 0
766766 8.97540 0.324294
767767 4.71100 0.170104
768768 45.0707 1.62635
769769 −34.9147 −1.25906 −0.629529 0.776977i 0.716752π-0.716752\pi
−0.629529 + 0.776977i 0.716752π0.716752\pi
770770 18.2678 0.658327
771771 −18.2276 −0.656452
772772 −16.0182 −0.576509
773773 4.49160 0.161552 0.0807758 0.996732i 0.474260π-0.474260\pi
0.0807758 + 0.996732i 0.474260π0.474260\pi
774774 0.103778 0.00373021
775775 3.72804 0.133915
776776 −38.2715 −1.37387
777777 3.25211 0.116669
778778 −31.9310 −1.14478
779779 −9.23821 −0.330993
780780 −3.29725 −0.118061
781781 66.0854 2.36472
782782 0 0
783783 −13.4627 −0.481117
784784 −1.81188 −0.0647098
785785 −12.8666 −0.459228
786786 −32.3174 −1.15272
787787 −8.65141 −0.308390 −0.154195 0.988040i 0.549278π-0.549278\pi
−0.154195 + 0.988040i 0.549278π0.549278\pi
788788 6.79148 0.241936
789789 −16.5245 −0.588289
790790 −5.07713 −0.180636
791791 −27.9149 −0.992539
792792 72.8673 2.58923
793793 14.4353 0.512613
794794 8.49772 0.301573
795795 0.914127 0.0324208
796796 −16.0019 −0.567173
797797 19.0137 0.673500 0.336750 0.941594i 0.390672π-0.390672\pi
0.336750 + 0.941594i 0.390672π0.390672\pi
798798 −42.8274 −1.51607
799799 0 0
800800 −5.24051 −0.185280
801801 −12.9723 −0.458353
802802 18.7943 0.663649
803803 −10.1422 −0.357910
804804 15.9866 0.563806
805805 9.64735 0.340024
806806 −4.16459 −0.146691
807807 3.41949 0.120372
808808 −4.34784 −0.152957
809809 22.6712 0.797077 0.398538 0.917152i 0.369518π-0.369518\pi
0.398538 + 0.917152i 0.369518π0.369518\pi
810810 −4.73194 −0.166263
811811 24.1167 0.846850 0.423425 0.905931i 0.360828π-0.360828\pi
0.423425 + 0.905931i 0.360828π0.360828\pi
812812 −16.5908 −0.582222
813813 −27.2445 −0.955505
814814 2.34184 0.0820816
815815 −19.2925 −0.675786
816816 0 0
817817 0.145578 0.00509311
818818 −10.0285 −0.350638
819819 14.4225 0.503963
820820 1.82672 0.0637917
821821 −0.114687 −0.00400260 −0.00200130 0.999998i 0.500637π-0.500637\pi
−0.00200130 + 0.999998i 0.500637π0.500637\pi
822822 7.59799 0.265010
823823 −33.8610 −1.18032 −0.590161 0.807286i 0.700936π-0.700936\pi
−0.590161 + 0.807286i 0.700936π0.700936\pi
824824 29.0250 1.01114
825825 −16.2401 −0.565407
826826 −12.0995 −0.420995
827827 20.5646 0.715102 0.357551 0.933894i 0.383612π-0.383612\pi
0.357551 + 0.933894i 0.383612π0.383612\pi
828828 13.4357 0.466921
829829 26.7935 0.930576 0.465288 0.885159i 0.345951π-0.345951\pi
0.465288 + 0.885159i 0.345951π0.345951\pi
830830 −11.9645 −0.415292
831831 −67.2314 −2.33223
832832 7.48577 0.259522
833833 0 0
834834 50.0975 1.73473
835835 −18.8591 −0.652647
836836 35.6886 1.23431
837837 −10.0440 −0.347170
838838 34.0092 1.17483
839839 13.8332 0.477575 0.238788 0.971072i 0.423250π-0.423250\pi
0.238788 + 0.971072i 0.423250π0.423250\pi
840840 24.2549 0.836874
841841 −4.03023 −0.138973
842842 14.4628 0.498419
843843 −15.6172 −0.537886
844844 −14.3752 −0.494814
845845 11.6540 0.400910
846846 21.0304 0.723041
847847 82.2724 2.82691
848848 −0.242655 −0.00833281
849849 −48.9168 −1.67882
850850 0 0
851851 1.23674 0.0423950
852852 30.6354 1.04955
853853 12.7815 0.437631 0.218816 0.975766i 0.429781π-0.429781\pi
0.218816 + 0.975766i 0.429781π0.429781\pi
854854 −37.0749 −1.26868
855855 21.7960 0.745406
856856 −8.54325 −0.292002
857857 6.31557 0.215736 0.107868 0.994165i 0.465598π-0.465598\pi
0.107868 + 0.994165i 0.465598π0.465598\pi
858858 18.1418 0.619350
859859 −35.1334 −1.19874 −0.599369 0.800473i 0.704582π-0.704582\pi
−0.599369 + 0.800473i 0.704582π0.704582\pi
860860 −0.0287858 −0.000981587 0
861861 −13.9575 −0.475669
862862 22.4847 0.765833
863863 −44.2102 −1.50493 −0.752466 0.658632i 0.771136π-0.771136\pi
−0.752466 + 0.658632i 0.771136π0.771136\pi
864864 14.1188 0.480331
865865 22.5770 0.767641
866866 17.6279 0.599022
867867 0 0
868868 −12.3777 −0.420127
869869 −32.3266 −1.09661
870870 −12.7454 −0.432109
871871 6.52608 0.221128
872872 17.0524 0.577467
873873 −51.9601 −1.75858
874874 −16.2868 −0.550908
875875 −3.09463 −0.104618
876876 −4.70164 −0.158854
877877 −23.6073 −0.797164 −0.398582 0.917133i 0.630497π-0.630497\pi
−0.398582 + 0.917133i 0.630497π0.630497\pi
878878 19.5171 0.658671
879879 −22.0367 −0.743278
880880 4.31093 0.145321
881881 33.0624 1.11390 0.556950 0.830546i 0.311971π-0.311971\pi
0.556950 + 0.830546i 0.311971π0.311971\pi
882882 −9.96654 −0.335591
883883 58.1141 1.95569 0.977847 0.209320i 0.0671251π-0.0671251\pi
0.977847 + 0.209320i 0.0671251π0.0671251\pi
884884 0 0
885885 10.7564 0.361573
886886 −28.2938 −0.950550
887887 −28.0097 −0.940474 −0.470237 0.882540i 0.655832π-0.655832\pi
−0.470237 + 0.882540i 0.655832π0.655832\pi
888888 3.10936 0.104343
889889 −43.3223 −1.45298
890890 −3.10940 −0.104227
891891 −30.1288 −1.00935
892892 2.26697 0.0759039
893893 29.5012 0.987219
894894 7.53895 0.252140
895895 −1.96068 −0.0655382
896896 13.2088 0.441276
897897 9.58077 0.319893
898898 31.4300 1.04883
899899 18.6289 0.621310
900900 −4.30982 −0.143661
901901 0 0
902902 −10.0508 −0.334654
903903 0.219944 0.00731929
904904 −26.6895 −0.887680
905905 0.711719 0.0236583
906906 56.2164 1.86766
907907 49.9204 1.65758 0.828790 0.559560i 0.189030π-0.189030\pi
0.828790 + 0.559560i 0.189030π0.189030\pi
908908 −15.6206 −0.518387
909909 −5.90294 −0.195788
910910 3.45700 0.114599
911911 21.8797 0.724908 0.362454 0.932002i 0.381939π-0.381939\pi
0.362454 + 0.932002i 0.381939π0.381939\pi
912912 −10.1066 −0.334663
913913 −76.1790 −2.52116
914914 8.13734 0.269159
915915 32.9595 1.08961
916916 2.84356 0.0939538
917917 −39.2102 −1.29483
918918 0 0
919919 −11.0529 −0.364600 −0.182300 0.983243i 0.558354π-0.558354\pi
−0.182300 + 0.983243i 0.558354π0.558354\pi
920920 9.22387 0.304102
921921 32.4153 1.06812
922922 36.8378 1.21319
923923 12.5060 0.411640
924924 53.9197 1.77383
925925 −0.396716 −0.0130439
926926 −26.1671 −0.859905
927927 39.4065 1.29428
928928 −26.1867 −0.859621
929929 −33.1333 −1.08707 −0.543534 0.839387i 0.682914π-0.682914\pi
−0.543534 + 0.839387i 0.682914π0.682914\pi
930930 −9.50882 −0.311806
931931 −13.9809 −0.458206
932932 −3.36803 −0.110323
933933 86.4540 2.83038
934934 −3.31733 −0.108546
935935 0 0
936936 13.7894 0.450721
937937 −58.3815 −1.90724 −0.953621 0.301011i 0.902676π-0.902676\pi
−0.953621 + 0.301011i 0.902676π0.902676\pi
938938 −16.7612 −0.547273
939939 35.5731 1.16088
940940 −5.83341 −0.190265
941941 −6.09945 −0.198836 −0.0994181 0.995046i 0.531698π-0.531698\pi
−0.0994181 + 0.995046i 0.531698π0.531698\pi
942942 32.8177 1.06926
943943 −5.30787 −0.172848
944944 −2.85529 −0.0929318
945945 8.33744 0.271217
946946 0.158382 0.00514944
947947 −47.1485 −1.53212 −0.766060 0.642769i 0.777785π-0.777785\pi
−0.766060 + 0.642769i 0.777785π0.777785\pi
948948 −14.9857 −0.486714
949949 −1.91931 −0.0623034
950950 5.22439 0.169502
951951 −26.1548 −0.848129
952952 0 0
953953 26.8459 0.869625 0.434812 0.900521i 0.356815π-0.356815\pi
0.434812 + 0.900521i 0.356815π0.356815\pi
954954 −1.33477 −0.0432147
955955 5.26341 0.170320
956956 −14.7081 −0.475694
957957 −81.1513 −2.62325
958958 −14.7890 −0.477812
959959 9.21852 0.297682
960960 17.0919 0.551639
961961 −17.1017 −0.551668
962962 0.443171 0.0142884
963963 −11.5989 −0.373770
964964 13.3978 0.431514
965965 −14.9301 −0.480618
966966 −24.6067 −0.791708
967967 −34.1142 −1.09704 −0.548519 0.836138i 0.684808π-0.684808\pi
−0.548519 + 0.836138i 0.684808π0.684808\pi
968968 78.6610 2.52826
969969 0 0
970970 −12.4546 −0.399893
971971 22.9516 0.736551 0.368276 0.929717i 0.379948π-0.379948\pi
0.368276 + 0.929717i 0.379948π0.379948\pi
972972 −22.6384 −0.726128
973973 60.7825 1.94860
974974 −25.3327 −0.811711
975975 −3.07327 −0.0984235
976976 −8.74911 −0.280052
977977 19.8739 0.635823 0.317912 0.948120i 0.397018π-0.397018\pi
0.317912 + 0.948120i 0.397018π0.397018\pi
978978 49.2077 1.57349
979979 −19.7979 −0.632743
980980 2.76451 0.0883092
981981 23.1515 0.739172
982982 27.9585 0.892192
983983 59.0708 1.88407 0.942034 0.335518i 0.108911π-0.108911\pi
0.942034 + 0.335518i 0.108911π0.108911\pi
984984 −13.3448 −0.425416
985985 6.33014 0.201695
986986 0 0
987987 44.5715 1.41873
988988 6.75370 0.214864
989989 0.0836424 0.00265967
990990 23.7130 0.753649
991991 −10.5941 −0.336534 −0.168267 0.985741i 0.553817π-0.553817\pi
−0.168267 + 0.985741i 0.553817π0.553817\pi
992992 −19.5368 −0.620296
993993 14.9483 0.474370
994994 −32.1197 −1.01878
995995 −14.9149 −0.472835
996996 −35.3145 −1.11898
997997 −40.7864 −1.29172 −0.645860 0.763456i 0.723501π-0.723501\pi
−0.645860 + 0.763456i 0.723501π0.723501\pi
998998 −31.3804 −0.993331
999999 1.06882 0.0338159
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1445.2.a.q.1.6 12
5.4 even 2 7225.2.a.bq.1.7 12
17.4 even 4 1445.2.d.j.866.14 24
17.10 odd 16 85.2.l.a.66.4 24
17.12 odd 16 85.2.l.a.76.4 yes 24
17.13 even 4 1445.2.d.j.866.13 24
17.16 even 2 1445.2.a.p.1.6 12
51.29 even 16 765.2.be.b.586.3 24
51.44 even 16 765.2.be.b.406.3 24
85.12 even 16 425.2.n.f.399.4 24
85.27 even 16 425.2.n.c.49.3 24
85.29 odd 16 425.2.m.b.76.3 24
85.44 odd 16 425.2.m.b.151.3 24
85.63 even 16 425.2.n.c.399.3 24
85.78 even 16 425.2.n.f.49.4 24
85.84 even 2 7225.2.a.bs.1.7 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.l.a.66.4 24 17.10 odd 16
85.2.l.a.76.4 yes 24 17.12 odd 16
425.2.m.b.76.3 24 85.29 odd 16
425.2.m.b.151.3 24 85.44 odd 16
425.2.n.c.49.3 24 85.27 even 16
425.2.n.c.399.3 24 85.63 even 16
425.2.n.f.49.4 24 85.78 even 16
425.2.n.f.399.4 24 85.12 even 16
765.2.be.b.406.3 24 51.44 even 16
765.2.be.b.586.3 24 51.29 even 16
1445.2.a.p.1.6 12 17.16 even 2
1445.2.a.q.1.6 12 1.1 even 1 trivial
1445.2.d.j.866.13 24 17.13 even 4
1445.2.d.j.866.14 24 17.4 even 4
7225.2.a.bq.1.7 12 5.4 even 2
7225.2.a.bs.1.7 12 85.84 even 2