Properties

Label 1445.2.a.r.1.2
Level $1445$
Weight $2$
Character 1445.1
Self dual yes
Analytic conductor $11.538$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1445,2,Mod(1,1445)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1445, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1445.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1445 = 5 \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1445.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.5383830921\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} - 18 x^{10} + 55 x^{9} + 114 x^{8} - 354 x^{7} - 309 x^{6} + 936 x^{5} + 396 x^{4} + \cdots + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.54480\) of defining polynomial
Character \(\chi\) \(=\) 1445.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.54480 q^{2} -3.06453 q^{3} +4.47602 q^{4} -1.00000 q^{5} +7.79863 q^{6} -0.261390 q^{7} -6.30099 q^{8} +6.39135 q^{9} +2.54480 q^{10} +0.545043 q^{11} -13.7169 q^{12} +5.48254 q^{13} +0.665187 q^{14} +3.06453 q^{15} +7.08273 q^{16} -16.2647 q^{18} +4.34857 q^{19} -4.47602 q^{20} +0.801039 q^{21} -1.38703 q^{22} +3.75127 q^{23} +19.3096 q^{24} +1.00000 q^{25} -13.9520 q^{26} -10.3929 q^{27} -1.16999 q^{28} +2.69600 q^{29} -7.79863 q^{30} +8.95269 q^{31} -5.42218 q^{32} -1.67030 q^{33} +0.261390 q^{35} +28.6078 q^{36} -4.86119 q^{37} -11.0663 q^{38} -16.8014 q^{39} +6.30099 q^{40} -7.76968 q^{41} -2.03849 q^{42} +2.35019 q^{43} +2.43963 q^{44} -6.39135 q^{45} -9.54625 q^{46} +2.35604 q^{47} -21.7052 q^{48} -6.93168 q^{49} -2.54480 q^{50} +24.5400 q^{52} -10.8975 q^{53} +26.4479 q^{54} -0.545043 q^{55} +1.64702 q^{56} -13.3263 q^{57} -6.86078 q^{58} +6.23938 q^{59} +13.7169 q^{60} +0.633641 q^{61} -22.7828 q^{62} -1.67064 q^{63} -0.367091 q^{64} -5.48254 q^{65} +4.25059 q^{66} +8.44378 q^{67} -11.4959 q^{69} -0.665187 q^{70} +5.40706 q^{71} -40.2718 q^{72} -8.12625 q^{73} +12.3708 q^{74} -3.06453 q^{75} +19.4643 q^{76} -0.142469 q^{77} +42.7563 q^{78} -1.73147 q^{79} -7.08273 q^{80} +12.6753 q^{81} +19.7723 q^{82} -0.107006 q^{83} +3.58547 q^{84} -5.98077 q^{86} -8.26196 q^{87} -3.43431 q^{88} -16.8773 q^{89} +16.2647 q^{90} -1.43308 q^{91} +16.7908 q^{92} -27.4358 q^{93} -5.99566 q^{94} -4.34857 q^{95} +16.6164 q^{96} +7.14812 q^{97} +17.6397 q^{98} +3.48356 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 3 q^{2} - 3 q^{3} + 21 q^{4} - 12 q^{5} + 9 q^{6} - 6 q^{7} + 12 q^{8} + 21 q^{9} - 3 q^{10} + 6 q^{11} - 6 q^{12} + 9 q^{13} + 18 q^{14} + 3 q^{15} + 39 q^{16} - 9 q^{18} + 27 q^{19} - 21 q^{20}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.54480 −1.79945 −0.899724 0.436460i \(-0.856232\pi\)
−0.899724 + 0.436460i \(0.856232\pi\)
\(3\) −3.06453 −1.76931 −0.884654 0.466248i \(-0.845605\pi\)
−0.884654 + 0.466248i \(0.845605\pi\)
\(4\) 4.47602 2.23801
\(5\) −1.00000 −0.447214
\(6\) 7.79863 3.18378
\(7\) −0.261390 −0.0987963 −0.0493981 0.998779i \(-0.515730\pi\)
−0.0493981 + 0.998779i \(0.515730\pi\)
\(8\) −6.30099 −2.22774
\(9\) 6.39135 2.13045
\(10\) 2.54480 0.804737
\(11\) 0.545043 0.164337 0.0821683 0.996618i \(-0.473815\pi\)
0.0821683 + 0.996618i \(0.473815\pi\)
\(12\) −13.7169 −3.95973
\(13\) 5.48254 1.52058 0.760291 0.649582i \(-0.225056\pi\)
0.760291 + 0.649582i \(0.225056\pi\)
\(14\) 0.665187 0.177779
\(15\) 3.06453 0.791259
\(16\) 7.08273 1.77068
\(17\) 0 0
\(18\) −16.2647 −3.83363
\(19\) 4.34857 0.997631 0.498816 0.866708i \(-0.333768\pi\)
0.498816 + 0.866708i \(0.333768\pi\)
\(20\) −4.47602 −1.00087
\(21\) 0.801039 0.174801
\(22\) −1.38703 −0.295715
\(23\) 3.75127 0.782194 0.391097 0.920349i \(-0.372096\pi\)
0.391097 + 0.920349i \(0.372096\pi\)
\(24\) 19.3096 3.94155
\(25\) 1.00000 0.200000
\(26\) −13.9520 −2.73621
\(27\) −10.3929 −2.00012
\(28\) −1.16999 −0.221107
\(29\) 2.69600 0.500634 0.250317 0.968164i \(-0.419465\pi\)
0.250317 + 0.968164i \(0.419465\pi\)
\(30\) −7.79863 −1.42383
\(31\) 8.95269 1.60795 0.803975 0.594663i \(-0.202714\pi\)
0.803975 + 0.594663i \(0.202714\pi\)
\(32\) −5.42218 −0.958514
\(33\) −1.67030 −0.290762
\(34\) 0 0
\(35\) 0.261390 0.0441830
\(36\) 28.6078 4.76797
\(37\) −4.86119 −0.799175 −0.399588 0.916695i \(-0.630847\pi\)
−0.399588 + 0.916695i \(0.630847\pi\)
\(38\) −11.0663 −1.79519
\(39\) −16.8014 −2.69038
\(40\) 6.30099 0.996274
\(41\) −7.76968 −1.21342 −0.606710 0.794923i \(-0.707511\pi\)
−0.606710 + 0.794923i \(0.707511\pi\)
\(42\) −2.03849 −0.314545
\(43\) 2.35019 0.358401 0.179200 0.983813i \(-0.442649\pi\)
0.179200 + 0.983813i \(0.442649\pi\)
\(44\) 2.43963 0.367787
\(45\) −6.39135 −0.952766
\(46\) −9.54625 −1.40752
\(47\) 2.35604 0.343664 0.171832 0.985126i \(-0.445031\pi\)
0.171832 + 0.985126i \(0.445031\pi\)
\(48\) −21.7052 −3.13288
\(49\) −6.93168 −0.990239
\(50\) −2.54480 −0.359889
\(51\) 0 0
\(52\) 24.5400 3.40308
\(53\) −10.8975 −1.49689 −0.748445 0.663197i \(-0.769199\pi\)
−0.748445 + 0.663197i \(0.769199\pi\)
\(54\) 26.4479 3.59910
\(55\) −0.545043 −0.0734936
\(56\) 1.64702 0.220092
\(57\) −13.3263 −1.76512
\(58\) −6.86078 −0.900864
\(59\) 6.23938 0.812298 0.406149 0.913807i \(-0.366871\pi\)
0.406149 + 0.913807i \(0.366871\pi\)
\(60\) 13.7169 1.77085
\(61\) 0.633641 0.0811294 0.0405647 0.999177i \(-0.487084\pi\)
0.0405647 + 0.999177i \(0.487084\pi\)
\(62\) −22.7828 −2.89342
\(63\) −1.67064 −0.210481
\(64\) −0.367091 −0.0458863
\(65\) −5.48254 −0.680025
\(66\) 4.25059 0.523211
\(67\) 8.44378 1.03157 0.515786 0.856717i \(-0.327500\pi\)
0.515786 + 0.856717i \(0.327500\pi\)
\(68\) 0 0
\(69\) −11.4959 −1.38394
\(70\) −0.665187 −0.0795051
\(71\) 5.40706 0.641700 0.320850 0.947130i \(-0.396031\pi\)
0.320850 + 0.947130i \(0.396031\pi\)
\(72\) −40.2718 −4.74608
\(73\) −8.12625 −0.951105 −0.475553 0.879687i \(-0.657752\pi\)
−0.475553 + 0.879687i \(0.657752\pi\)
\(74\) 12.3708 1.43807
\(75\) −3.06453 −0.353862
\(76\) 19.4643 2.23271
\(77\) −0.142469 −0.0162359
\(78\) 42.7563 4.84120
\(79\) −1.73147 −0.194805 −0.0974026 0.995245i \(-0.531053\pi\)
−0.0974026 + 0.995245i \(0.531053\pi\)
\(80\) −7.08273 −0.791873
\(81\) 12.6753 1.40837
\(82\) 19.7723 2.18349
\(83\) −0.107006 −0.0117455 −0.00587273 0.999983i \(-0.501869\pi\)
−0.00587273 + 0.999983i \(0.501869\pi\)
\(84\) 3.58547 0.391207
\(85\) 0 0
\(86\) −5.98077 −0.644923
\(87\) −8.26196 −0.885775
\(88\) −3.43431 −0.366099
\(89\) −16.8773 −1.78899 −0.894497 0.447075i \(-0.852466\pi\)
−0.894497 + 0.447075i \(0.852466\pi\)
\(90\) 16.2647 1.71445
\(91\) −1.43308 −0.150228
\(92\) 16.7908 1.75056
\(93\) −27.4358 −2.84496
\(94\) −5.99566 −0.618405
\(95\) −4.34857 −0.446154
\(96\) 16.6164 1.69591
\(97\) 7.14812 0.725782 0.362891 0.931832i \(-0.381790\pi\)
0.362891 + 0.931832i \(0.381790\pi\)
\(98\) 17.6397 1.78188
\(99\) 3.48356 0.350111
\(100\) 4.47602 0.447602
\(101\) −1.88994 −0.188056 −0.0940281 0.995570i \(-0.529974\pi\)
−0.0940281 + 0.995570i \(0.529974\pi\)
\(102\) 0 0
\(103\) 8.20152 0.808120 0.404060 0.914732i \(-0.367599\pi\)
0.404060 + 0.914732i \(0.367599\pi\)
\(104\) −34.5454 −3.38746
\(105\) −0.801039 −0.0781734
\(106\) 27.7320 2.69357
\(107\) 8.27660 0.800129 0.400065 0.916487i \(-0.368988\pi\)
0.400065 + 0.916487i \(0.368988\pi\)
\(108\) −46.5189 −4.47628
\(109\) 1.38287 0.132455 0.0662276 0.997805i \(-0.478904\pi\)
0.0662276 + 0.997805i \(0.478904\pi\)
\(110\) 1.38703 0.132248
\(111\) 14.8973 1.41399
\(112\) −1.85136 −0.174937
\(113\) 11.1388 1.04785 0.523925 0.851764i \(-0.324467\pi\)
0.523925 + 0.851764i \(0.324467\pi\)
\(114\) 33.9129 3.17624
\(115\) −3.75127 −0.349808
\(116\) 12.0673 1.12042
\(117\) 35.0408 3.23953
\(118\) −15.8780 −1.46169
\(119\) 0 0
\(120\) −19.3096 −1.76272
\(121\) −10.7029 −0.972993
\(122\) −1.61249 −0.145988
\(123\) 23.8104 2.14692
\(124\) 40.0724 3.59861
\(125\) −1.00000 −0.0894427
\(126\) 4.25144 0.378749
\(127\) 14.3543 1.27374 0.636870 0.770971i \(-0.280229\pi\)
0.636870 + 0.770971i \(0.280229\pi\)
\(128\) 11.7785 1.04108
\(129\) −7.20223 −0.634121
\(130\) 13.9520 1.22367
\(131\) −7.43528 −0.649623 −0.324812 0.945779i \(-0.605301\pi\)
−0.324812 + 0.945779i \(0.605301\pi\)
\(132\) −7.47631 −0.650729
\(133\) −1.13668 −0.0985623
\(134\) −21.4878 −1.85626
\(135\) 10.3929 0.894479
\(136\) 0 0
\(137\) 6.86466 0.586488 0.293244 0.956038i \(-0.405265\pi\)
0.293244 + 0.956038i \(0.405265\pi\)
\(138\) 29.2548 2.49033
\(139\) 20.7776 1.76233 0.881167 0.472805i \(-0.156758\pi\)
0.881167 + 0.472805i \(0.156758\pi\)
\(140\) 1.16999 0.0988821
\(141\) −7.22017 −0.608048
\(142\) −13.7599 −1.15471
\(143\) 2.98822 0.249888
\(144\) 45.2682 3.77235
\(145\) −2.69600 −0.223890
\(146\) 20.6797 1.71146
\(147\) 21.2423 1.75204
\(148\) −21.7588 −1.78856
\(149\) 17.6157 1.44313 0.721567 0.692345i \(-0.243422\pi\)
0.721567 + 0.692345i \(0.243422\pi\)
\(150\) 7.79863 0.636755
\(151\) −11.0232 −0.897058 −0.448529 0.893768i \(-0.648052\pi\)
−0.448529 + 0.893768i \(0.648052\pi\)
\(152\) −27.4003 −2.22246
\(153\) 0 0
\(154\) 0.362556 0.0292156
\(155\) −8.95269 −0.719097
\(156\) −75.2035 −6.02110
\(157\) 5.27656 0.421116 0.210558 0.977581i \(-0.432472\pi\)
0.210558 + 0.977581i \(0.432472\pi\)
\(158\) 4.40624 0.350542
\(159\) 33.3958 2.64846
\(160\) 5.42218 0.428661
\(161\) −0.980546 −0.0772779
\(162\) −32.2562 −2.53429
\(163\) −14.0791 −1.10276 −0.551381 0.834253i \(-0.685899\pi\)
−0.551381 + 0.834253i \(0.685899\pi\)
\(164\) −34.7773 −2.71565
\(165\) 1.67030 0.130033
\(166\) 0.272310 0.0211353
\(167\) −13.3430 −1.03251 −0.516255 0.856435i \(-0.672674\pi\)
−0.516255 + 0.856435i \(0.672674\pi\)
\(168\) −5.04734 −0.389411
\(169\) 17.0582 1.31217
\(170\) 0 0
\(171\) 27.7933 2.12540
\(172\) 10.5195 0.802105
\(173\) 5.71831 0.434755 0.217377 0.976088i \(-0.430250\pi\)
0.217377 + 0.976088i \(0.430250\pi\)
\(174\) 21.0251 1.59391
\(175\) −0.261390 −0.0197593
\(176\) 3.86039 0.290988
\(177\) −19.1208 −1.43720
\(178\) 42.9495 3.21920
\(179\) 14.7180 1.10008 0.550038 0.835140i \(-0.314613\pi\)
0.550038 + 0.835140i \(0.314613\pi\)
\(180\) −28.6078 −2.13230
\(181\) 26.3308 1.95715 0.978576 0.205887i \(-0.0660080\pi\)
0.978576 + 0.205887i \(0.0660080\pi\)
\(182\) 3.64691 0.270327
\(183\) −1.94181 −0.143543
\(184\) −23.6367 −1.74252
\(185\) 4.86119 0.357402
\(186\) 69.8187 5.11935
\(187\) 0 0
\(188\) 10.5457 0.769124
\(189\) 2.71661 0.197604
\(190\) 11.0663 0.802831
\(191\) −7.69096 −0.556498 −0.278249 0.960509i \(-0.589754\pi\)
−0.278249 + 0.960509i \(0.589754\pi\)
\(192\) 1.12496 0.0811870
\(193\) 4.56393 0.328519 0.164259 0.986417i \(-0.447477\pi\)
0.164259 + 0.986417i \(0.447477\pi\)
\(194\) −18.1906 −1.30601
\(195\) 16.8014 1.20317
\(196\) −31.0263 −2.21617
\(197\) 20.5420 1.46356 0.731779 0.681542i \(-0.238690\pi\)
0.731779 + 0.681542i \(0.238690\pi\)
\(198\) −8.86498 −0.630007
\(199\) −22.5698 −1.59993 −0.799967 0.600044i \(-0.795150\pi\)
−0.799967 + 0.600044i \(0.795150\pi\)
\(200\) −6.30099 −0.445547
\(201\) −25.8762 −1.82517
\(202\) 4.80953 0.338397
\(203\) −0.704707 −0.0494608
\(204\) 0 0
\(205\) 7.76968 0.542658
\(206\) −20.8713 −1.45417
\(207\) 23.9757 1.66643
\(208\) 38.8314 2.69247
\(209\) 2.37016 0.163947
\(210\) 2.03849 0.140669
\(211\) −15.3824 −1.05897 −0.529485 0.848320i \(-0.677615\pi\)
−0.529485 + 0.848320i \(0.677615\pi\)
\(212\) −48.7775 −3.35006
\(213\) −16.5701 −1.13537
\(214\) −21.0623 −1.43979
\(215\) −2.35019 −0.160282
\(216\) 65.4856 4.45573
\(217\) −2.34015 −0.158860
\(218\) −3.51914 −0.238346
\(219\) 24.9031 1.68280
\(220\) −2.43963 −0.164480
\(221\) 0 0
\(222\) −37.9106 −2.54439
\(223\) 23.5213 1.57510 0.787552 0.616248i \(-0.211348\pi\)
0.787552 + 0.616248i \(0.211348\pi\)
\(224\) 1.41730 0.0946977
\(225\) 6.39135 0.426090
\(226\) −28.3460 −1.88555
\(227\) −18.9590 −1.25835 −0.629177 0.777262i \(-0.716608\pi\)
−0.629177 + 0.777262i \(0.716608\pi\)
\(228\) −59.6490 −3.95035
\(229\) −22.3030 −1.47382 −0.736912 0.675989i \(-0.763717\pi\)
−0.736912 + 0.675989i \(0.763717\pi\)
\(230\) 9.54625 0.629461
\(231\) 0.436601 0.0287262
\(232\) −16.9874 −1.11528
\(233\) −10.9844 −0.719611 −0.359805 0.933027i \(-0.617157\pi\)
−0.359805 + 0.933027i \(0.617157\pi\)
\(234\) −89.1720 −5.82936
\(235\) −2.35604 −0.153691
\(236\) 27.9276 1.81793
\(237\) 5.30613 0.344670
\(238\) 0 0
\(239\) −2.54775 −0.164800 −0.0824002 0.996599i \(-0.526259\pi\)
−0.0824002 + 0.996599i \(0.526259\pi\)
\(240\) 21.7052 1.40107
\(241\) −7.02833 −0.452734 −0.226367 0.974042i \(-0.572685\pi\)
−0.226367 + 0.974042i \(0.572685\pi\)
\(242\) 27.2368 1.75085
\(243\) −7.66521 −0.491724
\(244\) 2.83619 0.181568
\(245\) 6.93168 0.442848
\(246\) −60.5929 −3.86326
\(247\) 23.8412 1.51698
\(248\) −56.4108 −3.58209
\(249\) 0.327924 0.0207813
\(250\) 2.54480 0.160947
\(251\) −26.3557 −1.66356 −0.831779 0.555106i \(-0.812678\pi\)
−0.831779 + 0.555106i \(0.812678\pi\)
\(252\) −7.47781 −0.471058
\(253\) 2.04461 0.128543
\(254\) −36.5289 −2.29203
\(255\) 0 0
\(256\) −29.2398 −1.82749
\(257\) 18.4413 1.15034 0.575168 0.818035i \(-0.304937\pi\)
0.575168 + 0.818035i \(0.304937\pi\)
\(258\) 18.3283 1.14107
\(259\) 1.27067 0.0789555
\(260\) −24.5400 −1.52190
\(261\) 17.2311 1.06658
\(262\) 18.9213 1.16896
\(263\) −13.6689 −0.842862 −0.421431 0.906860i \(-0.638472\pi\)
−0.421431 + 0.906860i \(0.638472\pi\)
\(264\) 10.5246 0.647741
\(265\) 10.8975 0.669429
\(266\) 2.89262 0.177358
\(267\) 51.7211 3.16528
\(268\) 37.7946 2.30867
\(269\) 20.9142 1.27516 0.637580 0.770384i \(-0.279936\pi\)
0.637580 + 0.770384i \(0.279936\pi\)
\(270\) −26.4479 −1.60957
\(271\) −4.92778 −0.299341 −0.149671 0.988736i \(-0.547821\pi\)
−0.149671 + 0.988736i \(0.547821\pi\)
\(272\) 0 0
\(273\) 4.39173 0.265799
\(274\) −17.4692 −1.05535
\(275\) 0.545043 0.0328673
\(276\) −51.4559 −3.09728
\(277\) 23.6010 1.41805 0.709024 0.705185i \(-0.249136\pi\)
0.709024 + 0.705185i \(0.249136\pi\)
\(278\) −52.8749 −3.17123
\(279\) 57.2198 3.42566
\(280\) −1.64702 −0.0984281
\(281\) −2.81808 −0.168112 −0.0840562 0.996461i \(-0.526788\pi\)
−0.0840562 + 0.996461i \(0.526788\pi\)
\(282\) 18.3739 1.09415
\(283\) −11.7242 −0.696931 −0.348466 0.937322i \(-0.613297\pi\)
−0.348466 + 0.937322i \(0.613297\pi\)
\(284\) 24.2021 1.43613
\(285\) 13.3263 0.789384
\(286\) −7.60443 −0.449660
\(287\) 2.03092 0.119881
\(288\) −34.6550 −2.04207
\(289\) 0 0
\(290\) 6.86078 0.402879
\(291\) −21.9056 −1.28413
\(292\) −36.3733 −2.12858
\(293\) −25.8626 −1.51091 −0.755453 0.655202i \(-0.772583\pi\)
−0.755453 + 0.655202i \(0.772583\pi\)
\(294\) −54.0576 −3.15270
\(295\) −6.23938 −0.363271
\(296\) 30.6303 1.78035
\(297\) −5.66458 −0.328692
\(298\) −44.8284 −2.59684
\(299\) 20.5665 1.18939
\(300\) −13.7169 −0.791946
\(301\) −0.614317 −0.0354087
\(302\) 28.0520 1.61421
\(303\) 5.79179 0.332729
\(304\) 30.7998 1.76649
\(305\) −0.633641 −0.0362822
\(306\) 0 0
\(307\) 5.85905 0.334393 0.167197 0.985924i \(-0.446529\pi\)
0.167197 + 0.985924i \(0.446529\pi\)
\(308\) −0.637695 −0.0363360
\(309\) −25.1338 −1.42981
\(310\) 22.7828 1.29398
\(311\) 10.6794 0.605576 0.302788 0.953058i \(-0.402083\pi\)
0.302788 + 0.953058i \(0.402083\pi\)
\(312\) 105.866 5.99346
\(313\) −24.3627 −1.37706 −0.688530 0.725208i \(-0.741744\pi\)
−0.688530 + 0.725208i \(0.741744\pi\)
\(314\) −13.4278 −0.757775
\(315\) 1.67064 0.0941298
\(316\) −7.75008 −0.435976
\(317\) −7.36660 −0.413750 −0.206875 0.978367i \(-0.566329\pi\)
−0.206875 + 0.978367i \(0.566329\pi\)
\(318\) −84.9857 −4.76576
\(319\) 1.46943 0.0822725
\(320\) 0.367091 0.0205210
\(321\) −25.3639 −1.41567
\(322\) 2.49530 0.139057
\(323\) 0 0
\(324\) 56.7350 3.15195
\(325\) 5.48254 0.304117
\(326\) 35.8286 1.98436
\(327\) −4.23786 −0.234354
\(328\) 48.9567 2.70318
\(329\) −0.615847 −0.0339527
\(330\) −4.25059 −0.233987
\(331\) −0.194810 −0.0107077 −0.00535385 0.999986i \(-0.501704\pi\)
−0.00535385 + 0.999986i \(0.501704\pi\)
\(332\) −0.478962 −0.0262865
\(333\) −31.0696 −1.70260
\(334\) 33.9553 1.85795
\(335\) −8.44378 −0.461333
\(336\) 5.67354 0.309517
\(337\) 2.27890 0.124140 0.0620699 0.998072i \(-0.480230\pi\)
0.0620699 + 0.998072i \(0.480230\pi\)
\(338\) −43.4099 −2.36119
\(339\) −34.1352 −1.85397
\(340\) 0 0
\(341\) 4.87960 0.264245
\(342\) −70.7284 −3.82455
\(343\) 3.64161 0.196628
\(344\) −14.8085 −0.798422
\(345\) 11.4959 0.618918
\(346\) −14.5520 −0.782318
\(347\) 18.1468 0.974170 0.487085 0.873355i \(-0.338060\pi\)
0.487085 + 0.873355i \(0.338060\pi\)
\(348\) −36.9807 −1.98238
\(349\) 21.3369 1.14214 0.571068 0.820903i \(-0.306529\pi\)
0.571068 + 0.820903i \(0.306529\pi\)
\(350\) 0.665187 0.0355557
\(351\) −56.9795 −3.04134
\(352\) −2.95532 −0.157519
\(353\) −0.596667 −0.0317574 −0.0158787 0.999874i \(-0.505055\pi\)
−0.0158787 + 0.999874i \(0.505055\pi\)
\(354\) 48.6586 2.58617
\(355\) −5.40706 −0.286977
\(356\) −75.5433 −4.00379
\(357\) 0 0
\(358\) −37.4544 −1.97953
\(359\) 6.66904 0.351979 0.175989 0.984392i \(-0.443688\pi\)
0.175989 + 0.984392i \(0.443688\pi\)
\(360\) 40.2718 2.12251
\(361\) −0.0898986 −0.00473151
\(362\) −67.0066 −3.52179
\(363\) 32.7995 1.72153
\(364\) −6.41451 −0.336212
\(365\) 8.12625 0.425347
\(366\) 4.94153 0.258298
\(367\) −9.36845 −0.489029 −0.244514 0.969646i \(-0.578629\pi\)
−0.244514 + 0.969646i \(0.578629\pi\)
\(368\) 26.5692 1.38502
\(369\) −49.6588 −2.58513
\(370\) −12.3708 −0.643126
\(371\) 2.84851 0.147887
\(372\) −122.803 −6.36705
\(373\) −19.2804 −0.998301 −0.499151 0.866515i \(-0.666355\pi\)
−0.499151 + 0.866515i \(0.666355\pi\)
\(374\) 0 0
\(375\) 3.06453 0.158252
\(376\) −14.8454 −0.765593
\(377\) 14.7809 0.761255
\(378\) −6.91322 −0.355578
\(379\) 35.6049 1.82890 0.914452 0.404695i \(-0.132622\pi\)
0.914452 + 0.404695i \(0.132622\pi\)
\(380\) −19.4643 −0.998498
\(381\) −43.9893 −2.25364
\(382\) 19.5720 1.00139
\(383\) 8.31885 0.425074 0.212537 0.977153i \(-0.431827\pi\)
0.212537 + 0.977153i \(0.431827\pi\)
\(384\) −36.0957 −1.84200
\(385\) 0.142469 0.00726089
\(386\) −11.6143 −0.591153
\(387\) 15.0209 0.763555
\(388\) 31.9952 1.62431
\(389\) 2.79890 0.141910 0.0709550 0.997480i \(-0.477395\pi\)
0.0709550 + 0.997480i \(0.477395\pi\)
\(390\) −42.7563 −2.16505
\(391\) 0 0
\(392\) 43.6764 2.20599
\(393\) 22.7856 1.14938
\(394\) −52.2754 −2.63360
\(395\) 1.73147 0.0871195
\(396\) 15.5925 0.783553
\(397\) −6.88625 −0.345611 −0.172805 0.984956i \(-0.555283\pi\)
−0.172805 + 0.984956i \(0.555283\pi\)
\(398\) 57.4358 2.87900
\(399\) 3.48338 0.174387
\(400\) 7.08273 0.354137
\(401\) 10.2317 0.510949 0.255475 0.966816i \(-0.417768\pi\)
0.255475 + 0.966816i \(0.417768\pi\)
\(402\) 65.8499 3.28430
\(403\) 49.0835 2.44502
\(404\) −8.45942 −0.420872
\(405\) −12.6753 −0.629842
\(406\) 1.79334 0.0890020
\(407\) −2.64956 −0.131334
\(408\) 0 0
\(409\) −3.30625 −0.163484 −0.0817419 0.996654i \(-0.526048\pi\)
−0.0817419 + 0.996654i \(0.526048\pi\)
\(410\) −19.7723 −0.976485
\(411\) −21.0370 −1.03768
\(412\) 36.7102 1.80858
\(413\) −1.63091 −0.0802520
\(414\) −61.0134 −2.99865
\(415\) 0.107006 0.00525273
\(416\) −29.7273 −1.45750
\(417\) −63.6737 −3.11811
\(418\) −6.03159 −0.295015
\(419\) −2.45289 −0.119832 −0.0599159 0.998203i \(-0.519083\pi\)
−0.0599159 + 0.998203i \(0.519083\pi\)
\(420\) −3.58547 −0.174953
\(421\) 30.8040 1.50130 0.750648 0.660702i \(-0.229741\pi\)
0.750648 + 0.660702i \(0.229741\pi\)
\(422\) 39.1452 1.90556
\(423\) 15.0583 0.732159
\(424\) 68.6652 3.33468
\(425\) 0 0
\(426\) 42.1677 2.04303
\(427\) −0.165628 −0.00801528
\(428\) 37.0462 1.79070
\(429\) −9.15750 −0.442128
\(430\) 5.98077 0.288418
\(431\) 26.0142 1.25306 0.626530 0.779397i \(-0.284474\pi\)
0.626530 + 0.779397i \(0.284474\pi\)
\(432\) −73.6101 −3.54157
\(433\) 2.26911 0.109046 0.0545232 0.998513i \(-0.482636\pi\)
0.0545232 + 0.998513i \(0.482636\pi\)
\(434\) 5.95521 0.285859
\(435\) 8.26196 0.396131
\(436\) 6.18977 0.296436
\(437\) 16.3127 0.780342
\(438\) −63.3736 −3.02811
\(439\) 4.19666 0.200296 0.100148 0.994973i \(-0.468068\pi\)
0.100148 + 0.994973i \(0.468068\pi\)
\(440\) 3.43431 0.163724
\(441\) −44.3028 −2.10966
\(442\) 0 0
\(443\) 3.35324 0.159317 0.0796586 0.996822i \(-0.474617\pi\)
0.0796586 + 0.996822i \(0.474617\pi\)
\(444\) 66.6805 3.16452
\(445\) 16.8773 0.800062
\(446\) −59.8571 −2.83432
\(447\) −53.9838 −2.55335
\(448\) 0.0959539 0.00453340
\(449\) 16.4196 0.774888 0.387444 0.921893i \(-0.373358\pi\)
0.387444 + 0.921893i \(0.373358\pi\)
\(450\) −16.2647 −0.766727
\(451\) −4.23481 −0.199410
\(452\) 49.8575 2.34510
\(453\) 33.7810 1.58717
\(454\) 48.2469 2.26434
\(455\) 1.43308 0.0671840
\(456\) 83.9691 3.93222
\(457\) 8.28442 0.387529 0.193764 0.981048i \(-0.437930\pi\)
0.193764 + 0.981048i \(0.437930\pi\)
\(458\) 56.7568 2.65207
\(459\) 0 0
\(460\) −16.7908 −0.782874
\(461\) 40.2762 1.87585 0.937925 0.346837i \(-0.112744\pi\)
0.937925 + 0.346837i \(0.112744\pi\)
\(462\) −1.11106 −0.0516913
\(463\) −22.3596 −1.03914 −0.519568 0.854429i \(-0.673907\pi\)
−0.519568 + 0.854429i \(0.673907\pi\)
\(464\) 19.0950 0.886464
\(465\) 27.4358 1.27230
\(466\) 27.9531 1.29490
\(467\) 30.4655 1.40977 0.704887 0.709320i \(-0.250998\pi\)
0.704887 + 0.709320i \(0.250998\pi\)
\(468\) 156.844 7.25010
\(469\) −2.20712 −0.101916
\(470\) 5.99566 0.276559
\(471\) −16.1702 −0.745083
\(472\) −39.3142 −1.80958
\(473\) 1.28096 0.0588984
\(474\) −13.5031 −0.620216
\(475\) 4.34857 0.199526
\(476\) 0 0
\(477\) −69.6499 −3.18905
\(478\) 6.48353 0.296550
\(479\) −3.49412 −0.159650 −0.0798252 0.996809i \(-0.525436\pi\)
−0.0798252 + 0.996809i \(0.525436\pi\)
\(480\) −16.6164 −0.758433
\(481\) −26.6517 −1.21521
\(482\) 17.8857 0.814671
\(483\) 3.00492 0.136728
\(484\) −47.9065 −2.17757
\(485\) −7.14812 −0.324580
\(486\) 19.5065 0.884831
\(487\) 27.3202 1.23800 0.618998 0.785392i \(-0.287539\pi\)
0.618998 + 0.785392i \(0.287539\pi\)
\(488\) −3.99256 −0.180735
\(489\) 43.1459 1.95113
\(490\) −17.6397 −0.796883
\(491\) 23.2568 1.04956 0.524782 0.851237i \(-0.324147\pi\)
0.524782 + 0.851237i \(0.324147\pi\)
\(492\) 106.576 4.80482
\(493\) 0 0
\(494\) −60.6712 −2.72973
\(495\) −3.48356 −0.156574
\(496\) 63.4095 2.84717
\(497\) −1.41335 −0.0633976
\(498\) −0.834501 −0.0373949
\(499\) 13.2790 0.594449 0.297225 0.954808i \(-0.403939\pi\)
0.297225 + 0.954808i \(0.403939\pi\)
\(500\) −4.47602 −0.200174
\(501\) 40.8900 1.82683
\(502\) 67.0701 2.99349
\(503\) 9.94397 0.443380 0.221690 0.975117i \(-0.428843\pi\)
0.221690 + 0.975117i \(0.428843\pi\)
\(504\) 10.5267 0.468895
\(505\) 1.88994 0.0841013
\(506\) −5.20312 −0.231307
\(507\) −52.2755 −2.32164
\(508\) 64.2503 2.85064
\(509\) 17.4610 0.773943 0.386972 0.922092i \(-0.373521\pi\)
0.386972 + 0.922092i \(0.373521\pi\)
\(510\) 0 0
\(511\) 2.12412 0.0939657
\(512\) 50.8526 2.24739
\(513\) −45.1943 −1.99538
\(514\) −46.9295 −2.06997
\(515\) −8.20152 −0.361402
\(516\) −32.2374 −1.41917
\(517\) 1.28414 0.0564766
\(518\) −3.23360 −0.142076
\(519\) −17.5239 −0.769215
\(520\) 34.5454 1.51492
\(521\) −21.6384 −0.947994 −0.473997 0.880526i \(-0.657189\pi\)
−0.473997 + 0.880526i \(0.657189\pi\)
\(522\) −43.8496 −1.91925
\(523\) −35.4255 −1.54905 −0.774525 0.632544i \(-0.782011\pi\)
−0.774525 + 0.632544i \(0.782011\pi\)
\(524\) −33.2805 −1.45386
\(525\) 0.801039 0.0349602
\(526\) 34.7847 1.51669
\(527\) 0 0
\(528\) −11.8303 −0.514848
\(529\) −8.92796 −0.388172
\(530\) −27.7320 −1.20460
\(531\) 39.8781 1.73056
\(532\) −5.08779 −0.220583
\(533\) −42.5976 −1.84511
\(534\) −131.620 −5.69575
\(535\) −8.27660 −0.357829
\(536\) −53.2042 −2.29807
\(537\) −45.1038 −1.94637
\(538\) −53.2225 −2.29458
\(539\) −3.77806 −0.162733
\(540\) 46.5189 2.00185
\(541\) −2.53781 −0.109109 −0.0545544 0.998511i \(-0.517374\pi\)
−0.0545544 + 0.998511i \(0.517374\pi\)
\(542\) 12.5402 0.538649
\(543\) −80.6915 −3.46280
\(544\) 0 0
\(545\) −1.38287 −0.0592357
\(546\) −11.1761 −0.478292
\(547\) −21.7700 −0.930820 −0.465410 0.885095i \(-0.654093\pi\)
−0.465410 + 0.885095i \(0.654093\pi\)
\(548\) 30.7264 1.31257
\(549\) 4.04982 0.172842
\(550\) −1.38703 −0.0591431
\(551\) 11.7237 0.499448
\(552\) 72.4355 3.08306
\(553\) 0.452589 0.0192460
\(554\) −60.0599 −2.55170
\(555\) −14.8973 −0.632354
\(556\) 93.0011 3.94412
\(557\) −9.99564 −0.423529 −0.211764 0.977321i \(-0.567921\pi\)
−0.211764 + 0.977321i \(0.567921\pi\)
\(558\) −145.613 −6.16429
\(559\) 12.8850 0.544978
\(560\) 1.85136 0.0782341
\(561\) 0 0
\(562\) 7.17145 0.302509
\(563\) −44.8779 −1.89138 −0.945689 0.325072i \(-0.894611\pi\)
−0.945689 + 0.325072i \(0.894611\pi\)
\(564\) −32.3176 −1.36082
\(565\) −11.1388 −0.468613
\(566\) 29.8358 1.25409
\(567\) −3.31321 −0.139142
\(568\) −34.0698 −1.42954
\(569\) 26.9590 1.13018 0.565091 0.825029i \(-0.308841\pi\)
0.565091 + 0.825029i \(0.308841\pi\)
\(570\) −33.9129 −1.42046
\(571\) 15.1296 0.633155 0.316577 0.948567i \(-0.397466\pi\)
0.316577 + 0.948567i \(0.397466\pi\)
\(572\) 13.3753 0.559251
\(573\) 23.5692 0.984616
\(574\) −5.16829 −0.215720
\(575\) 3.75127 0.156439
\(576\) −2.34620 −0.0977585
\(577\) −19.0447 −0.792839 −0.396420 0.918069i \(-0.629747\pi\)
−0.396420 + 0.918069i \(0.629747\pi\)
\(578\) 0 0
\(579\) −13.9863 −0.581251
\(580\) −12.0673 −0.501069
\(581\) 0.0279704 0.00116041
\(582\) 55.7456 2.31073
\(583\) −5.93962 −0.245994
\(584\) 51.2034 2.11881
\(585\) −35.0408 −1.44876
\(586\) 65.8151 2.71880
\(587\) 19.7756 0.816227 0.408114 0.912931i \(-0.366187\pi\)
0.408114 + 0.912931i \(0.366187\pi\)
\(588\) 95.0812 3.92108
\(589\) 38.9314 1.60414
\(590\) 15.8780 0.653686
\(591\) −62.9516 −2.58948
\(592\) −34.4305 −1.41509
\(593\) −38.1146 −1.56518 −0.782590 0.622538i \(-0.786102\pi\)
−0.782590 + 0.622538i \(0.786102\pi\)
\(594\) 14.4152 0.591465
\(595\) 0 0
\(596\) 78.8482 3.22975
\(597\) 69.1660 2.83078
\(598\) −52.3377 −2.14025
\(599\) −26.2354 −1.07195 −0.535974 0.844234i \(-0.680056\pi\)
−0.535974 + 0.844234i \(0.680056\pi\)
\(600\) 19.3096 0.788310
\(601\) 34.9489 1.42560 0.712798 0.701369i \(-0.247428\pi\)
0.712798 + 0.701369i \(0.247428\pi\)
\(602\) 1.56332 0.0637160
\(603\) 53.9672 2.19771
\(604\) −49.3402 −2.00763
\(605\) 10.7029 0.435136
\(606\) −14.7390 −0.598729
\(607\) 2.52460 0.102470 0.0512352 0.998687i \(-0.483684\pi\)
0.0512352 + 0.998687i \(0.483684\pi\)
\(608\) −23.5787 −0.956244
\(609\) 2.15960 0.0875113
\(610\) 1.61249 0.0652878
\(611\) 12.9171 0.522570
\(612\) 0 0
\(613\) −10.2713 −0.414852 −0.207426 0.978251i \(-0.566509\pi\)
−0.207426 + 0.978251i \(0.566509\pi\)
\(614\) −14.9101 −0.601723
\(615\) −23.8104 −0.960130
\(616\) 0.897696 0.0361692
\(617\) 29.7313 1.19694 0.598469 0.801146i \(-0.295776\pi\)
0.598469 + 0.801146i \(0.295776\pi\)
\(618\) 63.9606 2.57287
\(619\) −9.54519 −0.383653 −0.191827 0.981429i \(-0.561441\pi\)
−0.191827 + 0.981429i \(0.561441\pi\)
\(620\) −40.0724 −1.60935
\(621\) −38.9866 −1.56448
\(622\) −27.1771 −1.08970
\(623\) 4.41157 0.176746
\(624\) −119.000 −4.76381
\(625\) 1.00000 0.0400000
\(626\) 61.9982 2.47795
\(627\) −7.26343 −0.290074
\(628\) 23.6180 0.942461
\(629\) 0 0
\(630\) −4.25144 −0.169382
\(631\) −25.5337 −1.01648 −0.508240 0.861215i \(-0.669704\pi\)
−0.508240 + 0.861215i \(0.669704\pi\)
\(632\) 10.9100 0.433975
\(633\) 47.1399 1.87364
\(634\) 18.7466 0.744521
\(635\) −14.3543 −0.569634
\(636\) 149.480 5.92728
\(637\) −38.0032 −1.50574
\(638\) −3.73942 −0.148045
\(639\) 34.5584 1.36711
\(640\) −11.7785 −0.465587
\(641\) −15.0694 −0.595206 −0.297603 0.954690i \(-0.596187\pi\)
−0.297603 + 0.954690i \(0.596187\pi\)
\(642\) 64.5461 2.54743
\(643\) 35.8483 1.41372 0.706860 0.707353i \(-0.250111\pi\)
0.706860 + 0.707353i \(0.250111\pi\)
\(644\) −4.38895 −0.172949
\(645\) 7.20223 0.283588
\(646\) 0 0
\(647\) 9.80515 0.385480 0.192740 0.981250i \(-0.438263\pi\)
0.192740 + 0.981250i \(0.438263\pi\)
\(648\) −79.8671 −3.13747
\(649\) 3.40073 0.133490
\(650\) −13.9520 −0.547242
\(651\) 7.17145 0.281071
\(652\) −63.0185 −2.46800
\(653\) 14.3262 0.560627 0.280314 0.959908i \(-0.409562\pi\)
0.280314 + 0.959908i \(0.409562\pi\)
\(654\) 10.7845 0.421708
\(655\) 7.43528 0.290520
\(656\) −55.0306 −2.14858
\(657\) −51.9377 −2.02628
\(658\) 1.56721 0.0610962
\(659\) 9.77178 0.380655 0.190327 0.981721i \(-0.439045\pi\)
0.190327 + 0.981721i \(0.439045\pi\)
\(660\) 7.47631 0.291015
\(661\) −14.3439 −0.557914 −0.278957 0.960304i \(-0.589989\pi\)
−0.278957 + 0.960304i \(0.589989\pi\)
\(662\) 0.495752 0.0192679
\(663\) 0 0
\(664\) 0.674245 0.0261658
\(665\) 1.13668 0.0440784
\(666\) 79.0660 3.06374
\(667\) 10.1134 0.391593
\(668\) −59.7235 −2.31077
\(669\) −72.0818 −2.78684
\(670\) 21.4878 0.830145
\(671\) 0.345362 0.0133325
\(672\) −4.34337 −0.167549
\(673\) 35.5082 1.36874 0.684370 0.729135i \(-0.260078\pi\)
0.684370 + 0.729135i \(0.260078\pi\)
\(674\) −5.79936 −0.223383
\(675\) −10.3929 −0.400023
\(676\) 76.3531 2.93666
\(677\) 17.8589 0.686372 0.343186 0.939267i \(-0.388494\pi\)
0.343186 + 0.939267i \(0.388494\pi\)
\(678\) 86.8673 3.33612
\(679\) −1.86845 −0.0717045
\(680\) 0 0
\(681\) 58.1005 2.22641
\(682\) −12.4176 −0.475495
\(683\) 2.40521 0.0920328 0.0460164 0.998941i \(-0.485347\pi\)
0.0460164 + 0.998941i \(0.485347\pi\)
\(684\) 124.403 4.75668
\(685\) −6.86466 −0.262285
\(686\) −9.26717 −0.353822
\(687\) 68.3483 2.60765
\(688\) 16.6458 0.634614
\(689\) −59.7461 −2.27614
\(690\) −29.2548 −1.11371
\(691\) 23.8153 0.905976 0.452988 0.891517i \(-0.350358\pi\)
0.452988 + 0.891517i \(0.350358\pi\)
\(692\) 25.5953 0.972986
\(693\) −0.910570 −0.0345897
\(694\) −46.1800 −1.75297
\(695\) −20.7776 −0.788140
\(696\) 52.0585 1.97327
\(697\) 0 0
\(698\) −54.2981 −2.05521
\(699\) 33.6620 1.27321
\(700\) −1.16999 −0.0442214
\(701\) 16.5171 0.623843 0.311921 0.950108i \(-0.399027\pi\)
0.311921 + 0.950108i \(0.399027\pi\)
\(702\) 145.002 5.47273
\(703\) −21.1393 −0.797282
\(704\) −0.200080 −0.00754081
\(705\) 7.22017 0.271927
\(706\) 1.51840 0.0571457
\(707\) 0.494013 0.0185793
\(708\) −85.5850 −3.21648
\(709\) 7.88357 0.296074 0.148037 0.988982i \(-0.452705\pi\)
0.148037 + 0.988982i \(0.452705\pi\)
\(710\) 13.7599 0.516400
\(711\) −11.0664 −0.415023
\(712\) 106.344 3.98540
\(713\) 33.5840 1.25773
\(714\) 0 0
\(715\) −2.98822 −0.111753
\(716\) 65.8782 2.46198
\(717\) 7.80767 0.291583
\(718\) −16.9714 −0.633367
\(719\) 15.4100 0.574695 0.287347 0.957826i \(-0.407227\pi\)
0.287347 + 0.957826i \(0.407227\pi\)
\(720\) −45.2682 −1.68705
\(721\) −2.14380 −0.0798393
\(722\) 0.228774 0.00851410
\(723\) 21.5385 0.801026
\(724\) 117.857 4.38013
\(725\) 2.69600 0.100127
\(726\) −83.4682 −3.09779
\(727\) −31.1724 −1.15612 −0.578060 0.815994i \(-0.696190\pi\)
−0.578060 + 0.815994i \(0.696190\pi\)
\(728\) 9.02984 0.334668
\(729\) −14.5357 −0.538359
\(730\) −20.6797 −0.765390
\(731\) 0 0
\(732\) −8.69159 −0.321251
\(733\) −51.2681 −1.89363 −0.946816 0.321776i \(-0.895720\pi\)
−0.946816 + 0.321776i \(0.895720\pi\)
\(734\) 23.8409 0.879982
\(735\) −21.2423 −0.783535
\(736\) −20.3401 −0.749744
\(737\) 4.60223 0.169525
\(738\) 126.372 4.65181
\(739\) 4.59844 0.169156 0.0845782 0.996417i \(-0.473046\pi\)
0.0845782 + 0.996417i \(0.473046\pi\)
\(740\) 21.7588 0.799869
\(741\) −73.0622 −2.68401
\(742\) −7.24889 −0.266115
\(743\) −23.0541 −0.845775 −0.422887 0.906182i \(-0.638983\pi\)
−0.422887 + 0.906182i \(0.638983\pi\)
\(744\) 172.873 6.33782
\(745\) −17.6157 −0.645389
\(746\) 49.0648 1.79639
\(747\) −0.683914 −0.0250231
\(748\) 0 0
\(749\) −2.16342 −0.0790498
\(750\) −7.79863 −0.284766
\(751\) 0.480334 0.0175276 0.00876382 0.999962i \(-0.497210\pi\)
0.00876382 + 0.999962i \(0.497210\pi\)
\(752\) 16.6872 0.608520
\(753\) 80.7680 2.94335
\(754\) −37.6145 −1.36984
\(755\) 11.0232 0.401176
\(756\) 12.1596 0.442240
\(757\) −27.2363 −0.989919 −0.494959 0.868916i \(-0.664817\pi\)
−0.494959 + 0.868916i \(0.664817\pi\)
\(758\) −90.6076 −3.29102
\(759\) −6.26576 −0.227433
\(760\) 27.4003 0.993914
\(761\) 46.2606 1.67695 0.838473 0.544943i \(-0.183449\pi\)
0.838473 + 0.544943i \(0.183449\pi\)
\(762\) 111.944 4.05530
\(763\) −0.361470 −0.0130861
\(764\) −34.4249 −1.24545
\(765\) 0 0
\(766\) −21.1698 −0.764898
\(767\) 34.2076 1.23517
\(768\) 89.6064 3.23339
\(769\) 1.59752 0.0576081 0.0288041 0.999585i \(-0.490830\pi\)
0.0288041 + 0.999585i \(0.490830\pi\)
\(770\) −0.362556 −0.0130656
\(771\) −56.5139 −2.03530
\(772\) 20.4283 0.735229
\(773\) −0.694799 −0.0249902 −0.0124951 0.999922i \(-0.503977\pi\)
−0.0124951 + 0.999922i \(0.503977\pi\)
\(774\) −38.2252 −1.37398
\(775\) 8.95269 0.321590
\(776\) −45.0402 −1.61685
\(777\) −3.89400 −0.139697
\(778\) −7.12266 −0.255360
\(779\) −33.7871 −1.21055
\(780\) 75.2035 2.69272
\(781\) 2.94708 0.105455
\(782\) 0 0
\(783\) −28.0192 −1.00133
\(784\) −49.0952 −1.75340
\(785\) −5.27656 −0.188329
\(786\) −57.9850 −2.06825
\(787\) −40.0524 −1.42771 −0.713857 0.700292i \(-0.753053\pi\)
−0.713857 + 0.700292i \(0.753053\pi\)
\(788\) 91.9465 3.27546
\(789\) 41.8889 1.49128
\(790\) −4.40624 −0.156767
\(791\) −2.91157 −0.103524
\(792\) −21.9499 −0.779955
\(793\) 3.47396 0.123364
\(794\) 17.5241 0.621909
\(795\) −33.3958 −1.18443
\(796\) −101.023 −3.58067
\(797\) −2.90280 −0.102822 −0.0514112 0.998678i \(-0.516372\pi\)
−0.0514112 + 0.998678i \(0.516372\pi\)
\(798\) −8.86451 −0.313800
\(799\) 0 0
\(800\) −5.42218 −0.191703
\(801\) −107.869 −3.81136
\(802\) −26.0378 −0.919426
\(803\) −4.42916 −0.156301
\(804\) −115.823 −4.08475
\(805\) 0.980546 0.0345597
\(806\) −124.908 −4.39969
\(807\) −64.0922 −2.25615
\(808\) 11.9085 0.418940
\(809\) 12.6728 0.445551 0.222775 0.974870i \(-0.428488\pi\)
0.222775 + 0.974870i \(0.428488\pi\)
\(810\) 32.2562 1.13337
\(811\) −11.4213 −0.401055 −0.200528 0.979688i \(-0.564266\pi\)
−0.200528 + 0.979688i \(0.564266\pi\)
\(812\) −3.15429 −0.110694
\(813\) 15.1013 0.529627
\(814\) 6.74261 0.236328
\(815\) 14.0791 0.493171
\(816\) 0 0
\(817\) 10.2200 0.357552
\(818\) 8.41376 0.294180
\(819\) −9.15934 −0.320053
\(820\) 34.7773 1.21448
\(821\) 25.1443 0.877543 0.438771 0.898599i \(-0.355414\pi\)
0.438771 + 0.898599i \(0.355414\pi\)
\(822\) 53.5349 1.86725
\(823\) 3.15241 0.109886 0.0549430 0.998489i \(-0.482502\pi\)
0.0549430 + 0.998489i \(0.482502\pi\)
\(824\) −51.6777 −1.80028
\(825\) −1.67030 −0.0581524
\(826\) 4.15035 0.144409
\(827\) 51.5648 1.79308 0.896542 0.442959i \(-0.146071\pi\)
0.896542 + 0.442959i \(0.146071\pi\)
\(828\) 107.316 3.72948
\(829\) −23.5779 −0.818896 −0.409448 0.912334i \(-0.634279\pi\)
−0.409448 + 0.912334i \(0.634279\pi\)
\(830\) −0.272310 −0.00945200
\(831\) −72.3260 −2.50896
\(832\) −2.01259 −0.0697740
\(833\) 0 0
\(834\) 162.037 5.61088
\(835\) 13.3430 0.461753
\(836\) 10.6089 0.366916
\(837\) −93.0444 −3.21609
\(838\) 6.24213 0.215631
\(839\) −3.47286 −0.119896 −0.0599482 0.998201i \(-0.519094\pi\)
−0.0599482 + 0.998201i \(0.519094\pi\)
\(840\) 5.04734 0.174150
\(841\) −21.7316 −0.749366
\(842\) −78.3902 −2.70150
\(843\) 8.63608 0.297443
\(844\) −68.8520 −2.36999
\(845\) −17.0582 −0.586821
\(846\) −38.3204 −1.31748
\(847\) 2.79764 0.0961281
\(848\) −77.1842 −2.65052
\(849\) 35.9292 1.23309
\(850\) 0 0
\(851\) −18.2357 −0.625110
\(852\) −74.1682 −2.54096
\(853\) 40.1266 1.37391 0.686954 0.726701i \(-0.258947\pi\)
0.686954 + 0.726701i \(0.258947\pi\)
\(854\) 0.421490 0.0144231
\(855\) −27.7933 −0.950510
\(856\) −52.1508 −1.78248
\(857\) −26.1935 −0.894754 −0.447377 0.894346i \(-0.647642\pi\)
−0.447377 + 0.894346i \(0.647642\pi\)
\(858\) 23.3040 0.795586
\(859\) 16.1653 0.551554 0.275777 0.961222i \(-0.411065\pi\)
0.275777 + 0.961222i \(0.411065\pi\)
\(860\) −10.5195 −0.358712
\(861\) −6.22382 −0.212107
\(862\) −66.2011 −2.25482
\(863\) 45.4960 1.54870 0.774351 0.632756i \(-0.218077\pi\)
0.774351 + 0.632756i \(0.218077\pi\)
\(864\) 56.3522 1.91714
\(865\) −5.71831 −0.194428
\(866\) −5.77443 −0.196223
\(867\) 0 0
\(868\) −10.4745 −0.355529
\(869\) −0.943724 −0.0320136
\(870\) −21.0251 −0.712817
\(871\) 46.2934 1.56859
\(872\) −8.71346 −0.295075
\(873\) 45.6862 1.54624
\(874\) −41.5126 −1.40418
\(875\) 0.261390 0.00883661
\(876\) 111.467 3.76612
\(877\) 3.40809 0.115083 0.0575416 0.998343i \(-0.481674\pi\)
0.0575416 + 0.998343i \(0.481674\pi\)
\(878\) −10.6797 −0.360422
\(879\) 79.2566 2.67326
\(880\) −3.86039 −0.130134
\(881\) −55.0205 −1.85369 −0.926843 0.375449i \(-0.877489\pi\)
−0.926843 + 0.375449i \(0.877489\pi\)
\(882\) 112.742 3.79621
\(883\) 4.42759 0.149000 0.0745001 0.997221i \(-0.476264\pi\)
0.0745001 + 0.997221i \(0.476264\pi\)
\(884\) 0 0
\(885\) 19.1208 0.642738
\(886\) −8.53333 −0.286683
\(887\) 10.0231 0.336544 0.168272 0.985741i \(-0.446181\pi\)
0.168272 + 0.985741i \(0.446181\pi\)
\(888\) −93.8676 −3.14999
\(889\) −3.75208 −0.125841
\(890\) −42.9495 −1.43967
\(891\) 6.90860 0.231447
\(892\) 105.282 3.52510
\(893\) 10.2454 0.342850
\(894\) 137.378 4.59461
\(895\) −14.7180 −0.491969
\(896\) −3.07879 −0.102855
\(897\) −63.0267 −2.10440
\(898\) −41.7846 −1.39437
\(899\) 24.1364 0.804994
\(900\) 28.6078 0.953594
\(901\) 0 0
\(902\) 10.7768 0.358827
\(903\) 1.88259 0.0626488
\(904\) −70.1854 −2.33433
\(905\) −26.3308 −0.875265
\(906\) −85.9661 −2.85603
\(907\) 9.52472 0.316263 0.158132 0.987418i \(-0.449453\pi\)
0.158132 + 0.987418i \(0.449453\pi\)
\(908\) −84.8609 −2.81621
\(909\) −12.0793 −0.400645
\(910\) −3.64691 −0.120894
\(911\) 13.4872 0.446851 0.223426 0.974721i \(-0.428276\pi\)
0.223426 + 0.974721i \(0.428276\pi\)
\(912\) −94.3869 −3.12546
\(913\) −0.0583230 −0.00193021
\(914\) −21.0822 −0.697337
\(915\) 1.94181 0.0641943
\(916\) −99.8287 −3.29843
\(917\) 1.94351 0.0641803
\(918\) 0 0
\(919\) 21.8423 0.720511 0.360256 0.932854i \(-0.382690\pi\)
0.360256 + 0.932854i \(0.382690\pi\)
\(920\) 23.6367 0.779280
\(921\) −17.9552 −0.591645
\(922\) −102.495 −3.37549
\(923\) 29.6444 0.975758
\(924\) 1.95423 0.0642896
\(925\) −4.86119 −0.159835
\(926\) 56.9007 1.86987
\(927\) 52.4188 1.72166
\(928\) −14.6182 −0.479865
\(929\) −5.82188 −0.191010 −0.0955049 0.995429i \(-0.530447\pi\)
−0.0955049 + 0.995429i \(0.530447\pi\)
\(930\) −69.8187 −2.28945
\(931\) −30.1429 −0.987894
\(932\) −49.1663 −1.61050
\(933\) −32.7275 −1.07145
\(934\) −77.5286 −2.53681
\(935\) 0 0
\(936\) −220.792 −7.21681
\(937\) −5.54471 −0.181138 −0.0905690 0.995890i \(-0.528869\pi\)
−0.0905690 + 0.995890i \(0.528869\pi\)
\(938\) 5.61669 0.183392
\(939\) 74.6602 2.43644
\(940\) −10.5457 −0.343963
\(941\) 38.7292 1.26253 0.631267 0.775565i \(-0.282535\pi\)
0.631267 + 0.775565i \(0.282535\pi\)
\(942\) 41.1500 1.34074
\(943\) −29.1462 −0.949131
\(944\) 44.1918 1.43832
\(945\) −2.71661 −0.0883712
\(946\) −3.25978 −0.105985
\(947\) −40.9411 −1.33041 −0.665204 0.746662i \(-0.731655\pi\)
−0.665204 + 0.746662i \(0.731655\pi\)
\(948\) 23.7504 0.771376
\(949\) −44.5525 −1.44623
\(950\) −11.0663 −0.359037
\(951\) 22.5752 0.732051
\(952\) 0 0
\(953\) 38.4819 1.24655 0.623276 0.782002i \(-0.285801\pi\)
0.623276 + 0.782002i \(0.285801\pi\)
\(954\) 177.245 5.73853
\(955\) 7.69096 0.248873
\(956\) −11.4038 −0.368825
\(957\) −4.50313 −0.145565
\(958\) 8.89184 0.287282
\(959\) −1.79436 −0.0579428
\(960\) −1.12496 −0.0363079
\(961\) 49.1506 1.58550
\(962\) 67.8233 2.18671
\(963\) 52.8987 1.70464
\(964\) −31.4589 −1.01322
\(965\) −4.56393 −0.146918
\(966\) −7.64692 −0.246036
\(967\) 40.8040 1.31217 0.656084 0.754688i \(-0.272212\pi\)
0.656084 + 0.754688i \(0.272212\pi\)
\(968\) 67.4390 2.16757
\(969\) 0 0
\(970\) 18.1906 0.584064
\(971\) 33.3847 1.07137 0.535683 0.844419i \(-0.320054\pi\)
0.535683 + 0.844419i \(0.320054\pi\)
\(972\) −34.3097 −1.10048
\(973\) −5.43107 −0.174112
\(974\) −69.5245 −2.22771
\(975\) −16.8014 −0.538076
\(976\) 4.48791 0.143654
\(977\) 1.71392 0.0548333 0.0274167 0.999624i \(-0.491272\pi\)
0.0274167 + 0.999624i \(0.491272\pi\)
\(978\) −109.798 −3.51095
\(979\) −9.19887 −0.293997
\(980\) 31.0263 0.991100
\(981\) 8.83842 0.282189
\(982\) −59.1839 −1.88864
\(983\) −28.3798 −0.905174 −0.452587 0.891720i \(-0.649499\pi\)
−0.452587 + 0.891720i \(0.649499\pi\)
\(984\) −150.029 −4.78276
\(985\) −20.5420 −0.654523
\(986\) 0 0
\(987\) 1.88728 0.0600728
\(988\) 106.714 3.39502
\(989\) 8.81621 0.280339
\(990\) 8.86498 0.281748
\(991\) 12.4374 0.395087 0.197544 0.980294i \(-0.436704\pi\)
0.197544 + 0.980294i \(0.436704\pi\)
\(992\) −48.5431 −1.54124
\(993\) 0.597000 0.0189452
\(994\) 3.59671 0.114081
\(995\) 22.5698 0.715512
\(996\) 1.46779 0.0465088
\(997\) −13.3607 −0.423138 −0.211569 0.977363i \(-0.567857\pi\)
−0.211569 + 0.977363i \(0.567857\pi\)
\(998\) −33.7924 −1.06968
\(999\) 50.5219 1.59844
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1445.2.a.r.1.2 12
5.4 even 2 7225.2.a.bo.1.11 12
17.4 even 4 1445.2.d.i.866.21 24
17.13 even 4 1445.2.d.i.866.22 24
17.16 even 2 1445.2.a.s.1.2 yes 12
85.84 even 2 7225.2.a.bn.1.11 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1445.2.a.r.1.2 12 1.1 even 1 trivial
1445.2.a.s.1.2 yes 12 17.16 even 2
1445.2.d.i.866.21 24 17.4 even 4
1445.2.d.i.866.22 24 17.13 even 4
7225.2.a.bn.1.11 12 85.84 even 2
7225.2.a.bo.1.11 12 5.4 even 2