Properties

Label 1449.2.h.b
Level 14491449
Weight 22
Character orbit 1449.h
Analytic conductor 11.57011.570
Analytic rank 00
Dimension 44
CM discriminant -483
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1449,2,Mod(1126,1449)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1449, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1449.1126");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 1449=32723 1449 = 3^{2} \cdot 7 \cdot 23
Weight: k k == 2 2
Character orbit: [χ][\chi] == 1449.h (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 11.570323252911.5703232529
Analytic rank: 00
Dimension: 44
Coefficient field: Q(7,23)\Q(\sqrt{7}, \sqrt{-23})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x42x3x2+2x+162 x^{4} - 2x^{3} - x^{2} + 2x + 162 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 22 2^{2}
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q2q4+β1q7β3q11+4q16β1q19+β3q235q252β1q28β2q41+2β3q44β2q47+7q49β3q53+4β1q97+O(q100) q - 2 q^{4} + \beta_1 q^{7} - \beta_{3} q^{11} + 4 q^{16} - \beta_1 q^{19} + \beta_{3} q^{23} - 5 q^{25} - 2 \beta_1 q^{28} - \beta_{2} q^{41} + 2 \beta_{3} q^{44} - \beta_{2} q^{47} + 7 q^{49} - \beta_{3} q^{53}+ \cdots - 4 \beta_1 q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q8q4+16q1620q25+28q4932q64+O(q100) 4 q - 8 q^{4} + 16 q^{16} - 20 q^{25} + 28 q^{49} - 32 q^{64}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x42x3x2+2x+162 x^{4} - 2x^{3} - x^{2} + 2x + 162 : Copy content Toggle raw display

β1\beta_{1}== (2ν3+3ν2+29ν15)/51 ( -2\nu^{3} + 3\nu^{2} + 29\nu - 15 ) / 51 Copy content Toggle raw display
β2\beta_{2}== ν2ν1 \nu^{2} - \nu - 1 Copy content Toggle raw display
β3\beta_{3}== (4ν36ν2+44ν21)/51 ( 4\nu^{3} - 6\nu^{2} + 44\nu - 21 ) / 51 Copy content Toggle raw display
ν\nu== (β3+2β1+1)/2 ( \beta_{3} + 2\beta _1 + 1 ) / 2 Copy content Toggle raw display
ν2\nu^{2}== (β3+2β2+2β1+3)/2 ( \beta_{3} + 2\beta_{2} + 2\beta _1 + 3 ) / 2 Copy content Toggle raw display
ν3\nu^{3}== (16β3+3β219β1+4)/2 ( 16\beta_{3} + 3\beta_{2} - 19\beta _1 + 4 ) / 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/1449Z)×\left(\mathbb{Z}/1449\mathbb{Z}\right)^\times.

nn 442442 829829 12891289
χ(n)\chi(n) 1-1 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1126.1
−2.14575 + 2.39792i
−2.14575 2.39792i
3.14575 + 2.39792i
3.14575 2.39792i
0 0 −2.00000 0 0 −2.64575 0 0 0
1126.2 0 0 −2.00000 0 0 −2.64575 0 0 0
1126.3 0 0 −2.00000 0 0 2.64575 0 0 0
1126.4 0 0 −2.00000 0 0 2.64575 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
483.c odd 2 1 CM by Q(483)\Q(\sqrt{-483})
3.b odd 2 1 inner
7.b odd 2 1 inner
21.c even 2 1 inner
23.b odd 2 1 inner
69.c even 2 1 inner
161.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1449.2.h.b 4
3.b odd 2 1 inner 1449.2.h.b 4
7.b odd 2 1 inner 1449.2.h.b 4
21.c even 2 1 inner 1449.2.h.b 4
23.b odd 2 1 inner 1449.2.h.b 4
69.c even 2 1 inner 1449.2.h.b 4
161.c even 2 1 inner 1449.2.h.b 4
483.c odd 2 1 CM 1449.2.h.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1449.2.h.b 4 1.a even 1 1 trivial
1449.2.h.b 4 3.b odd 2 1 inner
1449.2.h.b 4 7.b odd 2 1 inner
1449.2.h.b 4 21.c even 2 1 inner
1449.2.h.b 4 23.b odd 2 1 inner
1449.2.h.b 4 69.c even 2 1 inner
1449.2.h.b 4 161.c even 2 1 inner
1449.2.h.b 4 483.c odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(1449,[χ])S_{2}^{\mathrm{new}}(1449, [\chi]):

T2 T_{2} Copy content Toggle raw display
T5 T_{5} Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4 T^{4} Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T4 T^{4} Copy content Toggle raw display
77 (T27)2 (T^{2} - 7)^{2} Copy content Toggle raw display
1111 (T2+23)2 (T^{2} + 23)^{2} Copy content Toggle raw display
1313 T4 T^{4} Copy content Toggle raw display
1717 T4 T^{4} Copy content Toggle raw display
1919 (T27)2 (T^{2} - 7)^{2} Copy content Toggle raw display
2323 (T2+23)2 (T^{2} + 23)^{2} Copy content Toggle raw display
2929 T4 T^{4} Copy content Toggle raw display
3131 T4 T^{4} Copy content Toggle raw display
3737 T4 T^{4} Copy content Toggle raw display
4141 (T2+161)2 (T^{2} + 161)^{2} Copy content Toggle raw display
4343 T4 T^{4} Copy content Toggle raw display
4747 (T2+161)2 (T^{2} + 161)^{2} Copy content Toggle raw display
5353 (T2+23)2 (T^{2} + 23)^{2} Copy content Toggle raw display
5959 (T2+161)2 (T^{2} + 161)^{2} Copy content Toggle raw display
6161 (T2175)2 (T^{2} - 175)^{2} Copy content Toggle raw display
6767 T4 T^{4} Copy content Toggle raw display
7171 T4 T^{4} Copy content Toggle raw display
7373 T4 T^{4} Copy content Toggle raw display
7979 T4 T^{4} Copy content Toggle raw display
8383 T4 T^{4} Copy content Toggle raw display
8989 T4 T^{4} Copy content Toggle raw display
9797 (T2112)2 (T^{2} - 112)^{2} Copy content Toggle raw display
show more
show less