Properties

Label 1449.2.h.e.1126.6
Level $1449$
Weight $2$
Character 1449.1126
Analytic conductor $11.570$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1449,2,Mod(1126,1449)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1449, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1449.1126");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1449 = 3^{2} \cdot 7 \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1449.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5703232529\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 17x^{10} + 92x^{8} + 180x^{6} + 92x^{4} + 17x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 483)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 1126.6
Root \(-2.14584i\) of defining polynomial
Character \(\chi\) \(=\) 1449.1126
Dual form 1449.2.h.e.1126.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.17819 q^{2} -0.611859 q^{4} -1.67982 q^{5} +(2.04406 + 1.67982i) q^{7} +3.07728 q^{8} +1.97916 q^{10} -3.72389i q^{11} +0.821806i q^{13} +(-2.40830 - 1.97916i) q^{14} -2.40191 q^{16} -1.97916 q^{17} +3.72389 q^{19} +1.02781 q^{20} +4.38746i q^{22} +(-4.61186 + 1.31558i) q^{23} -2.17819 q^{25} -0.968247i q^{26} +(-1.25068 - 1.02781i) q^{28} +5.79005 q^{29} -0.566335i q^{31} -3.32464 q^{32} +2.33183 q^{34} +(-3.43366 - 2.82181i) q^{35} +1.25068i q^{37} -4.38746 q^{38} -5.16928 q^{40} -5.00000i q^{41} -7.01863i q^{43} +2.27849i q^{44} +(5.43366 - 1.55001i) q^{46} +5.14644i q^{47} +(1.35639 + 6.86733i) q^{49} +2.56634 q^{50} -0.502829i q^{52} +0.0649054i q^{53} +6.25547i q^{55} +(6.29015 + 5.16928i) q^{56} -6.82181 q^{58} +11.0455i q^{59} +9.36202 q^{61} +0.667253i q^{62} +8.72089 q^{64} -1.38049i q^{65} -5.03947i q^{67} +1.21096 q^{68} +(4.04552 + 3.32464i) q^{70} +6.40191 q^{71} -15.8811i q^{73} -1.47354i q^{74} -2.27849 q^{76} +(6.25547 - 7.61186i) q^{77} -17.6032i q^{79} +4.03479 q^{80} +5.89097i q^{82} +9.29712 q^{83} +3.32464 q^{85} +8.26931i q^{86} -11.4594i q^{88} +11.8352 q^{89} +(-1.38049 + 1.67982i) q^{91} +(2.82181 - 0.804951i) q^{92} -6.06351i q^{94} -6.25547 q^{95} +14.9720 q^{97} +(-1.59809 - 8.09105i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 4 q^{2} + 36 q^{4} + 24 q^{8} + 68 q^{16} - 12 q^{23} - 16 q^{25} + 16 q^{29} + 44 q^{32} - 8 q^{35} + 32 q^{46} - 4 q^{49} + 64 q^{50} - 92 q^{58} + 112 q^{64} - 28 q^{70} - 20 q^{71} + 52 q^{77}+ \cdots - 116 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1449\mathbb{Z}\right)^\times\).

\(n\) \(442\) \(829\) \(1289\)
\(\chi(n)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.17819 −0.833109 −0.416555 0.909111i \(-0.636762\pi\)
−0.416555 + 0.909111i \(0.636762\pi\)
\(3\) 0 0
\(4\) −0.611859 −0.305929
\(5\) −1.67982 −0.751240 −0.375620 0.926774i \(-0.622570\pi\)
−0.375620 + 0.926774i \(0.622570\pi\)
\(6\) 0 0
\(7\) 2.04406 + 1.67982i 0.772583 + 0.634913i
\(8\) 3.07728 1.08798
\(9\) 0 0
\(10\) 1.97916 0.625865
\(11\) 3.72389i 1.12279i −0.827547 0.561397i \(-0.810264\pi\)
0.827547 0.561397i \(-0.189736\pi\)
\(12\) 0 0
\(13\) 0.821806i 0.227928i 0.993485 + 0.113964i \(0.0363548\pi\)
−0.993485 + 0.113964i \(0.963645\pi\)
\(14\) −2.40830 1.97916i −0.643646 0.528952i
\(15\) 0 0
\(16\) −2.40191 −0.600478
\(17\) −1.97916 −0.480016 −0.240008 0.970771i \(-0.577150\pi\)
−0.240008 + 0.970771i \(0.577150\pi\)
\(18\) 0 0
\(19\) 3.72389 0.854318 0.427159 0.904176i \(-0.359514\pi\)
0.427159 + 0.904176i \(0.359514\pi\)
\(20\) 1.02781 0.229826
\(21\) 0 0
\(22\) 4.38746i 0.935410i
\(23\) −4.61186 + 1.31558i −0.961639 + 0.274318i
\(24\) 0 0
\(25\) −2.17819 −0.435639
\(26\) 0.968247i 0.189889i
\(27\) 0 0
\(28\) −1.25068 1.02781i −0.236356 0.194239i
\(29\) 5.79005 1.07519 0.537593 0.843205i \(-0.319334\pi\)
0.537593 + 0.843205i \(0.319334\pi\)
\(30\) 0 0
\(31\) 0.566335i 0.101717i −0.998706 0.0508584i \(-0.983804\pi\)
0.998706 0.0508584i \(-0.0161957\pi\)
\(32\) −3.32464 −0.587718
\(33\) 0 0
\(34\) 2.33183 0.399906
\(35\) −3.43366 2.82181i −0.580395 0.476972i
\(36\) 0 0
\(37\) 1.25068i 0.205610i 0.994702 + 0.102805i \(0.0327818\pi\)
−0.994702 + 0.102805i \(0.967218\pi\)
\(38\) −4.38746 −0.711740
\(39\) 0 0
\(40\) −5.16928 −0.817335
\(41\) 5.00000i 0.780869i −0.920631 0.390434i \(-0.872325\pi\)
0.920631 0.390434i \(-0.127675\pi\)
\(42\) 0 0
\(43\) 7.01863i 1.07033i −0.844747 0.535165i \(-0.820249\pi\)
0.844747 0.535165i \(-0.179751\pi\)
\(44\) 2.27849i 0.343496i
\(45\) 0 0
\(46\) 5.43366 1.55001i 0.801150 0.228537i
\(47\) 5.14644i 0.750686i 0.926886 + 0.375343i \(0.122475\pi\)
−0.926886 + 0.375343i \(0.877525\pi\)
\(48\) 0 0
\(49\) 1.35639 + 6.86733i 0.193770 + 0.981047i
\(50\) 2.56634 0.362935
\(51\) 0 0
\(52\) 0.502829i 0.0697299i
\(53\) 0.0649054i 0.00891544i 0.999990 + 0.00445772i \(0.00141894\pi\)
−0.999990 + 0.00445772i \(0.998581\pi\)
\(54\) 0 0
\(55\) 6.25547i 0.843487i
\(56\) 6.29015 + 5.16928i 0.840556 + 0.690774i
\(57\) 0 0
\(58\) −6.82181 −0.895747
\(59\) 11.0455i 1.43800i 0.695008 + 0.719002i \(0.255401\pi\)
−0.695008 + 0.719002i \(0.744599\pi\)
\(60\) 0 0
\(61\) 9.36202 1.19868 0.599342 0.800493i \(-0.295429\pi\)
0.599342 + 0.800493i \(0.295429\pi\)
\(62\) 0.667253i 0.0847412i
\(63\) 0 0
\(64\) 8.72089 1.09011
\(65\) 1.38049i 0.171229i
\(66\) 0 0
\(67\) 5.03947i 0.615669i −0.951440 0.307835i \(-0.900396\pi\)
0.951440 0.307835i \(-0.0996043\pi\)
\(68\) 1.21096 0.146851
\(69\) 0 0
\(70\) 4.04552 + 3.32464i 0.483533 + 0.397370i
\(71\) 6.40191 0.759767 0.379884 0.925034i \(-0.375964\pi\)
0.379884 + 0.925034i \(0.375964\pi\)
\(72\) 0 0
\(73\) 15.8811i 1.85874i −0.369147 0.929371i \(-0.620350\pi\)
0.369147 0.929371i \(-0.379650\pi\)
\(74\) 1.47354i 0.171296i
\(75\) 0 0
\(76\) −2.27849 −0.261361
\(77\) 6.25547 7.61186i 0.712877 0.867452i
\(78\) 0 0
\(79\) 17.6032i 1.98051i −0.139256 0.990256i \(-0.544471\pi\)
0.139256 0.990256i \(-0.455529\pi\)
\(80\) 4.03479 0.451103
\(81\) 0 0
\(82\) 5.89097i 0.650549i
\(83\) 9.29712 1.02049 0.510246 0.860029i \(-0.329554\pi\)
0.510246 + 0.860029i \(0.329554\pi\)
\(84\) 0 0
\(85\) 3.32464 0.360607
\(86\) 8.26931i 0.891702i
\(87\) 0 0
\(88\) 11.4594i 1.22158i
\(89\) 11.8352 1.25453 0.627266 0.778805i \(-0.284174\pi\)
0.627266 + 0.778805i \(0.284174\pi\)
\(90\) 0 0
\(91\) −1.38049 + 1.67982i −0.144715 + 0.176093i
\(92\) 2.82181 0.804951i 0.294194 0.0839219i
\(93\) 0 0
\(94\) 6.06351i 0.625403i
\(95\) −6.25547 −0.641798
\(96\) 0 0
\(97\) 14.9720 1.52018 0.760089 0.649819i \(-0.225155\pi\)
0.760089 + 0.649819i \(0.225155\pi\)
\(98\) −1.59809 8.09105i −0.161431 0.817319i
\(99\) 0 0
\(100\) 1.33275 0.133275
\(101\) 12.2692i 1.22084i 0.792080 + 0.610418i \(0.208998\pi\)
−0.792080 + 0.610418i \(0.791002\pi\)
\(102\) 0 0
\(103\) 8.33421 0.821194 0.410597 0.911817i \(-0.365320\pi\)
0.410597 + 0.911817i \(0.365320\pi\)
\(104\) 2.52892i 0.247981i
\(105\) 0 0
\(106\) 0.0764712i 0.00742754i
\(107\) 15.1949i 1.46894i −0.678639 0.734472i \(-0.737430\pi\)
0.678639 0.734472i \(-0.262570\pi\)
\(108\) 0 0
\(109\) 7.22491i 0.692021i 0.938231 + 0.346010i \(0.112464\pi\)
−0.938231 + 0.346010i \(0.887536\pi\)
\(110\) 7.37016i 0.702717i
\(111\) 0 0
\(112\) −4.90966 4.03479i −0.463919 0.381251i
\(113\) 3.00697i 0.282872i 0.989947 + 0.141436i \(0.0451720\pi\)
−0.989947 + 0.141436i \(0.954828\pi\)
\(114\) 0 0
\(115\) 7.74711 2.20995i 0.722421 0.206079i
\(116\) −3.54269 −0.328931
\(117\) 0 0
\(118\) 13.0138i 1.19801i
\(119\) −4.04552 3.32464i −0.370853 0.304769i
\(120\) 0 0
\(121\) −2.86733 −0.260666
\(122\) −11.0303 −0.998635
\(123\) 0 0
\(124\) 0.346517i 0.0311182i
\(125\) 12.0581 1.07851
\(126\) 0 0
\(127\) −2.32464 −0.206278 −0.103139 0.994667i \(-0.532889\pi\)
−0.103139 + 0.994667i \(0.532889\pi\)
\(128\) −3.62563 −0.320463
\(129\) 0 0
\(130\) 1.62648i 0.142652i
\(131\) 6.13267i 0.535814i −0.963445 0.267907i \(-0.913668\pi\)
0.963445 0.267907i \(-0.0863320\pi\)
\(132\) 0 0
\(133\) 7.61186 + 6.25547i 0.660032 + 0.542418i
\(134\) 5.93747i 0.512920i
\(135\) 0 0
\(136\) −6.09042 −0.522249
\(137\) 17.7611i 1.51744i −0.651419 0.758718i \(-0.725826\pi\)
0.651419 0.758718i \(-0.274174\pi\)
\(138\) 0 0
\(139\) 16.3465i 1.38649i 0.720700 + 0.693247i \(0.243820\pi\)
−0.720700 + 0.693247i \(0.756180\pi\)
\(140\) 2.10092 + 1.72655i 0.177560 + 0.145920i
\(141\) 0 0
\(142\) −7.54269 −0.632969
\(143\) 3.06031 0.255916
\(144\) 0 0
\(145\) −9.72626 −0.807722
\(146\) 18.7110i 1.54853i
\(147\) 0 0
\(148\) 0.765238i 0.0629022i
\(149\) 18.5661i 1.52099i −0.649342 0.760497i \(-0.724955\pi\)
0.649342 0.760497i \(-0.275045\pi\)
\(150\) 0 0
\(151\) −1.30099 −0.105873 −0.0529367 0.998598i \(-0.516858\pi\)
−0.0529367 + 0.998598i \(0.516858\pi\)
\(152\) 11.4594 0.929482
\(153\) 0 0
\(154\) −7.37016 + 8.96825i −0.593904 + 0.722682i
\(155\) 0.951343i 0.0764137i
\(156\) 0 0
\(157\) 7.60573 0.607003 0.303502 0.952831i \(-0.401844\pi\)
0.303502 + 0.952831i \(0.401844\pi\)
\(158\) 20.7400i 1.64998i
\(159\) 0 0
\(160\) 5.58480 0.441517
\(161\) −11.6369 5.05797i −0.917114 0.398624i
\(162\) 0 0
\(163\) −6.68914 −0.523934 −0.261967 0.965077i \(-0.584371\pi\)
−0.261967 + 0.965077i \(0.584371\pi\)
\(164\) 3.05929i 0.238891i
\(165\) 0 0
\(166\) −10.9538 −0.850181
\(167\) 2.79816i 0.216528i 0.994122 + 0.108264i \(0.0345293\pi\)
−0.994122 + 0.108264i \(0.965471\pi\)
\(168\) 0 0
\(169\) 12.3246 0.948049
\(170\) −3.91707 −0.300425
\(171\) 0 0
\(172\) 4.29441i 0.327446i
\(173\) 5.88110i 0.447132i 0.974689 + 0.223566i \(0.0717698\pi\)
−0.974689 + 0.223566i \(0.928230\pi\)
\(174\) 0 0
\(175\) −4.45237 3.65898i −0.336567 0.276593i
\(176\) 8.94445i 0.674213i
\(177\) 0 0
\(178\) −13.9442 −1.04516
\(179\) 0.100918 0.00754294 0.00377147 0.999993i \(-0.498800\pi\)
0.00377147 + 0.999993i \(0.498800\pi\)
\(180\) 0 0
\(181\) −12.6568 −0.940770 −0.470385 0.882461i \(-0.655885\pi\)
−0.470385 + 0.882461i \(0.655885\pi\)
\(182\) 1.62648 1.97916i 0.120563 0.146705i
\(183\) 0 0
\(184\) −14.1920 + 4.04841i −1.04625 + 0.298453i
\(185\) 2.10092i 0.154463i
\(186\) 0 0
\(187\) 7.37016i 0.538959i
\(188\) 3.14889i 0.229657i
\(189\) 0 0
\(190\) 7.37016 0.534687
\(191\) 7.16000i 0.518080i 0.965867 + 0.259040i \(0.0834061\pi\)
−0.965867 + 0.259040i \(0.916594\pi\)
\(192\) 0 0
\(193\) −6.79005 −0.488759 −0.244379 0.969680i \(-0.578584\pi\)
−0.244379 + 0.969680i \(0.578584\pi\)
\(194\) −17.6399 −1.26647
\(195\) 0 0
\(196\) −0.829918 4.20184i −0.0592799 0.300131i
\(197\) 14.4930 1.03258 0.516290 0.856414i \(-0.327313\pi\)
0.516290 + 0.856414i \(0.327313\pi\)
\(198\) 0 0
\(199\) 11.3412 0.803955 0.401978 0.915650i \(-0.368323\pi\)
0.401978 + 0.915650i \(0.368323\pi\)
\(200\) −6.70291 −0.473967
\(201\) 0 0
\(202\) 14.4555i 1.01709i
\(203\) 11.8352 + 9.72626i 0.830671 + 0.682650i
\(204\) 0 0
\(205\) 8.39912i 0.586620i
\(206\) −9.81932 −0.684144
\(207\) 0 0
\(208\) 1.97391i 0.136866i
\(209\) 13.8673i 0.959223i
\(210\) 0 0
\(211\) 10.6436 0.732736 0.366368 0.930470i \(-0.380601\pi\)
0.366368 + 0.930470i \(0.380601\pi\)
\(212\) 0.0397129i 0.00272750i
\(213\) 0 0
\(214\) 17.9025i 1.22379i
\(215\) 11.7901i 0.804075i
\(216\) 0 0
\(217\) 0.951343 1.15763i 0.0645814 0.0785847i
\(218\) 8.51235i 0.576529i
\(219\) 0 0
\(220\) 3.82746i 0.258048i
\(221\) 1.62648i 0.109409i
\(222\) 0 0
\(223\) 0.877200i 0.0587417i −0.999569 0.0293708i \(-0.990650\pi\)
0.999569 0.0293708i \(-0.00935037\pi\)
\(224\) −6.79576 5.58480i −0.454061 0.373150i
\(225\) 0 0
\(226\) 3.54280i 0.235663i
\(227\) 7.95339 0.527885 0.263942 0.964538i \(-0.414977\pi\)
0.263942 + 0.964538i \(0.414977\pi\)
\(228\) 0 0
\(229\) 12.3293 0.814742 0.407371 0.913263i \(-0.366446\pi\)
0.407371 + 0.913263i \(0.366446\pi\)
\(230\) −9.12760 + 2.60375i −0.601856 + 0.171686i
\(231\) 0 0
\(232\) 17.8176 1.16978
\(233\) 3.38814 0.221965 0.110982 0.993822i \(-0.464600\pi\)
0.110982 + 0.993822i \(0.464600\pi\)
\(234\) 0 0
\(235\) 8.64511i 0.563945i
\(236\) 6.75830i 0.439928i
\(237\) 0 0
\(238\) 4.76641 + 3.91707i 0.308961 + 0.253906i
\(239\) 13.7445 0.889060 0.444530 0.895764i \(-0.353371\pi\)
0.444530 + 0.895764i \(0.353371\pi\)
\(240\) 0 0
\(241\) 19.0883 1.22958 0.614792 0.788689i \(-0.289240\pi\)
0.614792 + 0.788689i \(0.289240\pi\)
\(242\) 3.37827 0.217163
\(243\) 0 0
\(244\) −5.72824 −0.366713
\(245\) −2.27849 11.5359i −0.145568 0.737002i
\(246\) 0 0
\(247\) 3.06031i 0.194723i
\(248\) 1.74277i 0.110666i
\(249\) 0 0
\(250\) −14.2068 −0.898516
\(251\) −7.57758 −0.478293 −0.239146 0.970984i \(-0.576868\pi\)
−0.239146 + 0.970984i \(0.576868\pi\)
\(252\) 0 0
\(253\) 4.89908 + 17.1740i 0.308003 + 1.07972i
\(254\) 2.73887 0.171852
\(255\) 0 0
\(256\) −13.1701 −0.823130
\(257\) 22.1048i 1.37886i −0.724352 0.689430i \(-0.757861\pi\)
0.724352 0.689430i \(-0.242139\pi\)
\(258\) 0 0
\(259\) −2.10092 + 2.55646i −0.130545 + 0.158851i
\(260\) 0.844664i 0.0523838i
\(261\) 0 0
\(262\) 7.22548i 0.446391i
\(263\) 8.67030i 0.534634i 0.963609 + 0.267317i \(0.0861371\pi\)
−0.963609 + 0.267317i \(0.913863\pi\)
\(264\) 0 0
\(265\) 0.109030i 0.00669764i
\(266\) −8.96825 7.37016i −0.549878 0.451893i
\(267\) 0 0
\(268\) 3.08344i 0.188351i
\(269\) 19.6891i 1.20047i 0.799825 + 0.600234i \(0.204926\pi\)
−0.799825 + 0.600234i \(0.795074\pi\)
\(270\) 0 0
\(271\) 4.65738i 0.282916i 0.989944 + 0.141458i \(0.0451790\pi\)
−0.989944 + 0.141458i \(0.954821\pi\)
\(272\) 4.75376 0.288239
\(273\) 0 0
\(274\) 20.9261i 1.26419i
\(275\) 8.11135i 0.489133i
\(276\) 0 0
\(277\) −23.5011 −1.41204 −0.706021 0.708191i \(-0.749512\pi\)
−0.706021 + 0.708191i \(0.749512\pi\)
\(278\) 19.2594i 1.15510i
\(279\) 0 0
\(280\) −10.5663 8.68348i −0.631459 0.518937i
\(281\) 1.90269i 0.113505i 0.998388 + 0.0567524i \(0.0180746\pi\)
−0.998388 + 0.0567524i \(0.981925\pi\)
\(282\) 0 0
\(283\) −12.3574 −0.734573 −0.367287 0.930108i \(-0.619713\pi\)
−0.367287 + 0.930108i \(0.619713\pi\)
\(284\) −3.91707 −0.232435
\(285\) 0 0
\(286\) −3.60564 −0.213206
\(287\) 8.39912 10.2203i 0.495784 0.603286i
\(288\) 0 0
\(289\) −13.0829 −0.769584
\(290\) 11.4594 0.672921
\(291\) 0 0
\(292\) 9.71699i 0.568644i
\(293\) −28.4871 −1.66423 −0.832116 0.554601i \(-0.812871\pi\)
−0.832116 + 0.554601i \(0.812871\pi\)
\(294\) 0 0
\(295\) 18.5545i 1.08029i
\(296\) 3.84868i 0.223700i
\(297\) 0 0
\(298\) 21.8745i 1.26715i
\(299\) −1.08115 3.79005i −0.0625248 0.219184i
\(300\) 0 0
\(301\) 11.7901 14.3465i 0.679567 0.826920i
\(302\) 1.53282 0.0882041
\(303\) 0 0
\(304\) −8.94445 −0.512999
\(305\) −15.7265 −0.900499
\(306\) 0 0
\(307\) 24.0357i 1.37179i −0.727702 0.685894i \(-0.759412\pi\)
0.727702 0.685894i \(-0.240588\pi\)
\(308\) −3.82746 + 4.65738i −0.218090 + 0.265379i
\(309\) 0 0
\(310\) 1.12087i 0.0636610i
\(311\) 11.7029i 0.663611i −0.943348 0.331805i \(-0.892342\pi\)
0.943348 0.331805i \(-0.107658\pi\)
\(312\) 0 0
\(313\) −18.5661 −1.04942 −0.524709 0.851282i \(-0.675826\pi\)
−0.524709 + 0.851282i \(0.675826\pi\)
\(314\) −8.96103 −0.505700
\(315\) 0 0
\(316\) 10.7707i 0.605897i
\(317\) 19.1503 1.07559 0.537795 0.843076i \(-0.319257\pi\)
0.537795 + 0.843076i \(0.319257\pi\)
\(318\) 0 0
\(319\) 21.5615i 1.20721i
\(320\) −14.6496 −0.818935
\(321\) 0 0
\(322\) 13.7105 + 5.95927i 0.764056 + 0.332097i
\(323\) −7.37016 −0.410087
\(324\) 0 0
\(325\) 1.79005i 0.0992943i
\(326\) 7.88110 0.436494
\(327\) 0 0
\(328\) 15.3864i 0.849571i
\(329\) −8.64511 + 10.5197i −0.476620 + 0.579967i
\(330\) 0 0
\(331\) 16.8811 0.927869 0.463935 0.885869i \(-0.346437\pi\)
0.463935 + 0.885869i \(0.346437\pi\)
\(332\) −5.68852 −0.312198
\(333\) 0 0
\(334\) 3.29678i 0.180392i
\(335\) 8.46542i 0.462515i
\(336\) 0 0
\(337\) 32.7447i 1.78372i 0.452313 + 0.891859i \(0.350599\pi\)
−0.452313 + 0.891859i \(0.649401\pi\)
\(338\) −14.5208 −0.789828
\(339\) 0 0
\(340\) −2.03421 −0.110320
\(341\) −2.10897 −0.114207
\(342\) 0 0
\(343\) −8.76336 + 16.3157i −0.473177 + 0.880968i
\(344\) 21.5983i 1.16450i
\(345\) 0 0
\(346\) 6.92908i 0.372509i
\(347\) −9.01377 −0.483885 −0.241942 0.970291i \(-0.577784\pi\)
−0.241942 + 0.970291i \(0.577784\pi\)
\(348\) 0 0
\(349\) 23.6337i 1.26509i 0.774526 + 0.632543i \(0.217989\pi\)
−0.774526 + 0.632543i \(0.782011\pi\)
\(350\) 5.24575 + 4.31099i 0.280397 + 0.230432i
\(351\) 0 0
\(352\) 12.3806i 0.659886i
\(353\) 20.0357i 1.06639i −0.845992 0.533195i \(-0.820991\pi\)
0.845992 0.533195i \(-0.179009\pi\)
\(354\) 0 0
\(355\) −10.7541 −0.570767
\(356\) −7.24149 −0.383798
\(357\) 0 0
\(358\) −0.118901 −0.00628409
\(359\) 1.67982i 0.0886577i −0.999017 0.0443288i \(-0.985885\pi\)
0.999017 0.0443288i \(-0.0141149\pi\)
\(360\) 0 0
\(361\) −5.13267 −0.270141
\(362\) 14.9121 0.783764
\(363\) 0 0
\(364\) 0.844664 1.02781i 0.0442724 0.0538721i
\(365\) 26.6774i 1.39636i
\(366\) 0 0
\(367\) 5.53352 0.288847 0.144424 0.989516i \(-0.453867\pi\)
0.144424 + 0.989516i \(0.453867\pi\)
\(368\) 11.0773 3.15991i 0.577443 0.164722i
\(369\) 0 0
\(370\) 2.47529i 0.128684i
\(371\) −0.109030 + 0.132671i −0.00566053 + 0.00688792i
\(372\) 0 0
\(373\) 11.1998i 0.579904i −0.957041 0.289952i \(-0.906361\pi\)
0.957041 0.289952i \(-0.0936393\pi\)
\(374\) 8.68348i 0.449012i
\(375\) 0 0
\(376\) 15.8370i 0.816732i
\(377\) 4.75830i 0.245065i
\(378\) 0 0
\(379\) 6.71929i 0.345147i −0.984997 0.172573i \(-0.944792\pi\)
0.984997 0.172573i \(-0.0552082\pi\)
\(380\) 3.82746 0.196345
\(381\) 0 0
\(382\) 8.43587i 0.431617i
\(383\) −25.9655 −1.32678 −0.663389 0.748275i \(-0.730882\pi\)
−0.663389 + 0.748275i \(0.730882\pi\)
\(384\) 0 0
\(385\) −10.5081 + 12.7866i −0.535542 + 0.651664i
\(386\) 8.00000 0.407189
\(387\) 0 0
\(388\) −9.16076 −0.465067
\(389\) 9.29712i 0.471383i −0.971828 0.235691i \(-0.924265\pi\)
0.971828 0.235691i \(-0.0757354\pi\)
\(390\) 0 0
\(391\) 9.12760 2.60375i 0.461602 0.131677i
\(392\) 4.17398 + 21.1327i 0.210818 + 1.06736i
\(393\) 0 0
\(394\) −17.0755 −0.860252
\(395\) 29.5702i 1.48784i
\(396\) 0 0
\(397\) 3.02188i 0.151664i −0.997121 0.0758320i \(-0.975839\pi\)
0.997121 0.0758320i \(-0.0241613\pi\)
\(398\) −13.3621 −0.669782
\(399\) 0 0
\(400\) 5.23183 0.261591
\(401\) 33.8540i 1.69059i 0.534300 + 0.845295i \(0.320575\pi\)
−0.534300 + 0.845295i \(0.679425\pi\)
\(402\) 0 0
\(403\) 0.465418 0.0231841
\(404\) 7.50704i 0.373489i
\(405\) 0 0
\(406\) −13.9442 11.4594i −0.692039 0.568722i
\(407\) 4.65738 0.230858
\(408\) 0 0
\(409\) 18.8592i 0.932528i −0.884646 0.466264i \(-0.845600\pi\)
0.884646 0.466264i \(-0.154400\pi\)
\(410\) 9.89579i 0.488718i
\(411\) 0 0
\(412\) −5.09936 −0.251227
\(413\) −18.5545 + 22.5777i −0.913009 + 1.11098i
\(414\) 0 0
\(415\) −15.6175 −0.766634
\(416\) 2.73220i 0.133957i
\(417\) 0 0
\(418\) 16.3384i 0.799138i
\(419\) 25.9490 1.26769 0.633845 0.773460i \(-0.281476\pi\)
0.633845 + 0.773460i \(0.281476\pi\)
\(420\) 0 0
\(421\) 1.15763i 0.0564192i −0.999602 0.0282096i \(-0.991019\pi\)
0.999602 0.0282096i \(-0.00898059\pi\)
\(422\) −12.5402 −0.610449
\(423\) 0 0
\(424\) 0.199732i 0.00969984i
\(425\) 4.31099 0.209114
\(426\) 0 0
\(427\) 19.1366 + 15.7265i 0.926084 + 0.761061i
\(428\) 9.29712i 0.449393i
\(429\) 0 0
\(430\) 13.8910i 0.669882i
\(431\) 37.6962i 1.81576i 0.419230 + 0.907880i \(0.362300\pi\)
−0.419230 + 0.907880i \(0.637700\pi\)
\(432\) 0 0
\(433\) −39.9213 −1.91850 −0.959248 0.282566i \(-0.908814\pi\)
−0.959248 + 0.282566i \(0.908814\pi\)
\(434\) −1.12087 + 1.36391i −0.0538033 + 0.0654696i
\(435\) 0 0
\(436\) 4.42062i 0.211709i
\(437\) −17.1740 + 4.89908i −0.821546 + 0.234355i
\(438\) 0 0
\(439\) 16.3483i 0.780261i −0.920760 0.390130i \(-0.872430\pi\)
0.920760 0.390130i \(-0.127570\pi\)
\(440\) 19.2498i 0.917699i
\(441\) 0 0
\(442\) 1.91631i 0.0911497i
\(443\) −12.1821 −0.578789 −0.289394 0.957210i \(-0.593454\pi\)
−0.289394 + 0.957210i \(0.593454\pi\)
\(444\) 0 0
\(445\) −19.8811 −0.942455
\(446\) 1.03351i 0.0489382i
\(447\) 0 0
\(448\) 17.8260 + 14.6496i 0.842202 + 0.692126i
\(449\) −6.70291 −0.316330 −0.158165 0.987413i \(-0.550558\pi\)
−0.158165 + 0.987413i \(0.550558\pi\)
\(450\) 0 0
\(451\) −18.6194 −0.876755
\(452\) 1.83984i 0.0865389i
\(453\) 0 0
\(454\) −9.37064 −0.439786
\(455\) 2.31898 2.82181i 0.108715 0.132288i
\(456\) 0 0
\(457\) 27.3828i 1.28091i −0.767995 0.640456i \(-0.778745\pi\)
0.767995 0.640456i \(-0.221255\pi\)
\(458\) −14.5263 −0.678769
\(459\) 0 0
\(460\) −4.74013 + 1.35218i −0.221010 + 0.0630455i
\(461\) 34.2357i 1.59452i −0.603638 0.797258i \(-0.706283\pi\)
0.603638 0.797258i \(-0.293717\pi\)
\(462\) 0 0
\(463\) 22.8892 1.06375 0.531876 0.846822i \(-0.321487\pi\)
0.531876 + 0.846822i \(0.321487\pi\)
\(464\) −13.9072 −0.645625
\(465\) 0 0
\(466\) −3.99189 −0.184921
\(467\) −6.19709 −0.286767 −0.143384 0.989667i \(-0.545798\pi\)
−0.143384 + 0.989667i \(0.545798\pi\)
\(468\) 0 0
\(469\) 8.46542 10.3010i 0.390897 0.475656i
\(470\) 10.1856i 0.469828i
\(471\) 0 0
\(472\) 33.9901i 1.56452i
\(473\) −26.1366 −1.20176
\(474\) 0 0
\(475\) −8.11135 −0.372174
\(476\) 2.47529 + 2.03421i 0.113455 + 0.0932377i
\(477\) 0 0
\(478\) −16.1937 −0.740684
\(479\) 34.1418 1.55998 0.779989 0.625793i \(-0.215225\pi\)
0.779989 + 0.625793i \(0.215225\pi\)
\(480\) 0 0
\(481\) −1.02781 −0.0468643
\(482\) −22.4897 −1.02438
\(483\) 0 0
\(484\) 1.75440 0.0797455
\(485\) −25.1503 −1.14202
\(486\) 0 0
\(487\) 27.6793 1.25427 0.627134 0.778912i \(-0.284228\pi\)
0.627134 + 0.778912i \(0.284228\pi\)
\(488\) 28.8095 1.30415
\(489\) 0 0
\(490\) 2.68451 + 13.5915i 0.121274 + 0.614003i
\(491\) −5.62563 −0.253881 −0.126941 0.991910i \(-0.540516\pi\)
−0.126941 + 0.991910i \(0.540516\pi\)
\(492\) 0 0
\(493\) −11.4594 −0.516107
\(494\) 3.60564i 0.162225i
\(495\) 0 0
\(496\) 1.36029i 0.0610787i
\(497\) 13.0859 + 10.7541i 0.586983 + 0.482386i
\(498\) 0 0
\(499\) −16.2555 −0.727695 −0.363847 0.931459i \(-0.618537\pi\)
−0.363847 + 0.931459i \(0.618537\pi\)
\(500\) −7.37785 −0.329948
\(501\) 0 0
\(502\) 8.92786 0.398470
\(503\) 16.5754 0.739059 0.369530 0.929219i \(-0.379519\pi\)
0.369530 + 0.929219i \(0.379519\pi\)
\(504\) 0 0
\(505\) 20.6102i 0.917140i
\(506\) −5.77207 20.2343i −0.256600 0.899527i
\(507\) 0 0
\(508\) 1.42235 0.0631065
\(509\) 24.3067i 1.07737i 0.842506 + 0.538687i \(0.181079\pi\)
−0.842506 + 0.538687i \(0.818921\pi\)
\(510\) 0 0
\(511\) 26.6774 32.4620i 1.18014 1.43603i
\(512\) 22.7682 1.00622
\(513\) 0 0
\(514\) 26.0438i 1.14874i
\(515\) −14.0000 −0.616914
\(516\) 0 0
\(517\) 19.1648 0.842865
\(518\) 2.47529 3.01201i 0.108758 0.132340i
\(519\) 0 0
\(520\) 4.24815i 0.186293i
\(521\) 15.1783 0.664973 0.332487 0.943108i \(-0.392112\pi\)
0.332487 + 0.943108i \(0.392112\pi\)
\(522\) 0 0
\(523\) −21.4569 −0.938244 −0.469122 0.883133i \(-0.655430\pi\)
−0.469122 + 0.883133i \(0.655430\pi\)
\(524\) 3.75233i 0.163921i
\(525\) 0 0
\(526\) 10.2153i 0.445408i
\(527\) 1.12087i 0.0488257i
\(528\) 0 0
\(529\) 19.5385 12.1346i 0.849499 0.527590i
\(530\) 0.128458i 0.00557986i
\(531\) 0 0
\(532\) −4.65738 3.82746i −0.201923 0.165942i
\(533\) 4.10903 0.177982
\(534\) 0 0
\(535\) 25.5247i 1.10353i
\(536\) 15.5078i 0.669837i
\(537\) 0 0
\(538\) 23.1976i 1.00012i
\(539\) 25.5732 5.05104i 1.10151 0.217563i
\(540\) 0 0
\(541\) −35.3920 −1.52162 −0.760811 0.648973i \(-0.775199\pi\)
−0.760811 + 0.648973i \(0.775199\pi\)
\(542\) 5.48730i 0.235700i
\(543\) 0 0
\(544\) 6.57998 0.282114
\(545\) 12.1366i 0.519874i
\(546\) 0 0
\(547\) −13.4792 −0.576328 −0.288164 0.957581i \(-0.593045\pi\)
−0.288164 + 0.957581i \(0.593045\pi\)
\(548\) 10.8673i 0.464228i
\(549\) 0 0
\(550\) 9.55674i 0.407501i
\(551\) 21.5615 0.918551
\(552\) 0 0
\(553\) 29.5702 35.9820i 1.25745 1.53011i
\(554\) 27.6888 1.17639
\(555\) 0 0
\(556\) 10.0018i 0.424169i
\(557\) 46.4826i 1.96953i −0.173883 0.984766i \(-0.555631\pi\)
0.173883 0.984766i \(-0.444369\pi\)
\(558\) 0 0
\(559\) 5.76795 0.243958
\(560\) 8.24736 + 6.77773i 0.348515 + 0.286411i
\(561\) 0 0
\(562\) 2.24173i 0.0945618i
\(563\) −4.98613 −0.210140 −0.105070 0.994465i \(-0.533507\pi\)
−0.105070 + 0.994465i \(0.533507\pi\)
\(564\) 0 0
\(565\) 5.05118i 0.212505i
\(566\) 14.5595 0.611979
\(567\) 0 0
\(568\) 19.7005 0.826613
\(569\) 7.34611i 0.307965i 0.988074 + 0.153982i \(0.0492099\pi\)
−0.988074 + 0.153982i \(0.950790\pi\)
\(570\) 0 0
\(571\) 25.2039i 1.05475i −0.849633 0.527375i \(-0.823176\pi\)
0.849633 0.527375i \(-0.176824\pi\)
\(572\) −1.87248 −0.0782923
\(573\) 0 0
\(574\) −9.89579 + 12.0415i −0.413042 + 0.502603i
\(575\) 10.0455 2.86560i 0.418927 0.119504i
\(576\) 0 0
\(577\) 5.84545i 0.243349i 0.992570 + 0.121675i \(0.0388264\pi\)
−0.992570 + 0.121675i \(0.961174\pi\)
\(578\) 15.4142 0.641148
\(579\) 0 0
\(580\) 5.95110 0.247106
\(581\) 19.0039 + 15.6175i 0.788415 + 0.647924i
\(582\) 0 0
\(583\) 0.241700 0.0100102
\(584\) 48.8705i 2.02228i
\(585\) 0 0
\(586\) 33.5633 1.38649
\(587\) 14.0318i 0.579152i 0.957155 + 0.289576i \(0.0935144\pi\)
−0.957155 + 0.289576i \(0.906486\pi\)
\(588\) 0 0
\(589\) 2.10897i 0.0868985i
\(590\) 21.8608i 0.899996i
\(591\) 0 0
\(592\) 3.00402i 0.123464i
\(593\) 1.70712i 0.0701029i 0.999386 + 0.0350515i \(0.0111595\pi\)
−0.999386 + 0.0350515i \(0.988840\pi\)
\(594\) 0 0
\(595\) 6.79576 + 5.58480i 0.278599 + 0.228954i
\(596\) 11.3598i 0.465317i
\(597\) 0 0
\(598\) 1.27381 + 4.46542i 0.0520899 + 0.182605i
\(599\) −2.97636 −0.121611 −0.0608054 0.998150i \(-0.519367\pi\)
−0.0608054 + 0.998150i \(0.519367\pi\)
\(600\) 0 0
\(601\) 10.7502i 0.438509i 0.975668 + 0.219255i \(0.0703625\pi\)
−0.975668 + 0.219255i \(0.929637\pi\)
\(602\) −13.8910 + 16.9030i −0.566154 + 0.688914i
\(603\) 0 0
\(604\) 0.796024 0.0323898
\(605\) 4.81661 0.195823
\(606\) 0 0
\(607\) 26.4019i 1.07162i −0.844338 0.535810i \(-0.820006\pi\)
0.844338 0.535810i \(-0.179994\pi\)
\(608\) −12.3806 −0.502098
\(609\) 0 0
\(610\) 18.5289 0.750214
\(611\) −4.22938 −0.171102
\(612\) 0 0
\(613\) 36.7167i 1.48297i 0.670968 + 0.741486i \(0.265879\pi\)
−0.670968 + 0.741486i \(0.734121\pi\)
\(614\) 28.3187i 1.14285i
\(615\) 0 0
\(616\) 19.2498 23.4238i 0.775597 0.943772i
\(617\) 0.688767i 0.0277287i 0.999904 + 0.0138644i \(0.00441330\pi\)
−0.999904 + 0.0138644i \(0.995587\pi\)
\(618\) 0 0
\(619\) 9.51998 0.382640 0.191320 0.981528i \(-0.438723\pi\)
0.191320 + 0.981528i \(0.438723\pi\)
\(620\) 0.582088i 0.0233772i
\(621\) 0 0
\(622\) 13.7883i 0.552860i
\(623\) 24.1920 + 19.8811i 0.969231 + 0.796519i
\(624\) 0 0
\(625\) −9.36450 −0.374580
\(626\) 21.8745 0.874279
\(627\) 0 0
\(628\) −4.65363 −0.185700
\(629\) 2.47529i 0.0986962i
\(630\) 0 0
\(631\) 23.8032i 0.947592i −0.880635 0.473796i \(-0.842883\pi\)
0.880635 0.473796i \(-0.157117\pi\)
\(632\) 54.1699i 2.15476i
\(633\) 0 0
\(634\) −22.5628 −0.896084
\(635\) 3.90498 0.154964
\(636\) 0 0
\(637\) −5.64361 + 1.11469i −0.223608 + 0.0441655i
\(638\) 25.4036i 1.00574i
\(639\) 0 0
\(640\) 6.09042 0.240745
\(641\) 14.4383i 0.570277i 0.958486 + 0.285138i \(0.0920395\pi\)
−0.958486 + 0.285138i \(0.907960\pi\)
\(642\) 0 0
\(643\) −3.08846 −0.121797 −0.0608985 0.998144i \(-0.519397\pi\)
−0.0608985 + 0.998144i \(0.519397\pi\)
\(644\) 7.12012 + 3.09476i 0.280572 + 0.121951i
\(645\) 0 0
\(646\) 8.68348 0.341647
\(647\) 49.1503i 1.93230i −0.257982 0.966150i \(-0.583058\pi\)
0.257982 0.966150i \(-0.416942\pi\)
\(648\) 0 0
\(649\) 41.1323 1.61458
\(650\) 2.10903i 0.0827229i
\(651\) 0 0
\(652\) 4.09281 0.160287
\(653\) 21.3684 0.836210 0.418105 0.908399i \(-0.362694\pi\)
0.418105 + 0.908399i \(0.362694\pi\)
\(654\) 0 0
\(655\) 10.3018i 0.402525i
\(656\) 12.0096i 0.468894i
\(657\) 0 0
\(658\) 10.1856 12.3942i 0.397077 0.483176i
\(659\) 19.0601i 0.742478i −0.928537 0.371239i \(-0.878933\pi\)
0.928537 0.371239i \(-0.121067\pi\)
\(660\) 0 0
\(661\) −26.3500 −1.02489 −0.512447 0.858719i \(-0.671261\pi\)
−0.512447 + 0.858719i \(0.671261\pi\)
\(662\) −19.8892 −0.773016
\(663\) 0 0
\(664\) 28.6098 1.11028
\(665\) −12.7866 10.5081i −0.495842 0.407486i
\(666\) 0 0
\(667\) −26.7029 + 7.61730i −1.03394 + 0.294943i
\(668\) 1.71208i 0.0662424i
\(669\) 0 0
\(670\) 9.97391i 0.385326i
\(671\) 34.8631i 1.34588i
\(672\) 0 0
\(673\) −31.4474 −1.21221 −0.606105 0.795385i \(-0.707269\pi\)
−0.606105 + 0.795385i \(0.707269\pi\)
\(674\) 38.5796i 1.48603i
\(675\) 0 0
\(676\) −7.54094 −0.290036
\(677\) −22.9586 −0.882369 −0.441185 0.897416i \(-0.645442\pi\)
−0.441185 + 0.897416i \(0.645442\pi\)
\(678\) 0 0
\(679\) 30.6037 + 25.1503i 1.17446 + 0.965181i
\(680\) 10.2308 0.392334
\(681\) 0 0
\(682\) 2.48477 0.0951469
\(683\) 26.0829 0.998036 0.499018 0.866592i \(-0.333694\pi\)
0.499018 + 0.866592i \(0.333694\pi\)
\(684\) 0 0
\(685\) 29.8356i 1.13996i
\(686\) 10.3249 19.2231i 0.394208 0.733942i
\(687\) 0 0
\(688\) 16.8581i 0.642710i
\(689\) −0.0533396 −0.00203208
\(690\) 0 0
\(691\) 22.9404i 0.872694i −0.899779 0.436347i \(-0.856272\pi\)
0.899779 0.436347i \(-0.143728\pi\)
\(692\) 3.59840i 0.136791i
\(693\) 0 0
\(694\) 10.6200 0.403129
\(695\) 27.4593i 1.04159i
\(696\) 0 0
\(697\) 9.89579i 0.374830i
\(698\) 27.8451i 1.05395i
\(699\) 0 0
\(700\) 2.72422 + 2.23878i 0.102966 + 0.0846179i
\(701\) 42.0469i 1.58809i −0.607860 0.794044i \(-0.707972\pi\)
0.607860 0.794044i \(-0.292028\pi\)
\(702\) 0 0
\(703\) 4.65738i 0.175656i
\(704\) 32.4756i 1.22397i
\(705\) 0 0
\(706\) 23.6059i 0.888419i
\(707\) −20.6102 + 25.0791i −0.775125 + 0.943197i
\(708\) 0 0
\(709\) 25.1440i 0.944303i 0.881517 + 0.472152i \(0.156522\pi\)
−0.881517 + 0.472152i \(0.843478\pi\)
\(710\) 12.6704 0.475511
\(711\) 0 0
\(712\) 36.4203 1.36491
\(713\) 0.745061 + 2.61186i 0.0279028 + 0.0978149i
\(714\) 0 0
\(715\) −5.14078 −0.192254
\(716\) −0.0617473 −0.00230761
\(717\) 0 0
\(718\) 1.97916i 0.0738615i
\(719\) 40.4831i 1.50976i 0.655860 + 0.754882i \(0.272306\pi\)
−0.655860 + 0.754882i \(0.727694\pi\)
\(720\) 0 0
\(721\) 17.0357 + 14.0000i 0.634441 + 0.521387i
\(722\) 6.04728 0.225057
\(723\) 0 0
\(724\) 7.74415 0.287809
\(725\) −12.6119 −0.468393
\(726\) 0 0
\(727\) 46.9536 1.74141 0.870706 0.491805i \(-0.163663\pi\)
0.870706 + 0.491805i \(0.163663\pi\)
\(728\) −4.24815 + 5.16928i −0.157447 + 0.191586i
\(729\) 0 0
\(730\) 31.4312i 1.16332i
\(731\) 13.8910i 0.513776i
\(732\) 0 0
\(733\) 30.7288 1.13499 0.567497 0.823375i \(-0.307912\pi\)
0.567497 + 0.823375i \(0.307912\pi\)
\(734\) −6.51956 −0.240641
\(735\) 0 0
\(736\) 15.3327 4.37383i 0.565173 0.161222i
\(737\) −18.7664 −0.691270
\(738\) 0 0
\(739\) 45.8338 1.68602 0.843012 0.537895i \(-0.180780\pi\)
0.843012 + 0.537895i \(0.180780\pi\)
\(740\) 1.28546i 0.0472546i
\(741\) 0 0
\(742\) 0.128458 0.156312i 0.00471584 0.00573839i
\(743\) 23.6056i 0.866004i −0.901393 0.433002i \(-0.857454\pi\)
0.901393 0.433002i \(-0.142546\pi\)
\(744\) 0 0
\(745\) 31.1878i 1.14263i
\(746\) 13.1955i 0.483123i
\(747\) 0 0
\(748\) 4.50950i 0.164883i
\(749\) 25.5247 31.0593i 0.932653 1.13488i
\(750\) 0 0
\(751\) 1.36391i 0.0497697i 0.999690 + 0.0248848i \(0.00792191\pi\)
−0.999690 + 0.0248848i \(0.992078\pi\)
\(752\) 12.3613i 0.450770i
\(753\) 0 0
\(754\) 5.60620i 0.204166i
\(755\) 2.18544 0.0795363
\(756\) 0 0
\(757\) 49.5797i 1.80201i 0.433814 + 0.901003i \(0.357168\pi\)
−0.433814 + 0.901003i \(0.642832\pi\)
\(758\) 7.91663i 0.287545i
\(759\) 0 0
\(760\) −19.2498 −0.698264
\(761\) 31.9227i 1.15720i 0.815612 + 0.578599i \(0.196400\pi\)
−0.815612 + 0.578599i \(0.803600\pi\)
\(762\) 0 0
\(763\) −12.1366 + 14.7682i −0.439373 + 0.534644i
\(764\) 4.38091i 0.158496i
\(765\) 0 0
\(766\) 30.5924 1.10535
\(767\) −9.07728 −0.327761
\(768\) 0 0
\(769\) −18.7009 −0.674372 −0.337186 0.941438i \(-0.609475\pi\)
−0.337186 + 0.941438i \(0.609475\pi\)
\(770\) 12.3806 15.0651i 0.446165 0.542907i
\(771\) 0 0
\(772\) 4.15455 0.149526
\(773\) 6.40633 0.230420 0.115210 0.993341i \(-0.463246\pi\)
0.115210 + 0.993341i \(0.463246\pi\)
\(774\) 0 0
\(775\) 1.23359i 0.0443118i
\(776\) 46.0730 1.65393
\(777\) 0 0
\(778\) 10.9538i 0.392713i
\(779\) 18.6194i 0.667110i
\(780\) 0 0
\(781\) 23.8400i 0.853062i
\(782\) −10.7541 + 3.06772i −0.384565 + 0.109701i
\(783\) 0 0
\(784\) −3.25792 16.4947i −0.116354 0.589097i
\(785\) −12.7763 −0.456005
\(786\) 0 0
\(787\) 46.2085 1.64716 0.823578 0.567204i \(-0.191975\pi\)
0.823578 + 0.567204i \(0.191975\pi\)
\(788\) −8.86764 −0.315897
\(789\) 0 0
\(790\) 34.8395i 1.23953i
\(791\) −5.05118 + 6.14644i −0.179599 + 0.218542i
\(792\) 0 0
\(793\) 7.69377i 0.273214i
\(794\) 3.56036i 0.126353i
\(795\) 0 0
\(796\) −6.93920 −0.245953
\(797\) −47.2111 −1.67230 −0.836152 0.548498i \(-0.815200\pi\)
−0.836152 + 0.548498i \(0.815200\pi\)
\(798\) 0 0
\(799\) 10.1856i 0.360341i
\(800\) 7.24170 0.256033
\(801\) 0 0
\(802\) 39.8866i 1.40845i
\(803\) −59.1394 −2.08698
\(804\) 0 0
\(805\) 19.5479 + 8.49650i 0.688973 + 0.299462i
\(806\) −0.548352 −0.0193149
\(807\) 0 0
\(808\) 37.7558i 1.32825i
\(809\) 45.4513 1.59798 0.798992 0.601342i \(-0.205367\pi\)
0.798992 + 0.601342i \(0.205367\pi\)
\(810\) 0 0
\(811\) 26.2375i 0.921323i 0.887576 + 0.460661i \(0.152388\pi\)
−0.887576 + 0.460661i \(0.847612\pi\)
\(812\) −7.24149 5.95110i −0.254127 0.208843i
\(813\) 0 0
\(814\) −5.48730 −0.192330
\(815\) 11.2366 0.393600
\(816\) 0 0
\(817\) 26.1366i 0.914403i
\(818\) 22.2198i 0.776898i
\(819\) 0 0
\(820\) 5.13907i 0.179464i
\(821\) −31.0692 −1.08432 −0.542161 0.840275i \(-0.682394\pi\)
−0.542161 + 0.840275i \(0.682394\pi\)
\(822\) 0 0
\(823\) −44.6694 −1.55708 −0.778539 0.627597i \(-0.784039\pi\)
−0.778539 + 0.627597i \(0.784039\pi\)
\(824\) 25.6467 0.893444
\(825\) 0 0
\(826\) 21.8608 26.6010i 0.760636 0.925566i
\(827\) 18.7327i 0.651398i 0.945473 + 0.325699i \(0.105600\pi\)
−0.945473 + 0.325699i \(0.894400\pi\)
\(828\) 0 0
\(829\) 35.6355i 1.23767i 0.785520 + 0.618836i \(0.212395\pi\)
−0.785520 + 0.618836i \(0.787605\pi\)
\(830\) 18.4005 0.638689
\(831\) 0 0
\(832\) 7.16688i 0.248467i
\(833\) −2.68451 13.5915i −0.0930126 0.470919i
\(834\) 0 0
\(835\) 4.70042i 0.162665i
\(836\) 8.48485i 0.293455i
\(837\) 0 0
\(838\) −30.5729 −1.05612
\(839\) 27.3063 0.942719 0.471359 0.881941i \(-0.343763\pi\)
0.471359 + 0.881941i \(0.343763\pi\)
\(840\) 0 0
\(841\) 4.52471 0.156025
\(842\) 1.36391i 0.0470033i
\(843\) 0 0
\(844\) −6.51239 −0.224166
\(845\) −20.7032 −0.712212
\(846\) 0 0
\(847\) −5.86100 4.81661i −0.201386 0.165501i
\(848\) 0.155897i 0.00535353i
\(849\) 0 0
\(850\) −5.07918 −0.174215
\(851\) −1.64537 5.76795i −0.0564026 0.197723i
\(852\) 0 0
\(853\) 49.8730i 1.70762i 0.520586 + 0.853809i \(0.325714\pi\)
−0.520586 + 0.853809i \(0.674286\pi\)
\(854\) −22.5466 18.5289i −0.771529 0.634047i
\(855\) 0 0
\(856\) 46.7588i 1.59818i
\(857\) 1.05539i 0.0360516i 0.999838 + 0.0180258i \(0.00573810\pi\)
−0.999838 + 0.0180258i \(0.994262\pi\)
\(858\) 0 0
\(859\) 58.0910i 1.98204i −0.133710 0.991020i \(-0.542689\pi\)
0.133710 0.991020i \(-0.457311\pi\)
\(860\) 7.21385i 0.245990i
\(861\) 0 0
\(862\) 44.4134i 1.51273i
\(863\) −14.2018 −0.483436 −0.241718 0.970347i \(-0.577711\pi\)
−0.241718 + 0.970347i \(0.577711\pi\)
\(864\) 0 0
\(865\) 9.87921i 0.335903i
\(866\) 47.0350 1.59832
\(867\) 0 0
\(868\) −0.582088 + 0.708303i −0.0197573 + 0.0240414i
\(869\) −65.5523 −2.22371
\(870\) 0 0
\(871\) 4.14147 0.140328
\(872\) 22.2330i 0.752906i
\(873\) 0 0
\(874\) 20.2343 5.77207i 0.684437 0.195243i
\(875\) 24.6475 + 20.2555i 0.833238 + 0.684760i
\(876\) 0 0
\(877\) −14.8973 −0.503047 −0.251523 0.967851i \(-0.580932\pi\)
−0.251523 + 0.967851i \(0.580932\pi\)
\(878\) 19.2614i 0.650042i
\(879\) 0 0
\(880\) 15.0251i 0.506496i
\(881\) 30.5759 1.03013 0.515064 0.857152i \(-0.327768\pi\)
0.515064 + 0.857152i \(0.327768\pi\)
\(882\) 0 0
\(883\) −41.6532 −1.40174 −0.700870 0.713289i \(-0.747205\pi\)
−0.700870 + 0.713289i \(0.747205\pi\)
\(884\) 0.995178i 0.0334715i
\(885\) 0 0
\(886\) 14.3529 0.482194
\(887\) 10.2911i 0.345542i 0.984962 + 0.172771i \(0.0552721\pi\)
−0.984962 + 0.172771i \(0.944728\pi\)
\(888\) 0 0
\(889\) −4.75170 3.90498i −0.159367 0.130969i
\(890\) 23.4238 0.785167
\(891\) 0 0
\(892\) 0.536723i 0.0179708i
\(893\) 19.1648i 0.641324i
\(894\) 0 0
\(895\) −0.169524 −0.00566655
\(896\) −7.41101 6.09042i −0.247585 0.203467i
\(897\) 0 0
\(898\) 7.89732 0.263537
\(899\) 3.27911i 0.109364i
\(900\) 0 0
\(901\) 0.128458i 0.00427956i
\(902\) 21.9373 0.730432
\(903\) 0 0
\(904\) 9.25328i 0.307760i
\(905\) 21.2611 0.706744
\(906\) 0 0
\(907\) 48.4221i 1.60783i 0.594745 + 0.803915i \(0.297253\pi\)
−0.594745 + 0.803915i \(0.702747\pi\)
\(908\) −4.86635 −0.161496
\(909\) 0 0
\(910\) −2.73220 + 3.32464i −0.0905717 + 0.110211i
\(911\) 12.0048i 0.397735i −0.980026 0.198868i \(-0.936274\pi\)
0.980026 0.198868i \(-0.0637264\pi\)
\(912\) 0 0
\(913\) 34.6214i 1.14580i
\(914\) 32.2622i 1.06714i
\(915\) 0 0
\(916\) −7.54378 −0.249254
\(917\) 10.3018 12.5356i 0.340195 0.413961i
\(918\) 0 0
\(919\) 51.3757i 1.69473i −0.531012 0.847364i \(-0.678188\pi\)
0.531012 0.847364i \(-0.321812\pi\)
\(920\) 23.8400 6.80062i 0.785981 0.224210i
\(921\) 0 0
\(922\) 40.3363i 1.32841i
\(923\) 5.26113i 0.173172i
\(924\) 0 0
\(925\) 2.72422i 0.0895718i
\(926\) −26.9679 −0.886221
\(927\) 0 0
\(928\) −19.2498 −0.631906
\(929\) 33.4157i 1.09633i 0.836369 + 0.548166i \(0.184674\pi\)
−0.836369 + 0.548166i \(0.815326\pi\)
\(930\) 0 0
\(931\) 5.05104 + 25.5732i 0.165541 + 0.838126i
\(932\) −2.07306 −0.0679055
\(933\) 0 0
\(934\) 7.30138 0.238908
\(935\) 12.3806i 0.404888i
\(936\) 0 0
\(937\) −36.8746 −1.20464 −0.602321 0.798254i \(-0.705757\pi\)
−0.602321 + 0.798254i \(0.705757\pi\)
\(938\) −9.97391 + 12.1366i −0.325660 + 0.396273i
\(939\) 0 0
\(940\) 5.28959i 0.172527i
\(941\) −43.8283 −1.42876 −0.714382 0.699756i \(-0.753292\pi\)
−0.714382 + 0.699756i \(0.753292\pi\)
\(942\) 0 0
\(943\) 6.57792 + 23.0593i 0.214206 + 0.750914i
\(944\) 26.5304i 0.863490i
\(945\) 0 0
\(946\) 30.7940 1.00120
\(947\) −0.0635063 −0.00206368 −0.00103184 0.999999i \(-0.500328\pi\)
−0.00103184 + 0.999999i \(0.500328\pi\)
\(948\) 0 0
\(949\) 13.0512 0.423659
\(950\) 9.55674 0.310062
\(951\) 0 0
\(952\) −12.4492 10.2308i −0.403481 0.331583i
\(953\) 6.83754i 0.221490i −0.993849 0.110745i \(-0.964676\pi\)
0.993849 0.110745i \(-0.0353236\pi\)
\(954\) 0 0
\(955\) 12.0275i 0.389202i
\(956\) −8.40971 −0.271989
\(957\) 0 0
\(958\) −40.2257 −1.29963
\(959\) 29.8356 36.3049i 0.963441 1.17235i
\(960\) 0 0
\(961\) 30.6793 0.989654
\(962\) 1.21096 0.0390431
\(963\) 0 0
\(964\) −11.6793 −0.376166
\(965\) 11.4061 0.367175
\(966\) 0 0
\(967\) 19.7819 0.636144 0.318072 0.948067i \(-0.396965\pi\)
0.318072 + 0.948067i \(0.396965\pi\)
\(968\) −8.82356 −0.283600
\(969\) 0 0
\(970\) 29.6320 0.951426
\(971\) 36.9395 1.18545 0.592723 0.805406i \(-0.298053\pi\)
0.592723 + 0.805406i \(0.298053\pi\)
\(972\) 0 0
\(973\) −27.4593 + 33.4133i −0.880303 + 1.07118i
\(974\) −32.6115 −1.04494
\(975\) 0 0
\(976\) −22.4868 −0.719783
\(977\) 30.1186i 0.963578i 0.876287 + 0.481789i \(0.160013\pi\)
−0.876287 + 0.481789i \(0.839987\pi\)
\(978\) 0 0
\(979\) 44.0731i 1.40858i
\(980\) 1.39412 + 7.05834i 0.0445334 + 0.225470i
\(981\) 0 0
\(982\) 6.62808 0.211511
\(983\) −22.5727 −0.719958 −0.359979 0.932960i \(-0.617216\pi\)
−0.359979 + 0.932960i \(0.617216\pi\)
\(984\) 0 0
\(985\) −24.3456 −0.775716
\(986\) 13.5014 0.429973
\(987\) 0 0
\(988\) 1.87248i 0.0595715i
\(989\) 9.23359 + 32.3689i 0.293611 + 1.02927i
\(990\) 0 0
\(991\) 6.45165 0.204943 0.102472 0.994736i \(-0.467325\pi\)
0.102472 + 0.994736i \(0.467325\pi\)
\(992\) 1.88286i 0.0597808i
\(993\) 0 0
\(994\) −15.4177 12.6704i −0.489021 0.401880i
\(995\) −19.0512 −0.603963
\(996\) 0 0
\(997\) 18.9227i 0.599289i 0.954051 + 0.299644i \(0.0968680\pi\)
−0.954051 + 0.299644i \(0.903132\pi\)
\(998\) 19.1521 0.606249
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1449.2.h.e.1126.6 12
3.2 odd 2 483.2.h.c.160.8 yes 12
7.6 odd 2 inner 1449.2.h.e.1126.8 12
21.20 even 2 483.2.h.c.160.5 12
23.22 odd 2 inner 1449.2.h.e.1126.7 12
69.68 even 2 483.2.h.c.160.7 yes 12
161.160 even 2 inner 1449.2.h.e.1126.5 12
483.482 odd 2 483.2.h.c.160.6 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
483.2.h.c.160.5 12 21.20 even 2
483.2.h.c.160.6 yes 12 483.482 odd 2
483.2.h.c.160.7 yes 12 69.68 even 2
483.2.h.c.160.8 yes 12 3.2 odd 2
1449.2.h.e.1126.5 12 161.160 even 2 inner
1449.2.h.e.1126.6 12 1.1 even 1 trivial
1449.2.h.e.1126.7 12 23.22 odd 2 inner
1449.2.h.e.1126.8 12 7.6 odd 2 inner