Properties

Label 145.1.f.a
Level $145$
Weight $1$
Character orbit 145.f
Analytic conductor $0.072$
Analytic rank $0$
Dimension $2$
Projective image $D_{4}$
RM discriminant 5
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [145,1,Mod(99,145)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(145, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("145.99");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 145 = 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 145.f (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.0723644268318\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{4}\)
Projective field: Galois closure of 4.0.121945.1
Artin image: $C_4\wr C_2$
Artin field: Galois closure of 8.4.15243125.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + i q^{4} - i q^{5} + i q^{9} + ( - i - 1) q^{11} - q^{16} + ( - i - 1) q^{19} + q^{20} - q^{25} + i q^{29} + (i + 1) q^{31} - q^{36} + ( - i + 1) q^{41} + ( - i + 1) q^{44} + q^{45} + q^{49} + (i - 1) q^{55} + \cdots + ( - i + 1) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{11} - 2 q^{16} - 2 q^{19} + 2 q^{20} - 2 q^{25} + 2 q^{31} - 2 q^{36} + 2 q^{41} + 2 q^{44} + 2 q^{45} + 2 q^{49} - 2 q^{55} + 2 q^{61} + 2 q^{76} - 2 q^{79} - 2 q^{81} - 2 q^{89} - 2 q^{95}+ \cdots + 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/145\mathbb{Z}\right)^\times\).

\(n\) \(31\) \(117\)
\(\chi(n)\) \(i\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
99.1
1.00000i
1.00000i
0 0 1.00000i 1.00000i 0 0 0 1.00000i 0
104.1 0 0 1.00000i 1.00000i 0 0 0 1.00000i 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 RM by \(\Q(\sqrt{5}) \)
29.c odd 4 1 inner
145.f odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 145.1.f.a 2
3.b odd 2 1 1305.1.l.a 2
4.b odd 2 1 2320.1.bj.a 2
5.b even 2 1 RM 145.1.f.a 2
5.c odd 4 2 725.1.g.a 2
15.d odd 2 1 1305.1.l.a 2
20.d odd 2 1 2320.1.bj.a 2
29.c odd 4 1 inner 145.1.f.a 2
87.f even 4 1 1305.1.l.a 2
116.e even 4 1 2320.1.bj.a 2
145.e even 4 1 725.1.g.a 2
145.f odd 4 1 inner 145.1.f.a 2
145.j even 4 1 725.1.g.a 2
435.l even 4 1 1305.1.l.a 2
580.r even 4 1 2320.1.bj.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
145.1.f.a 2 1.a even 1 1 trivial
145.1.f.a 2 5.b even 2 1 RM
145.1.f.a 2 29.c odd 4 1 inner
145.1.f.a 2 145.f odd 4 1 inner
725.1.g.a 2 5.c odd 4 2
725.1.g.a 2 145.e even 4 1
725.1.g.a 2 145.j even 4 1
1305.1.l.a 2 3.b odd 2 1
1305.1.l.a 2 15.d odd 2 1
1305.1.l.a 2 87.f even 4 1
1305.1.l.a 2 435.l even 4 1
2320.1.bj.a 2 4.b odd 2 1
2320.1.bj.a 2 20.d odd 2 1
2320.1.bj.a 2 116.e even 4 1
2320.1.bj.a 2 580.r even 4 1

Hecke kernels

This newform subspace is the entire newspace \(S_{1}^{\mathrm{new}}(145, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 1 \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$23$ \( T^{2} \) Copy content Toggle raw display
$29$ \( T^{2} + 1 \) Copy content Toggle raw display
$31$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$37$ \( T^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$43$ \( T^{2} \) Copy content Toggle raw display
$47$ \( T^{2} \) Copy content Toggle raw display
$53$ \( T^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} - 2T + 2 \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + 4 \) Copy content Toggle raw display
$73$ \( T^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$83$ \( T^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 2T + 2 \) Copy content Toggle raw display
$97$ \( T^{2} \) Copy content Toggle raw display
show more
show less