Properties

Label 145.4.a.b
Level $145$
Weight $4$
Character orbit 145.a
Self dual yes
Analytic conductor $8.555$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [145,4,Mod(1,145)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(145, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("145.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 145 = 5 \cdot 29 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 145.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(8.55527695083\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} - 28x^{4} + 52x^{3} + 110x^{2} - 272x + 128 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 - 1) q^{2} + (\beta_{4} + \beta_1 - 2) q^{3} + ( - \beta_{3} + \beta_{2} + 3) q^{4} + 5 q^{5} + ( - 3 \beta_{4} - 2 \beta_{2} + \cdots - 6) q^{6} + (\beta_{5} - \beta_{4} + 2 \beta_{3} + \cdots - 13) q^{7}+ \cdots + (11 \beta_{5} - 131 \beta_{4} + \cdots - 168) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 7 q^{2} - 13 q^{3} + 17 q^{4} + 30 q^{5} - 21 q^{6} - 79 q^{7} + 3 q^{8} + 81 q^{9} - 35 q^{10} - 44 q^{11} - 61 q^{12} - 53 q^{13} + 111 q^{14} - 65 q^{15} - 75 q^{16} - 145 q^{17} - 98 q^{18} - 84 q^{19}+ \cdots - 206 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - x^{5} - 28x^{4} + 52x^{3} + 110x^{2} - 272x + 128 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -\nu^{5} + \nu^{4} + 28\nu^{3} - 36\nu^{2} - 94\nu + 64 ) / 16 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{5} + \nu^{4} + 28\nu^{3} - 52\nu^{2} - 126\nu + 224 ) / 16 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( 5\nu^{5} + 3\nu^{4} - 132\nu^{3} + 52\nu^{2} + 566\nu - 448 ) / 16 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -9\nu^{5} + \nu^{4} + 260\nu^{3} - 228\nu^{2} - 1310\nu + 1280 ) / 16 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( -\beta_{3} + \beta_{2} - 2\beta _1 + 10 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{5} + \beta_{4} - 2\beta_{3} - 2\beta_{2} + 19\beta _1 - 16 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( -\beta_{5} + \beta_{4} - 14\beta_{3} + 28\beta_{2} - 63\beta _1 + 192 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( 27\beta_{5} + 29\beta_{4} - 34\beta_{3} - 80\beta_{2} + 447\beta _1 - 552 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.95722
2.50685
1.39843
0.733923
−2.43640
−5.16002
−4.95722 2.82724 16.5740 5.00000 −14.0153 −23.0628 −42.5033 −19.0067 −24.7861
1.2 −3.50685 −10.0154 4.29800 5.00000 35.1224 −18.1119 12.9824 73.3075 −17.5343
1.3 −2.39843 7.05006 −2.24753 5.00000 −16.9091 −34.7748 24.5780 22.7033 −11.9921
1.4 −1.73392 −4.69344 −4.99351 5.00000 8.13806 24.1441 22.5297 −4.97161 −8.66961
1.5 1.43640 −0.236828 −5.93675 5.00000 −0.340181 −1.74251 −20.0188 −26.9439 7.18201
1.6 4.16002 −7.93167 9.30577 5.00000 −32.9959 −25.4521 5.43202 35.9114 20.8001
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.6
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(5\) \( -1 \)
\(29\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 145.4.a.b 6
3.b odd 2 1 1305.4.a.k 6
4.b odd 2 1 2320.4.a.q 6
5.b even 2 1 725.4.a.e 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
145.4.a.b 6 1.a even 1 1 trivial
725.4.a.e 6 5.b even 2 1
1305.4.a.k 6 3.b odd 2 1
2320.4.a.q 6 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{6} + 7T_{2}^{5} - 8T_{2}^{4} - 134T_{2}^{3} - 189T_{2}^{2} + 235T_{2} + 432 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(145))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{6} + 7 T^{5} + \cdots + 432 \) Copy content Toggle raw display
$3$ \( T^{6} + 13 T^{5} + \cdots + 1760 \) Copy content Toggle raw display
$5$ \( (T - 5)^{6} \) Copy content Toggle raw display
$7$ \( T^{6} + 79 T^{5} + \cdots - 15554232 \) Copy content Toggle raw display
$11$ \( T^{6} + 44 T^{5} + \cdots - 825339712 \) Copy content Toggle raw display
$13$ \( T^{6} + 53 T^{5} + \cdots - 709906608 \) Copy content Toggle raw display
$17$ \( T^{6} + \cdots + 98710833232 \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots + 4689647936 \) Copy content Toggle raw display
$23$ \( T^{6} + \cdots - 308235736584 \) Copy content Toggle raw display
$29$ \( (T + 29)^{6} \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots - 263130127648 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots - 340583216640 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots + 42378124088000 \) Copy content Toggle raw display
$43$ \( T^{6} + \cdots - 12169261515536 \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots - 411657204692736 \) Copy content Toggle raw display
$53$ \( T^{6} + \cdots + 201884510509264 \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots - 27\!\cdots\!00 \) Copy content Toggle raw display
$61$ \( T^{6} + \cdots - 54\!\cdots\!84 \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots - 47\!\cdots\!12 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots - 44\!\cdots\!08 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 10\!\cdots\!72 \) Copy content Toggle raw display
$79$ \( T^{6} + \cdots + 660071840350080 \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 308459236115232 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots - 836484908883776 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 11\!\cdots\!28 \) Copy content Toggle raw display
show more
show less