Properties

Label 1450.2.a.q.1.3
Level $1450$
Weight $2$
Character 1450.1
Self dual yes
Analytic conductor $11.578$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1450,2,Mod(1,1450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1450, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1450.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1450 = 2 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1450.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.5783082931\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.316.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.34292\) of defining polynomial
Character \(\chi\) \(=\) 1450.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +2.34292 q^{3} +1.00000 q^{4} -2.34292 q^{6} +3.83221 q^{7} -1.00000 q^{8} +2.48929 q^{9} +3.19656 q^{11} +2.34292 q^{12} -1.14637 q^{13} -3.83221 q^{14} +1.00000 q^{16} -0.803442 q^{17} -2.48929 q^{18} -2.34292 q^{19} +8.97858 q^{21} -3.19656 q^{22} +8.12494 q^{23} -2.34292 q^{24} +1.14637 q^{26} -1.19656 q^{27} +3.83221 q^{28} +1.00000 q^{29} +1.90383 q^{31} -1.00000 q^{32} +7.48929 q^{33} +0.803442 q^{34} +2.48929 q^{36} -7.63565 q^{37} +2.34292 q^{38} -2.68585 q^{39} +8.63565 q^{41} -8.97858 q^{42} -7.66442 q^{43} +3.19656 q^{44} -8.12494 q^{46} -11.4679 q^{47} +2.34292 q^{48} +7.68585 q^{49} -1.88240 q^{51} -1.14637 q^{52} +0.560904 q^{53} +1.19656 q^{54} -3.83221 q^{56} -5.48929 q^{57} -1.00000 q^{58} +2.36435 q^{59} +10.7146 q^{61} -1.90383 q^{62} +9.53948 q^{63} +1.00000 q^{64} -7.48929 q^{66} +5.12494 q^{67} -0.803442 q^{68} +19.0361 q^{69} +8.12494 q^{71} -2.48929 q^{72} -5.71462 q^{73} +7.63565 q^{74} -2.34292 q^{76} +12.2499 q^{77} +2.68585 q^{78} -14.9357 q^{79} -10.2713 q^{81} -8.63565 q^{82} +3.09617 q^{83} +8.97858 q^{84} +7.66442 q^{86} +2.34292 q^{87} -3.19656 q^{88} -3.32150 q^{89} -4.39312 q^{91} +8.12494 q^{92} +4.46052 q^{93} +11.4679 q^{94} -2.34292 q^{96} -11.5395 q^{97} -7.68585 q^{98} +7.95715 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{2} + q^{3} + 3 q^{4} - q^{6} - 2 q^{7} - 3 q^{8} + 5 q^{11} + q^{12} - 2 q^{13} + 2 q^{14} + 3 q^{16} - 7 q^{17} - q^{19} + 12 q^{21} - 5 q^{22} + 8 q^{23} - q^{24} + 2 q^{26} + q^{27}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 2.34292 1.35269 0.676344 0.736586i \(-0.263563\pi\)
0.676344 + 0.736586i \(0.263563\pi\)
\(4\) 1.00000 0.500000
\(5\) 0 0
\(6\) −2.34292 −0.956494
\(7\) 3.83221 1.44844 0.724220 0.689569i \(-0.242200\pi\)
0.724220 + 0.689569i \(0.242200\pi\)
\(8\) −1.00000 −0.353553
\(9\) 2.48929 0.829763
\(10\) 0 0
\(11\) 3.19656 0.963798 0.481899 0.876227i \(-0.339947\pi\)
0.481899 + 0.876227i \(0.339947\pi\)
\(12\) 2.34292 0.676344
\(13\) −1.14637 −0.317945 −0.158972 0.987283i \(-0.550818\pi\)
−0.158972 + 0.987283i \(0.550818\pi\)
\(14\) −3.83221 −1.02420
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −0.803442 −0.194863 −0.0974317 0.995242i \(-0.531063\pi\)
−0.0974317 + 0.995242i \(0.531063\pi\)
\(18\) −2.48929 −0.586731
\(19\) −2.34292 −0.537503 −0.268752 0.963209i \(-0.586611\pi\)
−0.268752 + 0.963209i \(0.586611\pi\)
\(20\) 0 0
\(21\) 8.97858 1.95929
\(22\) −3.19656 −0.681508
\(23\) 8.12494 1.69417 0.847084 0.531459i \(-0.178356\pi\)
0.847084 + 0.531459i \(0.178356\pi\)
\(24\) −2.34292 −0.478247
\(25\) 0 0
\(26\) 1.14637 0.224821
\(27\) −1.19656 −0.230278
\(28\) 3.83221 0.724220
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) 1.90383 0.341937 0.170969 0.985276i \(-0.445310\pi\)
0.170969 + 0.985276i \(0.445310\pi\)
\(32\) −1.00000 −0.176777
\(33\) 7.48929 1.30372
\(34\) 0.803442 0.137789
\(35\) 0 0
\(36\) 2.48929 0.414881
\(37\) −7.63565 −1.25529 −0.627647 0.778498i \(-0.715982\pi\)
−0.627647 + 0.778498i \(0.715982\pi\)
\(38\) 2.34292 0.380072
\(39\) −2.68585 −0.430080
\(40\) 0 0
\(41\) 8.63565 1.34866 0.674331 0.738429i \(-0.264432\pi\)
0.674331 + 0.738429i \(0.264432\pi\)
\(42\) −8.97858 −1.38542
\(43\) −7.66442 −1.16881 −0.584407 0.811461i \(-0.698673\pi\)
−0.584407 + 0.811461i \(0.698673\pi\)
\(44\) 3.19656 0.481899
\(45\) 0 0
\(46\) −8.12494 −1.19796
\(47\) −11.4679 −1.67276 −0.836380 0.548150i \(-0.815332\pi\)
−0.836380 + 0.548150i \(0.815332\pi\)
\(48\) 2.34292 0.338172
\(49\) 7.68585 1.09798
\(50\) 0 0
\(51\) −1.88240 −0.263589
\(52\) −1.14637 −0.158972
\(53\) 0.560904 0.0770460 0.0385230 0.999258i \(-0.487735\pi\)
0.0385230 + 0.999258i \(0.487735\pi\)
\(54\) 1.19656 0.162831
\(55\) 0 0
\(56\) −3.83221 −0.512101
\(57\) −5.48929 −0.727074
\(58\) −1.00000 −0.131306
\(59\) 2.36435 0.307812 0.153906 0.988086i \(-0.450815\pi\)
0.153906 + 0.988086i \(0.450815\pi\)
\(60\) 0 0
\(61\) 10.7146 1.37187 0.685933 0.727665i \(-0.259394\pi\)
0.685933 + 0.727665i \(0.259394\pi\)
\(62\) −1.90383 −0.241786
\(63\) 9.53948 1.20186
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −7.48929 −0.921868
\(67\) 5.12494 0.626111 0.313056 0.949735i \(-0.398647\pi\)
0.313056 + 0.949735i \(0.398647\pi\)
\(68\) −0.803442 −0.0974317
\(69\) 19.0361 2.29168
\(70\) 0 0
\(71\) 8.12494 0.964253 0.482127 0.876102i \(-0.339865\pi\)
0.482127 + 0.876102i \(0.339865\pi\)
\(72\) −2.48929 −0.293365
\(73\) −5.71462 −0.668845 −0.334423 0.942423i \(-0.608541\pi\)
−0.334423 + 0.942423i \(0.608541\pi\)
\(74\) 7.63565 0.887627
\(75\) 0 0
\(76\) −2.34292 −0.268752
\(77\) 12.2499 1.39600
\(78\) 2.68585 0.304112
\(79\) −14.9357 −1.68040 −0.840201 0.542276i \(-0.817563\pi\)
−0.840201 + 0.542276i \(0.817563\pi\)
\(80\) 0 0
\(81\) −10.2713 −1.14126
\(82\) −8.63565 −0.953648
\(83\) 3.09617 0.339849 0.169925 0.985457i \(-0.445648\pi\)
0.169925 + 0.985457i \(0.445648\pi\)
\(84\) 8.97858 0.979643
\(85\) 0 0
\(86\) 7.66442 0.826476
\(87\) 2.34292 0.251188
\(88\) −3.19656 −0.340754
\(89\) −3.32150 −0.352078 −0.176039 0.984383i \(-0.556329\pi\)
−0.176039 + 0.984383i \(0.556329\pi\)
\(90\) 0 0
\(91\) −4.39312 −0.460524
\(92\) 8.12494 0.847084
\(93\) 4.46052 0.462534
\(94\) 11.4679 1.18282
\(95\) 0 0
\(96\) −2.34292 −0.239124
\(97\) −11.5395 −1.17166 −0.585828 0.810435i \(-0.699231\pi\)
−0.585828 + 0.810435i \(0.699231\pi\)
\(98\) −7.68585 −0.776388
\(99\) 7.95715 0.799724
\(100\) 0 0
\(101\) 5.63565 0.560769 0.280384 0.959888i \(-0.409538\pi\)
0.280384 + 0.959888i \(0.409538\pi\)
\(102\) 1.88240 0.186386
\(103\) −17.5970 −1.73389 −0.866943 0.498407i \(-0.833918\pi\)
−0.866943 + 0.498407i \(0.833918\pi\)
\(104\) 1.14637 0.112410
\(105\) 0 0
\(106\) −0.560904 −0.0544798
\(107\) 1.56090 0.150898 0.0754491 0.997150i \(-0.475961\pi\)
0.0754491 + 0.997150i \(0.475961\pi\)
\(108\) −1.19656 −0.115139
\(109\) 11.4966 1.10118 0.550589 0.834776i \(-0.314403\pi\)
0.550589 + 0.834776i \(0.314403\pi\)
\(110\) 0 0
\(111\) −17.8898 −1.69802
\(112\) 3.83221 0.362110
\(113\) 5.36435 0.504635 0.252318 0.967644i \(-0.418807\pi\)
0.252318 + 0.967644i \(0.418807\pi\)
\(114\) 5.48929 0.514119
\(115\) 0 0
\(116\) 1.00000 0.0928477
\(117\) −2.85363 −0.263819
\(118\) −2.36435 −0.217656
\(119\) −3.07896 −0.282248
\(120\) 0 0
\(121\) −0.782020 −0.0710927
\(122\) −10.7146 −0.970056
\(123\) 20.2327 1.82432
\(124\) 1.90383 0.170969
\(125\) 0 0
\(126\) −9.53948 −0.849844
\(127\) 7.90383 0.701351 0.350676 0.936497i \(-0.385952\pi\)
0.350676 + 0.936497i \(0.385952\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −17.9572 −1.58104
\(130\) 0 0
\(131\) −3.10352 −0.271156 −0.135578 0.990767i \(-0.543289\pi\)
−0.135578 + 0.990767i \(0.543289\pi\)
\(132\) 7.48929 0.651859
\(133\) −8.97858 −0.778541
\(134\) −5.12494 −0.442728
\(135\) 0 0
\(136\) 0.803442 0.0688946
\(137\) 19.2541 1.64499 0.822494 0.568773i \(-0.192582\pi\)
0.822494 + 0.568773i \(0.192582\pi\)
\(138\) −19.0361 −1.62046
\(139\) 6.43910 0.546157 0.273079 0.961992i \(-0.411958\pi\)
0.273079 + 0.961992i \(0.411958\pi\)
\(140\) 0 0
\(141\) −26.8683 −2.26272
\(142\) −8.12494 −0.681830
\(143\) −3.66442 −0.306434
\(144\) 2.48929 0.207441
\(145\) 0 0
\(146\) 5.71462 0.472945
\(147\) 18.0073 1.48522
\(148\) −7.63565 −0.627647
\(149\) 2.00000 0.163846 0.0819232 0.996639i \(-0.473894\pi\)
0.0819232 + 0.996639i \(0.473894\pi\)
\(150\) 0 0
\(151\) −10.8536 −0.883256 −0.441628 0.897198i \(-0.645599\pi\)
−0.441628 + 0.897198i \(0.645599\pi\)
\(152\) 2.34292 0.190036
\(153\) −2.00000 −0.161690
\(154\) −12.2499 −0.987124
\(155\) 0 0
\(156\) −2.68585 −0.215040
\(157\) −7.69319 −0.613984 −0.306992 0.951712i \(-0.599322\pi\)
−0.306992 + 0.951712i \(0.599322\pi\)
\(158\) 14.9357 1.18822
\(159\) 1.31415 0.104219
\(160\) 0 0
\(161\) 31.1365 2.45390
\(162\) 10.2713 0.806990
\(163\) −1.61423 −0.126436 −0.0632182 0.998000i \(-0.520136\pi\)
−0.0632182 + 0.998000i \(0.520136\pi\)
\(164\) 8.63565 0.674331
\(165\) 0 0
\(166\) −3.09617 −0.240310
\(167\) −13.7220 −1.06184 −0.530919 0.847423i \(-0.678153\pi\)
−0.530919 + 0.847423i \(0.678153\pi\)
\(168\) −8.97858 −0.692712
\(169\) −11.6858 −0.898911
\(170\) 0 0
\(171\) −5.83221 −0.446000
\(172\) −7.66442 −0.584407
\(173\) 18.3074 1.39189 0.695944 0.718096i \(-0.254986\pi\)
0.695944 + 0.718096i \(0.254986\pi\)
\(174\) −2.34292 −0.177617
\(175\) 0 0
\(176\) 3.19656 0.240950
\(177\) 5.53948 0.416373
\(178\) 3.32150 0.248957
\(179\) 2.43910 0.182307 0.0911533 0.995837i \(-0.470945\pi\)
0.0911533 + 0.995837i \(0.470945\pi\)
\(180\) 0 0
\(181\) 4.02456 0.299143 0.149572 0.988751i \(-0.452211\pi\)
0.149572 + 0.988751i \(0.452211\pi\)
\(182\) 4.39312 0.325639
\(183\) 25.1035 1.85571
\(184\) −8.12494 −0.598979
\(185\) 0 0
\(186\) −4.46052 −0.327061
\(187\) −2.56825 −0.187809
\(188\) −11.4679 −0.836380
\(189\) −4.58546 −0.333543
\(190\) 0 0
\(191\) −5.56825 −0.402904 −0.201452 0.979498i \(-0.564566\pi\)
−0.201452 + 0.979498i \(0.564566\pi\)
\(192\) 2.34292 0.169086
\(193\) 13.7146 0.987200 0.493600 0.869689i \(-0.335681\pi\)
0.493600 + 0.869689i \(0.335681\pi\)
\(194\) 11.5395 0.828486
\(195\) 0 0
\(196\) 7.68585 0.548989
\(197\) −25.4292 −1.81176 −0.905879 0.423537i \(-0.860788\pi\)
−0.905879 + 0.423537i \(0.860788\pi\)
\(198\) −7.95715 −0.565490
\(199\) 15.1035 1.07066 0.535330 0.844643i \(-0.320187\pi\)
0.535330 + 0.844643i \(0.320187\pi\)
\(200\) 0 0
\(201\) 12.0073 0.846933
\(202\) −5.63565 −0.396523
\(203\) 3.83221 0.268969
\(204\) −1.88240 −0.131795
\(205\) 0 0
\(206\) 17.5970 1.22604
\(207\) 20.2253 1.40576
\(208\) −1.14637 −0.0794861
\(209\) −7.48929 −0.518045
\(210\) 0 0
\(211\) 19.7967 1.36286 0.681431 0.731882i \(-0.261358\pi\)
0.681431 + 0.731882i \(0.261358\pi\)
\(212\) 0.560904 0.0385230
\(213\) 19.0361 1.30433
\(214\) −1.56090 −0.106701
\(215\) 0 0
\(216\) 1.19656 0.0814154
\(217\) 7.29587 0.495276
\(218\) −11.4966 −0.778650
\(219\) −13.3889 −0.904738
\(220\) 0 0
\(221\) 0.921039 0.0619558
\(222\) 17.8898 1.20068
\(223\) 5.37169 0.359715 0.179858 0.983693i \(-0.442436\pi\)
0.179858 + 0.983693i \(0.442436\pi\)
\(224\) −3.83221 −0.256050
\(225\) 0 0
\(226\) −5.36435 −0.356831
\(227\) 28.3215 1.87976 0.939882 0.341499i \(-0.110935\pi\)
0.939882 + 0.341499i \(0.110935\pi\)
\(228\) −5.48929 −0.363537
\(229\) 10.0147 0.661790 0.330895 0.943668i \(-0.392649\pi\)
0.330895 + 0.943668i \(0.392649\pi\)
\(230\) 0 0
\(231\) 28.7005 1.88836
\(232\) −1.00000 −0.0656532
\(233\) −23.3246 −1.52805 −0.764024 0.645188i \(-0.776779\pi\)
−0.764024 + 0.645188i \(0.776779\pi\)
\(234\) 2.85363 0.186548
\(235\) 0 0
\(236\) 2.36435 0.153906
\(237\) −34.9933 −2.27306
\(238\) 3.07896 0.199579
\(239\) −21.9143 −1.41752 −0.708759 0.705450i \(-0.750745\pi\)
−0.708759 + 0.705450i \(0.750745\pi\)
\(240\) 0 0
\(241\) 9.45065 0.608770 0.304385 0.952549i \(-0.401549\pi\)
0.304385 + 0.952549i \(0.401549\pi\)
\(242\) 0.782020 0.0502701
\(243\) −20.4752 −1.31349
\(244\) 10.7146 0.685933
\(245\) 0 0
\(246\) −20.2327 −1.28999
\(247\) 2.68585 0.170896
\(248\) −1.90383 −0.120893
\(249\) 7.25410 0.459710
\(250\) 0 0
\(251\) −26.8855 −1.69700 −0.848500 0.529195i \(-0.822494\pi\)
−0.848500 + 0.529195i \(0.822494\pi\)
\(252\) 9.53948 0.600931
\(253\) 25.9718 1.63284
\(254\) −7.90383 −0.495930
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 6.39312 0.398792 0.199396 0.979919i \(-0.436102\pi\)
0.199396 + 0.979919i \(0.436102\pi\)
\(258\) 17.9572 1.11796
\(259\) −29.2614 −1.81822
\(260\) 0 0
\(261\) 2.48929 0.154083
\(262\) 3.10352 0.191736
\(263\) −27.4679 −1.69374 −0.846871 0.531799i \(-0.821516\pi\)
−0.846871 + 0.531799i \(0.821516\pi\)
\(264\) −7.48929 −0.460934
\(265\) 0 0
\(266\) 8.97858 0.550512
\(267\) −7.78202 −0.476252
\(268\) 5.12494 0.313056
\(269\) 9.59281 0.584884 0.292442 0.956283i \(-0.405532\pi\)
0.292442 + 0.956283i \(0.405532\pi\)
\(270\) 0 0
\(271\) −29.9614 −1.82002 −0.910012 0.414583i \(-0.863928\pi\)
−0.910012 + 0.414583i \(0.863928\pi\)
\(272\) −0.803442 −0.0487159
\(273\) −10.2927 −0.622944
\(274\) −19.2541 −1.16318
\(275\) 0 0
\(276\) 19.0361 1.14584
\(277\) −15.7894 −0.948691 −0.474346 0.880339i \(-0.657315\pi\)
−0.474346 + 0.880339i \(0.657315\pi\)
\(278\) −6.43910 −0.386191
\(279\) 4.73917 0.283727
\(280\) 0 0
\(281\) 12.1390 0.724153 0.362077 0.932148i \(-0.382068\pi\)
0.362077 + 0.932148i \(0.382068\pi\)
\(282\) 26.8683 1.59999
\(283\) −4.17513 −0.248186 −0.124093 0.992271i \(-0.539602\pi\)
−0.124093 + 0.992271i \(0.539602\pi\)
\(284\) 8.12494 0.482127
\(285\) 0 0
\(286\) 3.66442 0.216682
\(287\) 33.0937 1.95346
\(288\) −2.48929 −0.146683
\(289\) −16.3545 −0.962028
\(290\) 0 0
\(291\) −27.0361 −1.58489
\(292\) −5.71462 −0.334423
\(293\) 9.09931 0.531587 0.265794 0.964030i \(-0.414366\pi\)
0.265794 + 0.964030i \(0.414366\pi\)
\(294\) −18.0073 −1.05021
\(295\) 0 0
\(296\) 7.63565 0.443813
\(297\) −3.82487 −0.221941
\(298\) −2.00000 −0.115857
\(299\) −9.31415 −0.538651
\(300\) 0 0
\(301\) −29.3717 −1.69296
\(302\) 10.8536 0.624556
\(303\) 13.2039 0.758544
\(304\) −2.34292 −0.134376
\(305\) 0 0
\(306\) 2.00000 0.114332
\(307\) 33.3116 1.90120 0.950598 0.310426i \(-0.100472\pi\)
0.950598 + 0.310426i \(0.100472\pi\)
\(308\) 12.2499 0.698002
\(309\) −41.2285 −2.34541
\(310\) 0 0
\(311\) 19.7648 1.12076 0.560380 0.828236i \(-0.310655\pi\)
0.560380 + 0.828236i \(0.310655\pi\)
\(312\) 2.68585 0.152056
\(313\) 19.1898 1.08467 0.542337 0.840161i \(-0.317540\pi\)
0.542337 + 0.840161i \(0.317540\pi\)
\(314\) 7.69319 0.434152
\(315\) 0 0
\(316\) −14.9357 −0.840201
\(317\) −30.7722 −1.72834 −0.864168 0.503203i \(-0.832155\pi\)
−0.864168 + 0.503203i \(0.832155\pi\)
\(318\) −1.31415 −0.0736941
\(319\) 3.19656 0.178973
\(320\) 0 0
\(321\) 3.65708 0.204118
\(322\) −31.1365 −1.73517
\(323\) 1.88240 0.104740
\(324\) −10.2713 −0.570628
\(325\) 0 0
\(326\) 1.61423 0.0894040
\(327\) 26.9357 1.48955
\(328\) −8.63565 −0.476824
\(329\) −43.9473 −2.42289
\(330\) 0 0
\(331\) −31.5714 −1.73532 −0.867660 0.497158i \(-0.834377\pi\)
−0.867660 + 0.497158i \(0.834377\pi\)
\(332\) 3.09617 0.169925
\(333\) −19.0073 −1.04160
\(334\) 13.7220 0.750832
\(335\) 0 0
\(336\) 8.97858 0.489822
\(337\) −15.1966 −0.827809 −0.413905 0.910320i \(-0.635835\pi\)
−0.413905 + 0.910320i \(0.635835\pi\)
\(338\) 11.6858 0.635626
\(339\) 12.5682 0.682614
\(340\) 0 0
\(341\) 6.08569 0.329559
\(342\) 5.83221 0.315370
\(343\) 2.62831 0.141915
\(344\) 7.66442 0.413238
\(345\) 0 0
\(346\) −18.3074 −0.984213
\(347\) 17.0246 0.913926 0.456963 0.889486i \(-0.348937\pi\)
0.456963 + 0.889486i \(0.348937\pi\)
\(348\) 2.34292 0.125594
\(349\) −7.20390 −0.385616 −0.192808 0.981236i \(-0.561759\pi\)
−0.192808 + 0.981236i \(0.561759\pi\)
\(350\) 0 0
\(351\) 1.37169 0.0732155
\(352\) −3.19656 −0.170377
\(353\) −24.3116 −1.29398 −0.646989 0.762499i \(-0.723972\pi\)
−0.646989 + 0.762499i \(0.723972\pi\)
\(354\) −5.53948 −0.294420
\(355\) 0 0
\(356\) −3.32150 −0.176039
\(357\) −7.21377 −0.381793
\(358\) −2.43910 −0.128910
\(359\) 33.2902 1.75699 0.878495 0.477751i \(-0.158548\pi\)
0.878495 + 0.477751i \(0.158548\pi\)
\(360\) 0 0
\(361\) −13.5107 −0.711090
\(362\) −4.02456 −0.211526
\(363\) −1.83221 −0.0961662
\(364\) −4.39312 −0.230262
\(365\) 0 0
\(366\) −25.1035 −1.31218
\(367\) −18.9315 −0.988217 −0.494109 0.869400i \(-0.664506\pi\)
−0.494109 + 0.869400i \(0.664506\pi\)
\(368\) 8.12494 0.423542
\(369\) 21.4966 1.11907
\(370\) 0 0
\(371\) 2.14950 0.111597
\(372\) 4.46052 0.231267
\(373\) −11.8996 −0.616139 −0.308069 0.951364i \(-0.599683\pi\)
−0.308069 + 0.951364i \(0.599683\pi\)
\(374\) 2.56825 0.132801
\(375\) 0 0
\(376\) 11.4679 0.591410
\(377\) −1.14637 −0.0590408
\(378\) 4.58546 0.235851
\(379\) −20.4005 −1.04790 −0.523951 0.851749i \(-0.675542\pi\)
−0.523951 + 0.851749i \(0.675542\pi\)
\(380\) 0 0
\(381\) 18.5181 0.948709
\(382\) 5.56825 0.284896
\(383\) −36.8929 −1.88514 −0.942569 0.334011i \(-0.891598\pi\)
−0.942569 + 0.334011i \(0.891598\pi\)
\(384\) −2.34292 −0.119562
\(385\) 0 0
\(386\) −13.7146 −0.698056
\(387\) −19.0790 −0.969838
\(388\) −11.5395 −0.585828
\(389\) −22.7146 −1.15168 −0.575838 0.817564i \(-0.695324\pi\)
−0.575838 + 0.817564i \(0.695324\pi\)
\(390\) 0 0
\(391\) −6.52792 −0.330131
\(392\) −7.68585 −0.388194
\(393\) −7.27131 −0.366789
\(394\) 25.4292 1.28111
\(395\) 0 0
\(396\) 7.95715 0.399862
\(397\) 33.5113 1.68189 0.840943 0.541124i \(-0.182001\pi\)
0.840943 + 0.541124i \(0.182001\pi\)
\(398\) −15.1035 −0.757071
\(399\) −21.0361 −1.05312
\(400\) 0 0
\(401\) −17.0147 −0.849673 −0.424837 0.905270i \(-0.639668\pi\)
−0.424837 + 0.905270i \(0.639668\pi\)
\(402\) −12.0073 −0.598872
\(403\) −2.18248 −0.108717
\(404\) 5.63565 0.280384
\(405\) 0 0
\(406\) −3.83221 −0.190189
\(407\) −24.4078 −1.20985
\(408\) 1.88240 0.0931929
\(409\) −21.3461 −1.05549 −0.527747 0.849401i \(-0.676963\pi\)
−0.527747 + 0.849401i \(0.676963\pi\)
\(410\) 0 0
\(411\) 45.1109 2.22515
\(412\) −17.5970 −0.866943
\(413\) 9.06067 0.445847
\(414\) −20.2253 −0.994021
\(415\) 0 0
\(416\) 1.14637 0.0562052
\(417\) 15.0863 0.738780
\(418\) 7.48929 0.366313
\(419\) 3.81079 0.186169 0.0930846 0.995658i \(-0.470327\pi\)
0.0930846 + 0.995658i \(0.470327\pi\)
\(420\) 0 0
\(421\) −23.9859 −1.16900 −0.584501 0.811393i \(-0.698710\pi\)
−0.584501 + 0.811393i \(0.698710\pi\)
\(422\) −19.7967 −0.963689
\(423\) −28.5468 −1.38799
\(424\) −0.560904 −0.0272399
\(425\) 0 0
\(426\) −19.0361 −0.922303
\(427\) 41.0607 1.98707
\(428\) 1.56090 0.0754491
\(429\) −8.58546 −0.414510
\(430\) 0 0
\(431\) 7.00314 0.337329 0.168665 0.985674i \(-0.446055\pi\)
0.168665 + 0.985674i \(0.446055\pi\)
\(432\) −1.19656 −0.0575694
\(433\) −23.3790 −1.12352 −0.561762 0.827299i \(-0.689877\pi\)
−0.561762 + 0.827299i \(0.689877\pi\)
\(434\) −7.29587 −0.350213
\(435\) 0 0
\(436\) 11.4966 0.550589
\(437\) −19.0361 −0.910621
\(438\) 13.3889 0.639747
\(439\) 13.7073 0.654212 0.327106 0.944988i \(-0.393927\pi\)
0.327106 + 0.944988i \(0.393927\pi\)
\(440\) 0 0
\(441\) 19.1323 0.911061
\(442\) −0.921039 −0.0438093
\(443\) −9.25410 −0.439675 −0.219838 0.975536i \(-0.570553\pi\)
−0.219838 + 0.975536i \(0.570553\pi\)
\(444\) −17.8898 −0.849010
\(445\) 0 0
\(446\) −5.37169 −0.254357
\(447\) 4.68585 0.221633
\(448\) 3.83221 0.181055
\(449\) 25.8971 1.22216 0.611080 0.791569i \(-0.290735\pi\)
0.611080 + 0.791569i \(0.290735\pi\)
\(450\) 0 0
\(451\) 27.6044 1.29984
\(452\) 5.36435 0.252318
\(453\) −25.4292 −1.19477
\(454\) −28.3215 −1.32919
\(455\) 0 0
\(456\) 5.48929 0.257059
\(457\) −26.5829 −1.24350 −0.621749 0.783217i \(-0.713578\pi\)
−0.621749 + 0.783217i \(0.713578\pi\)
\(458\) −10.0147 −0.467956
\(459\) 0.961365 0.0448727
\(460\) 0 0
\(461\) 0.527923 0.0245878 0.0122939 0.999924i \(-0.496087\pi\)
0.0122939 + 0.999924i \(0.496087\pi\)
\(462\) −28.7005 −1.33527
\(463\) −38.0575 −1.76868 −0.884342 0.466840i \(-0.845392\pi\)
−0.884342 + 0.466840i \(0.845392\pi\)
\(464\) 1.00000 0.0464238
\(465\) 0 0
\(466\) 23.3246 1.08049
\(467\) −10.5181 −0.486718 −0.243359 0.969936i \(-0.578249\pi\)
−0.243359 + 0.969936i \(0.578249\pi\)
\(468\) −2.85363 −0.131909
\(469\) 19.6399 0.906885
\(470\) 0 0
\(471\) −18.0246 −0.830528
\(472\) −2.36435 −0.108828
\(473\) −24.4998 −1.12650
\(474\) 34.9933 1.60729
\(475\) 0 0
\(476\) −3.07896 −0.141124
\(477\) 1.39625 0.0639299
\(478\) 21.9143 1.00234
\(479\) 5.54935 0.253556 0.126778 0.991931i \(-0.459536\pi\)
0.126778 + 0.991931i \(0.459536\pi\)
\(480\) 0 0
\(481\) 8.75325 0.399114
\(482\) −9.45065 −0.430465
\(483\) 72.9504 3.31936
\(484\) −0.782020 −0.0355463
\(485\) 0 0
\(486\) 20.4752 0.928774
\(487\) −26.6858 −1.20925 −0.604626 0.796510i \(-0.706677\pi\)
−0.604626 + 0.796510i \(0.706677\pi\)
\(488\) −10.7146 −0.485028
\(489\) −3.78202 −0.171029
\(490\) 0 0
\(491\) 24.0575 1.08570 0.542851 0.839829i \(-0.317345\pi\)
0.542851 + 0.839829i \(0.317345\pi\)
\(492\) 20.2327 0.912159
\(493\) −0.803442 −0.0361852
\(494\) −2.68585 −0.120842
\(495\) 0 0
\(496\) 1.90383 0.0854843
\(497\) 31.1365 1.39666
\(498\) −7.25410 −0.325064
\(499\) 3.87085 0.173283 0.0866414 0.996240i \(-0.472387\pi\)
0.0866414 + 0.996240i \(0.472387\pi\)
\(500\) 0 0
\(501\) −32.1495 −1.43633
\(502\) 26.8855 1.19996
\(503\) −43.1751 −1.92508 −0.962542 0.271132i \(-0.912602\pi\)
−0.962542 + 0.271132i \(0.912602\pi\)
\(504\) −9.53948 −0.424922
\(505\) 0 0
\(506\) −25.9718 −1.15459
\(507\) −27.3790 −1.21595
\(508\) 7.90383 0.350676
\(509\) −21.5725 −0.956183 −0.478091 0.878310i \(-0.658671\pi\)
−0.478091 + 0.878310i \(0.658671\pi\)
\(510\) 0 0
\(511\) −21.8996 −0.968782
\(512\) −1.00000 −0.0441942
\(513\) 2.80344 0.123775
\(514\) −6.39312 −0.281988
\(515\) 0 0
\(516\) −17.9572 −0.790520
\(517\) −36.6577 −1.61220
\(518\) 29.2614 1.28567
\(519\) 42.8929 1.88279
\(520\) 0 0
\(521\) 32.0790 1.40540 0.702702 0.711484i \(-0.251977\pi\)
0.702702 + 0.711484i \(0.251977\pi\)
\(522\) −2.48929 −0.108953
\(523\) 31.6247 1.38285 0.691426 0.722447i \(-0.256983\pi\)
0.691426 + 0.722447i \(0.256983\pi\)
\(524\) −3.10352 −0.135578
\(525\) 0 0
\(526\) 27.4679 1.19766
\(527\) −1.52962 −0.0666311
\(528\) 7.48929 0.325929
\(529\) 43.0147 1.87020
\(530\) 0 0
\(531\) 5.88554 0.255411
\(532\) −8.97858 −0.389271
\(533\) −9.89962 −0.428800
\(534\) 7.78202 0.336761
\(535\) 0 0
\(536\) −5.12494 −0.221364
\(537\) 5.71462 0.246604
\(538\) −9.59281 −0.413575
\(539\) 24.5682 1.05823
\(540\) 0 0
\(541\) −21.9368 −0.943137 −0.471568 0.881829i \(-0.656312\pi\)
−0.471568 + 0.881829i \(0.656312\pi\)
\(542\) 29.9614 1.28695
\(543\) 9.42923 0.404647
\(544\) 0.803442 0.0344473
\(545\) 0 0
\(546\) 10.2927 0.440488
\(547\) 13.6901 0.585345 0.292672 0.956213i \(-0.405456\pi\)
0.292672 + 0.956213i \(0.405456\pi\)
\(548\) 19.2541 0.822494
\(549\) 26.6718 1.13832
\(550\) 0 0
\(551\) −2.34292 −0.0998119
\(552\) −19.0361 −0.810231
\(553\) −57.2369 −2.43396
\(554\) 15.7894 0.670826
\(555\) 0 0
\(556\) 6.43910 0.273079
\(557\) 1.66442 0.0705239 0.0352619 0.999378i \(-0.488773\pi\)
0.0352619 + 0.999378i \(0.488773\pi\)
\(558\) −4.73917 −0.200625
\(559\) 8.78623 0.371618
\(560\) 0 0
\(561\) −6.01721 −0.254047
\(562\) −12.1390 −0.512054
\(563\) −21.5725 −0.909171 −0.454585 0.890703i \(-0.650213\pi\)
−0.454585 + 0.890703i \(0.650213\pi\)
\(564\) −26.8683 −1.13136
\(565\) 0 0
\(566\) 4.17513 0.175494
\(567\) −39.3618 −1.65304
\(568\) −8.12494 −0.340915
\(569\) 7.88240 0.330448 0.165224 0.986256i \(-0.447165\pi\)
0.165224 + 0.986256i \(0.447165\pi\)
\(570\) 0 0
\(571\) −29.0796 −1.21694 −0.608471 0.793576i \(-0.708217\pi\)
−0.608471 + 0.793576i \(0.708217\pi\)
\(572\) −3.66442 −0.153217
\(573\) −13.0460 −0.545004
\(574\) −33.0937 −1.38130
\(575\) 0 0
\(576\) 2.48929 0.103720
\(577\) 38.5155 1.60342 0.801711 0.597711i \(-0.203923\pi\)
0.801711 + 0.597711i \(0.203923\pi\)
\(578\) 16.3545 0.680257
\(579\) 32.1323 1.33537
\(580\) 0 0
\(581\) 11.8652 0.492251
\(582\) 27.0361 1.12068
\(583\) 1.79296 0.0742568
\(584\) 5.71462 0.236472
\(585\) 0 0
\(586\) −9.09931 −0.375889
\(587\) 15.6184 0.644642 0.322321 0.946630i \(-0.395537\pi\)
0.322321 + 0.946630i \(0.395537\pi\)
\(588\) 18.0073 0.742610
\(589\) −4.46052 −0.183792
\(590\) 0 0
\(591\) −59.5787 −2.45074
\(592\) −7.63565 −0.313823
\(593\) 1.72869 0.0709889 0.0354944 0.999370i \(-0.488699\pi\)
0.0354944 + 0.999370i \(0.488699\pi\)
\(594\) 3.82487 0.156936
\(595\) 0 0
\(596\) 2.00000 0.0819232
\(597\) 35.3864 1.44827
\(598\) 9.31415 0.380884
\(599\) 20.0189 0.817950 0.408975 0.912546i \(-0.365886\pi\)
0.408975 + 0.912546i \(0.365886\pi\)
\(600\) 0 0
\(601\) 11.6388 0.474756 0.237378 0.971417i \(-0.423712\pi\)
0.237378 + 0.971417i \(0.423712\pi\)
\(602\) 29.3717 1.19710
\(603\) 12.7575 0.519524
\(604\) −10.8536 −0.441628
\(605\) 0 0
\(606\) −13.2039 −0.536372
\(607\) 36.4036 1.47758 0.738788 0.673938i \(-0.235398\pi\)
0.738788 + 0.673938i \(0.235398\pi\)
\(608\) 2.34292 0.0950181
\(609\) 8.97858 0.363830
\(610\) 0 0
\(611\) 13.1464 0.531845
\(612\) −2.00000 −0.0808452
\(613\) 33.4292 1.35019 0.675097 0.737729i \(-0.264102\pi\)
0.675097 + 0.737729i \(0.264102\pi\)
\(614\) −33.3116 −1.34435
\(615\) 0 0
\(616\) −12.2499 −0.493562
\(617\) 16.2400 0.653799 0.326899 0.945059i \(-0.393996\pi\)
0.326899 + 0.945059i \(0.393996\pi\)
\(618\) 41.2285 1.65845
\(619\) 30.1004 1.20984 0.604918 0.796288i \(-0.293206\pi\)
0.604918 + 0.796288i \(0.293206\pi\)
\(620\) 0 0
\(621\) −9.72196 −0.390129
\(622\) −19.7648 −0.792497
\(623\) −12.7287 −0.509964
\(624\) −2.68585 −0.107520
\(625\) 0 0
\(626\) −19.1898 −0.766980
\(627\) −17.5468 −0.700753
\(628\) −7.69319 −0.306992
\(629\) 6.13481 0.244611
\(630\) 0 0
\(631\) 31.1793 1.24123 0.620615 0.784115i \(-0.286883\pi\)
0.620615 + 0.784115i \(0.286883\pi\)
\(632\) 14.9357 0.594111
\(633\) 46.3822 1.84353
\(634\) 30.7722 1.22212
\(635\) 0 0
\(636\) 1.31415 0.0521096
\(637\) −8.81079 −0.349096
\(638\) −3.19656 −0.126553
\(639\) 20.2253 0.800102
\(640\) 0 0
\(641\) 5.29587 0.209174 0.104587 0.994516i \(-0.466648\pi\)
0.104587 + 0.994516i \(0.466648\pi\)
\(642\) −3.65708 −0.144333
\(643\) 28.1867 1.11157 0.555787 0.831325i \(-0.312417\pi\)
0.555787 + 0.831325i \(0.312417\pi\)
\(644\) 31.1365 1.22695
\(645\) 0 0
\(646\) −1.88240 −0.0740622
\(647\) −15.6497 −0.615254 −0.307627 0.951507i \(-0.599535\pi\)
−0.307627 + 0.951507i \(0.599535\pi\)
\(648\) 10.2713 0.403495
\(649\) 7.55777 0.296668
\(650\) 0 0
\(651\) 17.0937 0.669953
\(652\) −1.61423 −0.0632182
\(653\) 24.1292 0.944247 0.472123 0.881532i \(-0.343488\pi\)
0.472123 + 0.881532i \(0.343488\pi\)
\(654\) −26.9357 −1.05327
\(655\) 0 0
\(656\) 8.63565 0.337166
\(657\) −14.2253 −0.554983
\(658\) 43.9473 1.71324
\(659\) 28.1898 1.09812 0.549060 0.835783i \(-0.314986\pi\)
0.549060 + 0.835783i \(0.314986\pi\)
\(660\) 0 0
\(661\) −16.1678 −0.628854 −0.314427 0.949282i \(-0.601812\pi\)
−0.314427 + 0.949282i \(0.601812\pi\)
\(662\) 31.5714 1.22706
\(663\) 2.15792 0.0838068
\(664\) −3.09617 −0.120155
\(665\) 0 0
\(666\) 19.0073 0.736520
\(667\) 8.12494 0.314599
\(668\) −13.7220 −0.530919
\(669\) 12.5855 0.486582
\(670\) 0 0
\(671\) 34.2499 1.32220
\(672\) −8.97858 −0.346356
\(673\) −13.7690 −0.530757 −0.265378 0.964144i \(-0.585497\pi\)
−0.265378 + 0.964144i \(0.585497\pi\)
\(674\) 15.1966 0.585350
\(675\) 0 0
\(676\) −11.6858 −0.449456
\(677\) −14.4710 −0.556166 −0.278083 0.960557i \(-0.589699\pi\)
−0.278083 + 0.960557i \(0.589699\pi\)
\(678\) −12.5682 −0.482681
\(679\) −44.2217 −1.69707
\(680\) 0 0
\(681\) 66.3551 2.54273
\(682\) −6.08569 −0.233033
\(683\) 19.0533 0.729055 0.364528 0.931193i \(-0.381230\pi\)
0.364528 + 0.931193i \(0.381230\pi\)
\(684\) −5.83221 −0.223000
\(685\) 0 0
\(686\) −2.62831 −0.100349
\(687\) 23.4637 0.895194
\(688\) −7.66442 −0.292203
\(689\) −0.643000 −0.0244964
\(690\) 0 0
\(691\) 41.7679 1.58893 0.794464 0.607312i \(-0.207752\pi\)
0.794464 + 0.607312i \(0.207752\pi\)
\(692\) 18.3074 0.695944
\(693\) 30.4935 1.15835
\(694\) −17.0246 −0.646243
\(695\) 0 0
\(696\) −2.34292 −0.0888083
\(697\) −6.93825 −0.262805
\(698\) 7.20390 0.272672
\(699\) −54.6478 −2.06697
\(700\) 0 0
\(701\) −0.149501 −0.00564658 −0.00282329 0.999996i \(-0.500899\pi\)
−0.00282329 + 0.999996i \(0.500899\pi\)
\(702\) −1.37169 −0.0517712
\(703\) 17.8898 0.674725
\(704\) 3.19656 0.120475
\(705\) 0 0
\(706\) 24.3116 0.914980
\(707\) 21.5970 0.812240
\(708\) 5.53948 0.208186
\(709\) −11.5725 −0.434613 −0.217306 0.976103i \(-0.569727\pi\)
−0.217306 + 0.976103i \(0.569727\pi\)
\(710\) 0 0
\(711\) −37.1793 −1.39433
\(712\) 3.32150 0.124478
\(713\) 15.4685 0.579299
\(714\) 7.21377 0.269969
\(715\) 0 0
\(716\) 2.43910 0.0911533
\(717\) −51.3435 −1.91746
\(718\) −33.2902 −1.24238
\(719\) 2.93933 0.109618 0.0548092 0.998497i \(-0.482545\pi\)
0.0548092 + 0.998497i \(0.482545\pi\)
\(720\) 0 0
\(721\) −67.4355 −2.51143
\(722\) 13.5107 0.502817
\(723\) 22.1422 0.823476
\(724\) 4.02456 0.149572
\(725\) 0 0
\(726\) 1.83221 0.0679998
\(727\) −29.3435 −1.08829 −0.544146 0.838991i \(-0.683146\pi\)
−0.544146 + 0.838991i \(0.683146\pi\)
\(728\) 4.39312 0.162820
\(729\) −17.1579 −0.635479
\(730\) 0 0
\(731\) 6.15792 0.227759
\(732\) 25.1035 0.927853
\(733\) 28.2927 1.04502 0.522508 0.852634i \(-0.324997\pi\)
0.522508 + 0.852634i \(0.324997\pi\)
\(734\) 18.9315 0.698775
\(735\) 0 0
\(736\) −8.12494 −0.299489
\(737\) 16.3822 0.603445
\(738\) −21.4966 −0.791302
\(739\) 15.6069 0.574109 0.287054 0.957914i \(-0.407324\pi\)
0.287054 + 0.957914i \(0.407324\pi\)
\(740\) 0 0
\(741\) 6.29273 0.231169
\(742\) −2.14950 −0.0789107
\(743\) 42.9013 1.57390 0.786948 0.617019i \(-0.211660\pi\)
0.786948 + 0.617019i \(0.211660\pi\)
\(744\) −4.46052 −0.163531
\(745\) 0 0
\(746\) 11.8996 0.435676
\(747\) 7.70727 0.281994
\(748\) −2.56825 −0.0939045
\(749\) 5.98171 0.218567
\(750\) 0 0
\(751\) −41.0403 −1.49758 −0.748791 0.662806i \(-0.769366\pi\)
−0.748791 + 0.662806i \(0.769366\pi\)
\(752\) −11.4679 −0.418190
\(753\) −62.9908 −2.29551
\(754\) 1.14637 0.0417482
\(755\) 0 0
\(756\) −4.58546 −0.166772
\(757\) −35.9227 −1.30563 −0.652817 0.757516i \(-0.726413\pi\)
−0.652817 + 0.757516i \(0.726413\pi\)
\(758\) 20.4005 0.740978
\(759\) 60.8500 2.20872
\(760\) 0 0
\(761\) 3.77154 0.136718 0.0683591 0.997661i \(-0.478224\pi\)
0.0683591 + 0.997661i \(0.478224\pi\)
\(762\) −18.5181 −0.670838
\(763\) 44.0575 1.59499
\(764\) −5.56825 −0.201452
\(765\) 0 0
\(766\) 36.8929 1.33299
\(767\) −2.71040 −0.0978670
\(768\) 2.34292 0.0845430
\(769\) 15.7062 0.566380 0.283190 0.959064i \(-0.408607\pi\)
0.283190 + 0.959064i \(0.408607\pi\)
\(770\) 0 0
\(771\) 14.9786 0.539440
\(772\) 13.7146 0.493600
\(773\) 3.13588 0.112790 0.0563949 0.998409i \(-0.482039\pi\)
0.0563949 + 0.998409i \(0.482039\pi\)
\(774\) 19.0790 0.685779
\(775\) 0 0
\(776\) 11.5395 0.414243
\(777\) −68.5573 −2.45948
\(778\) 22.7146 0.814358
\(779\) −20.2327 −0.724911
\(780\) 0 0
\(781\) 25.9718 0.929346
\(782\) 6.52792 0.233438
\(783\) −1.19656 −0.0427615
\(784\) 7.68585 0.274495
\(785\) 0 0
\(786\) 7.27131 0.259359
\(787\) 25.3858 0.904905 0.452452 0.891789i \(-0.350549\pi\)
0.452452 + 0.891789i \(0.350549\pi\)
\(788\) −25.4292 −0.905879
\(789\) −64.3551 −2.29110
\(790\) 0 0
\(791\) 20.5573 0.730934
\(792\) −7.95715 −0.282745
\(793\) −12.2829 −0.436177
\(794\) −33.5113 −1.18927
\(795\) 0 0
\(796\) 15.1035 0.535330
\(797\) 0.593884 0.0210364 0.0105182 0.999945i \(-0.496652\pi\)
0.0105182 + 0.999945i \(0.496652\pi\)
\(798\) 21.0361 0.744670
\(799\) 9.21377 0.325960
\(800\) 0 0
\(801\) −8.26817 −0.292142
\(802\) 17.0147 0.600810
\(803\) −18.2671 −0.644632
\(804\) 12.0073 0.423466
\(805\) 0 0
\(806\) 2.18248 0.0768746
\(807\) 22.4752 0.791165
\(808\) −5.63565 −0.198262
\(809\) −35.2776 −1.24029 −0.620147 0.784486i \(-0.712927\pi\)
−0.620147 + 0.784486i \(0.712927\pi\)
\(810\) 0 0
\(811\) −13.1568 −0.461999 −0.231000 0.972954i \(-0.574200\pi\)
−0.231000 + 0.972954i \(0.574200\pi\)
\(812\) 3.83221 0.134484
\(813\) −70.1972 −2.46192
\(814\) 24.4078 0.855493
\(815\) 0 0
\(816\) −1.88240 −0.0658973
\(817\) 17.9572 0.628241
\(818\) 21.3461 0.746347
\(819\) −10.9357 −0.382125
\(820\) 0 0
\(821\) −48.2400 −1.68359 −0.841794 0.539799i \(-0.818500\pi\)
−0.841794 + 0.539799i \(0.818500\pi\)
\(822\) −45.1109 −1.57342
\(823\) 32.7581 1.14187 0.570937 0.820994i \(-0.306580\pi\)
0.570937 + 0.820994i \(0.306580\pi\)
\(824\) 17.5970 0.613021
\(825\) 0 0
\(826\) −9.06067 −0.315261
\(827\) −35.9118 −1.24878 −0.624388 0.781115i \(-0.714651\pi\)
−0.624388 + 0.781115i \(0.714651\pi\)
\(828\) 20.2253 0.702879
\(829\) 23.0361 0.800077 0.400039 0.916498i \(-0.368997\pi\)
0.400039 + 0.916498i \(0.368997\pi\)
\(830\) 0 0
\(831\) −36.9933 −1.28328
\(832\) −1.14637 −0.0397431
\(833\) −6.17513 −0.213956
\(834\) −15.0863 −0.522396
\(835\) 0 0
\(836\) −7.48929 −0.259022
\(837\) −2.27804 −0.0787405
\(838\) −3.81079 −0.131642
\(839\) −11.8757 −0.409994 −0.204997 0.978763i \(-0.565718\pi\)
−0.204997 + 0.978763i \(0.565718\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 23.9859 0.826610
\(843\) 28.4408 0.979553
\(844\) 19.7967 0.681431
\(845\) 0 0
\(846\) 28.5468 0.981460
\(847\) −2.99686 −0.102973
\(848\) 0.560904 0.0192615
\(849\) −9.78202 −0.335718
\(850\) 0 0
\(851\) −62.0393 −2.12668
\(852\) 19.0361 0.652167
\(853\) −50.6493 −1.73420 −0.867099 0.498136i \(-0.834018\pi\)
−0.867099 + 0.498136i \(0.834018\pi\)
\(854\) −41.0607 −1.40507
\(855\) 0 0
\(856\) −1.56090 −0.0533506
\(857\) 11.1453 0.380716 0.190358 0.981715i \(-0.439035\pi\)
0.190358 + 0.981715i \(0.439035\pi\)
\(858\) 8.58546 0.293103
\(859\) −0.352789 −0.0120370 −0.00601850 0.999982i \(-0.501916\pi\)
−0.00601850 + 0.999982i \(0.501916\pi\)
\(860\) 0 0
\(861\) 77.5359 2.64242
\(862\) −7.00314 −0.238528
\(863\) 5.06067 0.172267 0.0861337 0.996284i \(-0.472549\pi\)
0.0861337 + 0.996284i \(0.472549\pi\)
\(864\) 1.19656 0.0407077
\(865\) 0 0
\(866\) 23.3790 0.794452
\(867\) −38.3173 −1.30132
\(868\) 7.29587 0.247638
\(869\) −47.7429 −1.61957
\(870\) 0 0
\(871\) −5.87506 −0.199069
\(872\) −11.4966 −0.389325
\(873\) −28.7251 −0.972197
\(874\) 19.0361 0.643906
\(875\) 0 0
\(876\) −13.3889 −0.452369
\(877\) 41.8370 1.41274 0.706368 0.707845i \(-0.250332\pi\)
0.706368 + 0.707845i \(0.250332\pi\)
\(878\) −13.7073 −0.462598
\(879\) 21.3190 0.719071
\(880\) 0 0
\(881\) 2.10666 0.0709750 0.0354875 0.999370i \(-0.488702\pi\)
0.0354875 + 0.999370i \(0.488702\pi\)
\(882\) −19.1323 −0.644218
\(883\) 13.8389 0.465717 0.232859 0.972511i \(-0.425192\pi\)
0.232859 + 0.972511i \(0.425192\pi\)
\(884\) 0.921039 0.0309779
\(885\) 0 0
\(886\) 9.25410 0.310897
\(887\) 37.7795 1.26851 0.634256 0.773123i \(-0.281307\pi\)
0.634256 + 0.773123i \(0.281307\pi\)
\(888\) 17.8898 0.600341
\(889\) 30.2891 1.01587
\(890\) 0 0
\(891\) −32.8328 −1.09994
\(892\) 5.37169 0.179858
\(893\) 26.8683 0.899114
\(894\) −4.68585 −0.156718
\(895\) 0 0
\(896\) −3.83221 −0.128025
\(897\) −21.8223 −0.728627
\(898\) −25.8971 −0.864197
\(899\) 1.90383 0.0634962
\(900\) 0 0
\(901\) −0.450654 −0.0150135
\(902\) −27.6044 −0.919125
\(903\) −68.8156 −2.29004
\(904\) −5.36435 −0.178415
\(905\) 0 0
\(906\) 25.4292 0.844830
\(907\) −20.8683 −0.692921 −0.346461 0.938064i \(-0.612617\pi\)
−0.346461 + 0.938064i \(0.612617\pi\)
\(908\) 28.3215 0.939882
\(909\) 14.0288 0.465305
\(910\) 0 0
\(911\) 30.5468 1.01206 0.506031 0.862515i \(-0.331112\pi\)
0.506031 + 0.862515i \(0.331112\pi\)
\(912\) −5.48929 −0.181769
\(913\) 9.89710 0.327546
\(914\) 26.5829 0.879286
\(915\) 0 0
\(916\) 10.0147 0.330895
\(917\) −11.8933 −0.392753
\(918\) −0.961365 −0.0317298
\(919\) 33.8898 1.11792 0.558960 0.829195i \(-0.311201\pi\)
0.558960 + 0.829195i \(0.311201\pi\)
\(920\) 0 0
\(921\) 78.0466 2.57172
\(922\) −0.527923 −0.0173862
\(923\) −9.31415 −0.306579
\(924\) 28.7005 0.944178
\(925\) 0 0
\(926\) 38.0575 1.25065
\(927\) −43.8041 −1.43871
\(928\) −1.00000 −0.0328266
\(929\) 44.5040 1.46013 0.730064 0.683379i \(-0.239490\pi\)
0.730064 + 0.683379i \(0.239490\pi\)
\(930\) 0 0
\(931\) −18.0073 −0.590167
\(932\) −23.3246 −0.764024
\(933\) 46.3074 1.51604
\(934\) 10.5181 0.344161
\(935\) 0 0
\(936\) 2.85363 0.0932740
\(937\) −36.1793 −1.18193 −0.590964 0.806698i \(-0.701252\pi\)
−0.590964 + 0.806698i \(0.701252\pi\)
\(938\) −19.6399 −0.641264
\(939\) 44.9603 1.46722
\(940\) 0 0
\(941\) 11.1464 0.363361 0.181681 0.983358i \(-0.441846\pi\)
0.181681 + 0.983358i \(0.441846\pi\)
\(942\) 18.0246 0.587272
\(943\) 70.1642 2.28486
\(944\) 2.36435 0.0769529
\(945\) 0 0
\(946\) 24.4998 0.796556
\(947\) 38.8255 1.26166 0.630829 0.775922i \(-0.282715\pi\)
0.630829 + 0.775922i \(0.282715\pi\)
\(948\) −34.9933 −1.13653
\(949\) 6.55104 0.212656
\(950\) 0 0
\(951\) −72.0968 −2.33790
\(952\) 3.07896 0.0997897
\(953\) −9.83329 −0.318531 −0.159266 0.987236i \(-0.550913\pi\)
−0.159266 + 0.987236i \(0.550913\pi\)
\(954\) −1.39625 −0.0452053
\(955\) 0 0
\(956\) −21.9143 −0.708759
\(957\) 7.48929 0.242094
\(958\) −5.54935 −0.179291
\(959\) 73.7858 2.38267
\(960\) 0 0
\(961\) −27.3754 −0.883079
\(962\) −8.75325 −0.282216
\(963\) 3.88554 0.125210
\(964\) 9.45065 0.304385
\(965\) 0 0
\(966\) −72.9504 −2.34714
\(967\) 44.8500 1.44228 0.721140 0.692789i \(-0.243618\pi\)
0.721140 + 0.692789i \(0.243618\pi\)
\(968\) 0.782020 0.0251351
\(969\) 4.41033 0.141680
\(970\) 0 0
\(971\) 48.4496 1.55482 0.777410 0.628994i \(-0.216533\pi\)
0.777410 + 0.628994i \(0.216533\pi\)
\(972\) −20.4752 −0.656743
\(973\) 24.6760 0.791076
\(974\) 26.6858 0.855070
\(975\) 0 0
\(976\) 10.7146 0.342966
\(977\) 33.2155 1.06266 0.531328 0.847166i \(-0.321693\pi\)
0.531328 + 0.847166i \(0.321693\pi\)
\(978\) 3.78202 0.120936
\(979\) −10.6174 −0.339333
\(980\) 0 0
\(981\) 28.6184 0.913717
\(982\) −24.0575 −0.767707
\(983\) 26.2457 0.837107 0.418554 0.908192i \(-0.362537\pi\)
0.418554 + 0.908192i \(0.362537\pi\)
\(984\) −20.2327 −0.644994
\(985\) 0 0
\(986\) 0.803442 0.0255868
\(987\) −102.965 −3.27742
\(988\) 2.68585 0.0854481
\(989\) −62.2730 −1.98017
\(990\) 0 0
\(991\) −40.5145 −1.28698 −0.643492 0.765453i \(-0.722515\pi\)
−0.643492 + 0.765453i \(0.722515\pi\)
\(992\) −1.90383 −0.0604466
\(993\) −73.9693 −2.34735
\(994\) −31.1365 −0.987590
\(995\) 0 0
\(996\) 7.25410 0.229855
\(997\) −14.6227 −0.463104 −0.231552 0.972823i \(-0.574380\pi\)
−0.231552 + 0.972823i \(0.574380\pi\)
\(998\) −3.87085 −0.122530
\(999\) 9.13650 0.289066
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1450.2.a.q.1.3 3
5.2 odd 4 1450.2.b.k.349.1 6
5.3 odd 4 1450.2.b.k.349.6 6
5.4 even 2 1450.2.a.s.1.1 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1450.2.a.q.1.3 3 1.1 even 1 trivial
1450.2.a.s.1.1 yes 3 5.4 even 2
1450.2.b.k.349.1 6 5.2 odd 4
1450.2.b.k.349.6 6 5.3 odd 4