Properties

Label 1450.2.b.a.349.2
Level $1450$
Weight $2$
Character 1450.349
Analytic conductor $11.578$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1450,2,Mod(349,1450)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1450, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1450.349");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1450 = 2 \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1450.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(11.5783082931\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 349.2
Root \(1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 1450.349
Dual form 1450.2.b.a.349.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} +2.00000i q^{3} -1.00000 q^{4} -2.00000 q^{6} +2.00000i q^{7} -1.00000i q^{8} -1.00000 q^{9} -6.00000 q^{11} -2.00000i q^{12} -2.00000i q^{13} -2.00000 q^{14} +1.00000 q^{16} -6.00000i q^{17} -1.00000i q^{18} -2.00000 q^{19} -4.00000 q^{21} -6.00000i q^{22} +2.00000 q^{24} +2.00000 q^{26} +4.00000i q^{27} -2.00000i q^{28} +1.00000 q^{29} -7.00000 q^{31} +1.00000i q^{32} -12.0000i q^{33} +6.00000 q^{34} +1.00000 q^{36} -7.00000i q^{37} -2.00000i q^{38} +4.00000 q^{39} -12.0000 q^{41} -4.00000i q^{42} -8.00000i q^{43} +6.00000 q^{44} +9.00000i q^{47} +2.00000i q^{48} +3.00000 q^{49} +12.0000 q^{51} +2.00000i q^{52} +6.00000i q^{53} -4.00000 q^{54} +2.00000 q^{56} -4.00000i q^{57} +1.00000i q^{58} +9.00000 q^{59} -1.00000 q^{61} -7.00000i q^{62} -2.00000i q^{63} -1.00000 q^{64} +12.0000 q^{66} -1.00000i q^{67} +6.00000i q^{68} -12.0000 q^{71} +1.00000i q^{72} -2.00000i q^{73} +7.00000 q^{74} +2.00000 q^{76} -12.0000i q^{77} +4.00000i q^{78} -8.00000 q^{79} -11.0000 q^{81} -12.0000i q^{82} +4.00000 q^{84} +8.00000 q^{86} +2.00000i q^{87} +6.00000i q^{88} +6.00000 q^{89} +4.00000 q^{91} -14.0000i q^{93} -9.00000 q^{94} -2.00000 q^{96} -4.00000i q^{97} +3.00000i q^{98} +6.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{4} - 4 q^{6} - 2 q^{9} - 12 q^{11} - 4 q^{14} + 2 q^{16} - 4 q^{19} - 8 q^{21} + 4 q^{24} + 4 q^{26} + 2 q^{29} - 14 q^{31} + 12 q^{34} + 2 q^{36} + 8 q^{39} - 24 q^{41} + 12 q^{44} + 6 q^{49}+ \cdots + 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1450\mathbb{Z}\right)^\times\).

\(n\) \(901\) \(1277\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 2.00000i 1.15470i 0.816497 + 0.577350i \(0.195913\pi\)
−0.816497 + 0.577350i \(0.804087\pi\)
\(4\) −1.00000 −0.500000
\(5\) 0 0
\(6\) −2.00000 −0.816497
\(7\) 2.00000i 0.755929i 0.925820 + 0.377964i \(0.123376\pi\)
−0.925820 + 0.377964i \(0.876624\pi\)
\(8\) − 1.00000i − 0.353553i
\(9\) −1.00000 −0.333333
\(10\) 0 0
\(11\) −6.00000 −1.80907 −0.904534 0.426401i \(-0.859781\pi\)
−0.904534 + 0.426401i \(0.859781\pi\)
\(12\) − 2.00000i − 0.577350i
\(13\) − 2.00000i − 0.554700i −0.960769 0.277350i \(-0.910544\pi\)
0.960769 0.277350i \(-0.0894562\pi\)
\(14\) −2.00000 −0.534522
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) − 6.00000i − 1.45521i −0.685994 0.727607i \(-0.740633\pi\)
0.685994 0.727607i \(-0.259367\pi\)
\(18\) − 1.00000i − 0.235702i
\(19\) −2.00000 −0.458831 −0.229416 0.973329i \(-0.573682\pi\)
−0.229416 + 0.973329i \(0.573682\pi\)
\(20\) 0 0
\(21\) −4.00000 −0.872872
\(22\) − 6.00000i − 1.27920i
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 2.00000 0.408248
\(25\) 0 0
\(26\) 2.00000 0.392232
\(27\) 4.00000i 0.769800i
\(28\) − 2.00000i − 0.377964i
\(29\) 1.00000 0.185695
\(30\) 0 0
\(31\) −7.00000 −1.25724 −0.628619 0.777714i \(-0.716379\pi\)
−0.628619 + 0.777714i \(0.716379\pi\)
\(32\) 1.00000i 0.176777i
\(33\) − 12.0000i − 2.08893i
\(34\) 6.00000 1.02899
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) − 7.00000i − 1.15079i −0.817875 0.575396i \(-0.804848\pi\)
0.817875 0.575396i \(-0.195152\pi\)
\(38\) − 2.00000i − 0.324443i
\(39\) 4.00000 0.640513
\(40\) 0 0
\(41\) −12.0000 −1.87409 −0.937043 0.349215i \(-0.886448\pi\)
−0.937043 + 0.349215i \(0.886448\pi\)
\(42\) − 4.00000i − 0.617213i
\(43\) − 8.00000i − 1.21999i −0.792406 0.609994i \(-0.791172\pi\)
0.792406 0.609994i \(-0.208828\pi\)
\(44\) 6.00000 0.904534
\(45\) 0 0
\(46\) 0 0
\(47\) 9.00000i 1.31278i 0.754420 + 0.656392i \(0.227918\pi\)
−0.754420 + 0.656392i \(0.772082\pi\)
\(48\) 2.00000i 0.288675i
\(49\) 3.00000 0.428571
\(50\) 0 0
\(51\) 12.0000 1.68034
\(52\) 2.00000i 0.277350i
\(53\) 6.00000i 0.824163i 0.911147 + 0.412082i \(0.135198\pi\)
−0.911147 + 0.412082i \(0.864802\pi\)
\(54\) −4.00000 −0.544331
\(55\) 0 0
\(56\) 2.00000 0.267261
\(57\) − 4.00000i − 0.529813i
\(58\) 1.00000i 0.131306i
\(59\) 9.00000 1.17170 0.585850 0.810419i \(-0.300761\pi\)
0.585850 + 0.810419i \(0.300761\pi\)
\(60\) 0 0
\(61\) −1.00000 −0.128037 −0.0640184 0.997949i \(-0.520392\pi\)
−0.0640184 + 0.997949i \(0.520392\pi\)
\(62\) − 7.00000i − 0.889001i
\(63\) − 2.00000i − 0.251976i
\(64\) −1.00000 −0.125000
\(65\) 0 0
\(66\) 12.0000 1.47710
\(67\) − 1.00000i − 0.122169i −0.998133 0.0610847i \(-0.980544\pi\)
0.998133 0.0610847i \(-0.0194560\pi\)
\(68\) 6.00000i 0.727607i
\(69\) 0 0
\(70\) 0 0
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 1.00000i 0.117851i
\(73\) − 2.00000i − 0.234082i −0.993127 0.117041i \(-0.962659\pi\)
0.993127 0.117041i \(-0.0373409\pi\)
\(74\) 7.00000 0.813733
\(75\) 0 0
\(76\) 2.00000 0.229416
\(77\) − 12.0000i − 1.36753i
\(78\) 4.00000i 0.452911i
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 0 0
\(81\) −11.0000 −1.22222
\(82\) − 12.0000i − 1.32518i
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 4.00000 0.436436
\(85\) 0 0
\(86\) 8.00000 0.862662
\(87\) 2.00000i 0.214423i
\(88\) 6.00000i 0.639602i
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) 0 0
\(91\) 4.00000 0.419314
\(92\) 0 0
\(93\) − 14.0000i − 1.45173i
\(94\) −9.00000 −0.928279
\(95\) 0 0
\(96\) −2.00000 −0.204124
\(97\) − 4.00000i − 0.406138i −0.979164 0.203069i \(-0.934908\pi\)
0.979164 0.203069i \(-0.0650917\pi\)
\(98\) 3.00000i 0.303046i
\(99\) 6.00000 0.603023
\(100\) 0 0
\(101\) 3.00000 0.298511 0.149256 0.988799i \(-0.452312\pi\)
0.149256 + 0.988799i \(0.452312\pi\)
\(102\) 12.0000i 1.18818i
\(103\) 4.00000i 0.394132i 0.980390 + 0.197066i \(0.0631413\pi\)
−0.980390 + 0.197066i \(0.936859\pi\)
\(104\) −2.00000 −0.196116
\(105\) 0 0
\(106\) −6.00000 −0.582772
\(107\) − 3.00000i − 0.290021i −0.989430 0.145010i \(-0.953678\pi\)
0.989430 0.145010i \(-0.0463216\pi\)
\(108\) − 4.00000i − 0.384900i
\(109\) 4.00000 0.383131 0.191565 0.981480i \(-0.438644\pi\)
0.191565 + 0.981480i \(0.438644\pi\)
\(110\) 0 0
\(111\) 14.0000 1.32882
\(112\) 2.00000i 0.188982i
\(113\) 18.0000i 1.69330i 0.532152 + 0.846649i \(0.321383\pi\)
−0.532152 + 0.846649i \(0.678617\pi\)
\(114\) 4.00000 0.374634
\(115\) 0 0
\(116\) −1.00000 −0.0928477
\(117\) 2.00000i 0.184900i
\(118\) 9.00000i 0.828517i
\(119\) 12.0000 1.10004
\(120\) 0 0
\(121\) 25.0000 2.27273
\(122\) − 1.00000i − 0.0905357i
\(123\) − 24.0000i − 2.16401i
\(124\) 7.00000 0.628619
\(125\) 0 0
\(126\) 2.00000 0.178174
\(127\) − 7.00000i − 0.621150i −0.950549 0.310575i \(-0.899478\pi\)
0.950549 0.310575i \(-0.100522\pi\)
\(128\) − 1.00000i − 0.0883883i
\(129\) 16.0000 1.40872
\(130\) 0 0
\(131\) −18.0000 −1.57267 −0.786334 0.617802i \(-0.788023\pi\)
−0.786334 + 0.617802i \(0.788023\pi\)
\(132\) 12.0000i 1.04447i
\(133\) − 4.00000i − 0.346844i
\(134\) 1.00000 0.0863868
\(135\) 0 0
\(136\) −6.00000 −0.514496
\(137\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(138\) 0 0
\(139\) −5.00000 −0.424094 −0.212047 0.977259i \(-0.568013\pi\)
−0.212047 + 0.977259i \(0.568013\pi\)
\(140\) 0 0
\(141\) −18.0000 −1.51587
\(142\) − 12.0000i − 1.00702i
\(143\) 12.0000i 1.00349i
\(144\) −1.00000 −0.0833333
\(145\) 0 0
\(146\) 2.00000 0.165521
\(147\) 6.00000i 0.494872i
\(148\) 7.00000i 0.575396i
\(149\) −18.0000 −1.47462 −0.737309 0.675556i \(-0.763904\pi\)
−0.737309 + 0.675556i \(0.763904\pi\)
\(150\) 0 0
\(151\) 20.0000 1.62758 0.813788 0.581161i \(-0.197401\pi\)
0.813788 + 0.581161i \(0.197401\pi\)
\(152\) 2.00000i 0.162221i
\(153\) 6.00000i 0.485071i
\(154\) 12.0000 0.966988
\(155\) 0 0
\(156\) −4.00000 −0.320256
\(157\) − 7.00000i − 0.558661i −0.960195 0.279330i \(-0.909888\pi\)
0.960195 0.279330i \(-0.0901125\pi\)
\(158\) − 8.00000i − 0.636446i
\(159\) −12.0000 −0.951662
\(160\) 0 0
\(161\) 0 0
\(162\) − 11.0000i − 0.864242i
\(163\) 4.00000i 0.313304i 0.987654 + 0.156652i \(0.0500701\pi\)
−0.987654 + 0.156652i \(0.949930\pi\)
\(164\) 12.0000 0.937043
\(165\) 0 0
\(166\) 0 0
\(167\) 12.0000i 0.928588i 0.885681 + 0.464294i \(0.153692\pi\)
−0.885681 + 0.464294i \(0.846308\pi\)
\(168\) 4.00000i 0.308607i
\(169\) 9.00000 0.692308
\(170\) 0 0
\(171\) 2.00000 0.152944
\(172\) 8.00000i 0.609994i
\(173\) − 24.0000i − 1.82469i −0.409426 0.912343i \(-0.634271\pi\)
0.409426 0.912343i \(-0.365729\pi\)
\(174\) −2.00000 −0.151620
\(175\) 0 0
\(176\) −6.00000 −0.452267
\(177\) 18.0000i 1.35296i
\(178\) 6.00000i 0.449719i
\(179\) −21.0000 −1.56961 −0.784807 0.619740i \(-0.787238\pi\)
−0.784807 + 0.619740i \(0.787238\pi\)
\(180\) 0 0
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 4.00000i 0.296500i
\(183\) − 2.00000i − 0.147844i
\(184\) 0 0
\(185\) 0 0
\(186\) 14.0000 1.02653
\(187\) 36.0000i 2.63258i
\(188\) − 9.00000i − 0.656392i
\(189\) −8.00000 −0.581914
\(190\) 0 0
\(191\) 15.0000 1.08536 0.542681 0.839939i \(-0.317409\pi\)
0.542681 + 0.839939i \(0.317409\pi\)
\(192\) − 2.00000i − 0.144338i
\(193\) 10.0000i 0.719816i 0.932988 + 0.359908i \(0.117192\pi\)
−0.932988 + 0.359908i \(0.882808\pi\)
\(194\) 4.00000 0.287183
\(195\) 0 0
\(196\) −3.00000 −0.214286
\(197\) 18.0000i 1.28245i 0.767354 + 0.641223i \(0.221573\pi\)
−0.767354 + 0.641223i \(0.778427\pi\)
\(198\) 6.00000i 0.426401i
\(199\) −8.00000 −0.567105 −0.283552 0.958957i \(-0.591513\pi\)
−0.283552 + 0.958957i \(0.591513\pi\)
\(200\) 0 0
\(201\) 2.00000 0.141069
\(202\) 3.00000i 0.211079i
\(203\) 2.00000i 0.140372i
\(204\) −12.0000 −0.840168
\(205\) 0 0
\(206\) −4.00000 −0.278693
\(207\) 0 0
\(208\) − 2.00000i − 0.138675i
\(209\) 12.0000 0.830057
\(210\) 0 0
\(211\) −10.0000 −0.688428 −0.344214 0.938891i \(-0.611855\pi\)
−0.344214 + 0.938891i \(0.611855\pi\)
\(212\) − 6.00000i − 0.412082i
\(213\) − 24.0000i − 1.64445i
\(214\) 3.00000 0.205076
\(215\) 0 0
\(216\) 4.00000 0.272166
\(217\) − 14.0000i − 0.950382i
\(218\) 4.00000i 0.270914i
\(219\) 4.00000 0.270295
\(220\) 0 0
\(221\) −12.0000 −0.807207
\(222\) 14.0000i 0.939618i
\(223\) 16.0000i 1.07144i 0.844396 + 0.535720i \(0.179960\pi\)
−0.844396 + 0.535720i \(0.820040\pi\)
\(224\) −2.00000 −0.133631
\(225\) 0 0
\(226\) −18.0000 −1.19734
\(227\) 3.00000i 0.199117i 0.995032 + 0.0995585i \(0.0317430\pi\)
−0.995032 + 0.0995585i \(0.968257\pi\)
\(228\) 4.00000i 0.264906i
\(229\) −14.0000 −0.925146 −0.462573 0.886581i \(-0.653074\pi\)
−0.462573 + 0.886581i \(0.653074\pi\)
\(230\) 0 0
\(231\) 24.0000 1.57908
\(232\) − 1.00000i − 0.0656532i
\(233\) − 15.0000i − 0.982683i −0.870967 0.491341i \(-0.836507\pi\)
0.870967 0.491341i \(-0.163493\pi\)
\(234\) −2.00000 −0.130744
\(235\) 0 0
\(236\) −9.00000 −0.585850
\(237\) − 16.0000i − 1.03931i
\(238\) 12.0000i 0.777844i
\(239\) −30.0000 −1.94054 −0.970269 0.242028i \(-0.922188\pi\)
−0.970269 + 0.242028i \(0.922188\pi\)
\(240\) 0 0
\(241\) −13.0000 −0.837404 −0.418702 0.908124i \(-0.637515\pi\)
−0.418702 + 0.908124i \(0.637515\pi\)
\(242\) 25.0000i 1.60706i
\(243\) − 10.0000i − 0.641500i
\(244\) 1.00000 0.0640184
\(245\) 0 0
\(246\) 24.0000 1.53018
\(247\) 4.00000i 0.254514i
\(248\) 7.00000i 0.444500i
\(249\) 0 0
\(250\) 0 0
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 2.00000i 0.125988i
\(253\) 0 0
\(254\) 7.00000 0.439219
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) − 6.00000i − 0.374270i −0.982334 0.187135i \(-0.940080\pi\)
0.982334 0.187135i \(-0.0599201\pi\)
\(258\) 16.0000i 0.996116i
\(259\) 14.0000 0.869918
\(260\) 0 0
\(261\) −1.00000 −0.0618984
\(262\) − 18.0000i − 1.11204i
\(263\) − 27.0000i − 1.66489i −0.554107 0.832446i \(-0.686940\pi\)
0.554107 0.832446i \(-0.313060\pi\)
\(264\) −12.0000 −0.738549
\(265\) 0 0
\(266\) 4.00000 0.245256
\(267\) 12.0000i 0.734388i
\(268\) 1.00000i 0.0610847i
\(269\) −15.0000 −0.914566 −0.457283 0.889321i \(-0.651177\pi\)
−0.457283 + 0.889321i \(0.651177\pi\)
\(270\) 0 0
\(271\) −7.00000 −0.425220 −0.212610 0.977137i \(-0.568196\pi\)
−0.212610 + 0.977137i \(0.568196\pi\)
\(272\) − 6.00000i − 0.363803i
\(273\) 8.00000i 0.484182i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 26.0000i 1.56219i 0.624413 + 0.781094i \(0.285338\pi\)
−0.624413 + 0.781094i \(0.714662\pi\)
\(278\) − 5.00000i − 0.299880i
\(279\) 7.00000 0.419079
\(280\) 0 0
\(281\) −33.0000 −1.96861 −0.984307 0.176462i \(-0.943535\pi\)
−0.984307 + 0.176462i \(0.943535\pi\)
\(282\) − 18.0000i − 1.07188i
\(283\) − 20.0000i − 1.18888i −0.804141 0.594438i \(-0.797374\pi\)
0.804141 0.594438i \(-0.202626\pi\)
\(284\) 12.0000 0.712069
\(285\) 0 0
\(286\) −12.0000 −0.709575
\(287\) − 24.0000i − 1.41668i
\(288\) − 1.00000i − 0.0589256i
\(289\) −19.0000 −1.11765
\(290\) 0 0
\(291\) 8.00000 0.468968
\(292\) 2.00000i 0.117041i
\(293\) − 9.00000i − 0.525786i −0.964825 0.262893i \(-0.915323\pi\)
0.964825 0.262893i \(-0.0846766\pi\)
\(294\) −6.00000 −0.349927
\(295\) 0 0
\(296\) −7.00000 −0.406867
\(297\) − 24.0000i − 1.39262i
\(298\) − 18.0000i − 1.04271i
\(299\) 0 0
\(300\) 0 0
\(301\) 16.0000 0.922225
\(302\) 20.0000i 1.15087i
\(303\) 6.00000i 0.344691i
\(304\) −2.00000 −0.114708
\(305\) 0 0
\(306\) −6.00000 −0.342997
\(307\) − 16.0000i − 0.913168i −0.889680 0.456584i \(-0.849073\pi\)
0.889680 0.456584i \(-0.150927\pi\)
\(308\) 12.0000i 0.683763i
\(309\) −8.00000 −0.455104
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) − 4.00000i − 0.226455i
\(313\) 25.0000i 1.41308i 0.707671 + 0.706542i \(0.249746\pi\)
−0.707671 + 0.706542i \(0.750254\pi\)
\(314\) 7.00000 0.395033
\(315\) 0 0
\(316\) 8.00000 0.450035
\(317\) − 15.0000i − 0.842484i −0.906948 0.421242i \(-0.861594\pi\)
0.906948 0.421242i \(-0.138406\pi\)
\(318\) − 12.0000i − 0.672927i
\(319\) −6.00000 −0.335936
\(320\) 0 0
\(321\) 6.00000 0.334887
\(322\) 0 0
\(323\) 12.0000i 0.667698i
\(324\) 11.0000 0.611111
\(325\) 0 0
\(326\) −4.00000 −0.221540
\(327\) 8.00000i 0.442401i
\(328\) 12.0000i 0.662589i
\(329\) −18.0000 −0.992372
\(330\) 0 0
\(331\) 8.00000 0.439720 0.219860 0.975531i \(-0.429440\pi\)
0.219860 + 0.975531i \(0.429440\pi\)
\(332\) 0 0
\(333\) 7.00000i 0.383598i
\(334\) −12.0000 −0.656611
\(335\) 0 0
\(336\) −4.00000 −0.218218
\(337\) 26.0000i 1.41631i 0.706057 + 0.708155i \(0.250472\pi\)
−0.706057 + 0.708155i \(0.749528\pi\)
\(338\) 9.00000i 0.489535i
\(339\) −36.0000 −1.95525
\(340\) 0 0
\(341\) 42.0000 2.27443
\(342\) 2.00000i 0.108148i
\(343\) 20.0000i 1.07990i
\(344\) −8.00000 −0.431331
\(345\) 0 0
\(346\) 24.0000 1.29025
\(347\) − 3.00000i − 0.161048i −0.996753 0.0805242i \(-0.974341\pi\)
0.996753 0.0805242i \(-0.0256594\pi\)
\(348\) − 2.00000i − 0.107211i
\(349\) −26.0000 −1.39175 −0.695874 0.718164i \(-0.744983\pi\)
−0.695874 + 0.718164i \(0.744983\pi\)
\(350\) 0 0
\(351\) 8.00000 0.427008
\(352\) − 6.00000i − 0.319801i
\(353\) 33.0000i 1.75641i 0.478282 + 0.878206i \(0.341260\pi\)
−0.478282 + 0.878206i \(0.658740\pi\)
\(354\) −18.0000 −0.956689
\(355\) 0 0
\(356\) −6.00000 −0.317999
\(357\) 24.0000i 1.27021i
\(358\) − 21.0000i − 1.10988i
\(359\) −9.00000 −0.475002 −0.237501 0.971387i \(-0.576328\pi\)
−0.237501 + 0.971387i \(0.576328\pi\)
\(360\) 0 0
\(361\) −15.0000 −0.789474
\(362\) 2.00000i 0.105118i
\(363\) 50.0000i 2.62432i
\(364\) −4.00000 −0.209657
\(365\) 0 0
\(366\) 2.00000 0.104542
\(367\) − 19.0000i − 0.991792i −0.868382 0.495896i \(-0.834840\pi\)
0.868382 0.495896i \(-0.165160\pi\)
\(368\) 0 0
\(369\) 12.0000 0.624695
\(370\) 0 0
\(371\) −12.0000 −0.623009
\(372\) 14.0000i 0.725866i
\(373\) 4.00000i 0.207112i 0.994624 + 0.103556i \(0.0330221\pi\)
−0.994624 + 0.103556i \(0.966978\pi\)
\(374\) −36.0000 −1.86152
\(375\) 0 0
\(376\) 9.00000 0.464140
\(377\) − 2.00000i − 0.103005i
\(378\) − 8.00000i − 0.411476i
\(379\) −2.00000 −0.102733 −0.0513665 0.998680i \(-0.516358\pi\)
−0.0513665 + 0.998680i \(0.516358\pi\)
\(380\) 0 0
\(381\) 14.0000 0.717242
\(382\) 15.0000i 0.767467i
\(383\) 6.00000i 0.306586i 0.988181 + 0.153293i \(0.0489878\pi\)
−0.988181 + 0.153293i \(0.951012\pi\)
\(384\) 2.00000 0.102062
\(385\) 0 0
\(386\) −10.0000 −0.508987
\(387\) 8.00000i 0.406663i
\(388\) 4.00000i 0.203069i
\(389\) 9.00000 0.456318 0.228159 0.973624i \(-0.426729\pi\)
0.228159 + 0.973624i \(0.426729\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) − 3.00000i − 0.151523i
\(393\) − 36.0000i − 1.81596i
\(394\) −18.0000 −0.906827
\(395\) 0 0
\(396\) −6.00000 −0.301511
\(397\) − 34.0000i − 1.70641i −0.521575 0.853206i \(-0.674655\pi\)
0.521575 0.853206i \(-0.325345\pi\)
\(398\) − 8.00000i − 0.401004i
\(399\) 8.00000 0.400501
\(400\) 0 0
\(401\) −15.0000 −0.749064 −0.374532 0.927214i \(-0.622197\pi\)
−0.374532 + 0.927214i \(0.622197\pi\)
\(402\) 2.00000i 0.0997509i
\(403\) 14.0000i 0.697390i
\(404\) −3.00000 −0.149256
\(405\) 0 0
\(406\) −2.00000 −0.0992583
\(407\) 42.0000i 2.08186i
\(408\) − 12.0000i − 0.594089i
\(409\) 28.0000 1.38451 0.692255 0.721653i \(-0.256617\pi\)
0.692255 + 0.721653i \(0.256617\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) − 4.00000i − 0.197066i
\(413\) 18.0000i 0.885722i
\(414\) 0 0
\(415\) 0 0
\(416\) 2.00000 0.0980581
\(417\) − 10.0000i − 0.489702i
\(418\) 12.0000i 0.586939i
\(419\) 9.00000 0.439679 0.219839 0.975536i \(-0.429447\pi\)
0.219839 + 0.975536i \(0.429447\pi\)
\(420\) 0 0
\(421\) 17.0000 0.828529 0.414265 0.910156i \(-0.364039\pi\)
0.414265 + 0.910156i \(0.364039\pi\)
\(422\) − 10.0000i − 0.486792i
\(423\) − 9.00000i − 0.437595i
\(424\) 6.00000 0.291386
\(425\) 0 0
\(426\) 24.0000 1.16280
\(427\) − 2.00000i − 0.0967868i
\(428\) 3.00000i 0.145010i
\(429\) −24.0000 −1.15873
\(430\) 0 0
\(431\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(432\) 4.00000i 0.192450i
\(433\) 4.00000i 0.192228i 0.995370 + 0.0961139i \(0.0306413\pi\)
−0.995370 + 0.0961139i \(0.969359\pi\)
\(434\) 14.0000 0.672022
\(435\) 0 0
\(436\) −4.00000 −0.191565
\(437\) 0 0
\(438\) 4.00000i 0.191127i
\(439\) 28.0000 1.33637 0.668184 0.743996i \(-0.267072\pi\)
0.668184 + 0.743996i \(0.267072\pi\)
\(440\) 0 0
\(441\) −3.00000 −0.142857
\(442\) − 12.0000i − 0.570782i
\(443\) − 18.0000i − 0.855206i −0.903967 0.427603i \(-0.859358\pi\)
0.903967 0.427603i \(-0.140642\pi\)
\(444\) −14.0000 −0.664411
\(445\) 0 0
\(446\) −16.0000 −0.757622
\(447\) − 36.0000i − 1.70274i
\(448\) − 2.00000i − 0.0944911i
\(449\) −12.0000 −0.566315 −0.283158 0.959073i \(-0.591382\pi\)
−0.283158 + 0.959073i \(0.591382\pi\)
\(450\) 0 0
\(451\) 72.0000 3.39035
\(452\) − 18.0000i − 0.846649i
\(453\) 40.0000i 1.87936i
\(454\) −3.00000 −0.140797
\(455\) 0 0
\(456\) −4.00000 −0.187317
\(457\) − 10.0000i − 0.467780i −0.972263 0.233890i \(-0.924854\pi\)
0.972263 0.233890i \(-0.0751456\pi\)
\(458\) − 14.0000i − 0.654177i
\(459\) 24.0000 1.12022
\(460\) 0 0
\(461\) −30.0000 −1.39724 −0.698620 0.715493i \(-0.746202\pi\)
−0.698620 + 0.715493i \(0.746202\pi\)
\(462\) 24.0000i 1.11658i
\(463\) 4.00000i 0.185896i 0.995671 + 0.0929479i \(0.0296290\pi\)
−0.995671 + 0.0929479i \(0.970371\pi\)
\(464\) 1.00000 0.0464238
\(465\) 0 0
\(466\) 15.0000 0.694862
\(467\) 42.0000i 1.94353i 0.235954 + 0.971764i \(0.424178\pi\)
−0.235954 + 0.971764i \(0.575822\pi\)
\(468\) − 2.00000i − 0.0924500i
\(469\) 2.00000 0.0923514
\(470\) 0 0
\(471\) 14.0000 0.645086
\(472\) − 9.00000i − 0.414259i
\(473\) 48.0000i 2.20704i
\(474\) 16.0000 0.734904
\(475\) 0 0
\(476\) −12.0000 −0.550019
\(477\) − 6.00000i − 0.274721i
\(478\) − 30.0000i − 1.37217i
\(479\) 36.0000 1.64488 0.822441 0.568850i \(-0.192612\pi\)
0.822441 + 0.568850i \(0.192612\pi\)
\(480\) 0 0
\(481\) −14.0000 −0.638345
\(482\) − 13.0000i − 0.592134i
\(483\) 0 0
\(484\) −25.0000 −1.13636
\(485\) 0 0
\(486\) 10.0000 0.453609
\(487\) 38.0000i 1.72194i 0.508652 + 0.860972i \(0.330144\pi\)
−0.508652 + 0.860972i \(0.669856\pi\)
\(488\) 1.00000i 0.0452679i
\(489\) −8.00000 −0.361773
\(490\) 0 0
\(491\) −30.0000 −1.35388 −0.676941 0.736038i \(-0.736695\pi\)
−0.676941 + 0.736038i \(0.736695\pi\)
\(492\) 24.0000i 1.08200i
\(493\) − 6.00000i − 0.270226i
\(494\) −4.00000 −0.179969
\(495\) 0 0
\(496\) −7.00000 −0.314309
\(497\) − 24.0000i − 1.07655i
\(498\) 0 0
\(499\) 13.0000 0.581960 0.290980 0.956729i \(-0.406019\pi\)
0.290980 + 0.956729i \(0.406019\pi\)
\(500\) 0 0
\(501\) −24.0000 −1.07224
\(502\) − 12.0000i − 0.535586i
\(503\) 21.0000i 0.936344i 0.883637 + 0.468172i \(0.155087\pi\)
−0.883637 + 0.468172i \(0.844913\pi\)
\(504\) −2.00000 −0.0890871
\(505\) 0 0
\(506\) 0 0
\(507\) 18.0000i 0.799408i
\(508\) 7.00000i 0.310575i
\(509\) 24.0000 1.06378 0.531891 0.846813i \(-0.321482\pi\)
0.531891 + 0.846813i \(0.321482\pi\)
\(510\) 0 0
\(511\) 4.00000 0.176950
\(512\) 1.00000i 0.0441942i
\(513\) − 8.00000i − 0.353209i
\(514\) 6.00000 0.264649
\(515\) 0 0
\(516\) −16.0000 −0.704361
\(517\) − 54.0000i − 2.37492i
\(518\) 14.0000i 0.615125i
\(519\) 48.0000 2.10697
\(520\) 0 0
\(521\) −3.00000 −0.131432 −0.0657162 0.997838i \(-0.520933\pi\)
−0.0657162 + 0.997838i \(0.520933\pi\)
\(522\) − 1.00000i − 0.0437688i
\(523\) − 29.0000i − 1.26808i −0.773300 0.634041i \(-0.781395\pi\)
0.773300 0.634041i \(-0.218605\pi\)
\(524\) 18.0000 0.786334
\(525\) 0 0
\(526\) 27.0000 1.17726
\(527\) 42.0000i 1.82955i
\(528\) − 12.0000i − 0.522233i
\(529\) 23.0000 1.00000
\(530\) 0 0
\(531\) −9.00000 −0.390567
\(532\) 4.00000i 0.173422i
\(533\) 24.0000i 1.03956i
\(534\) −12.0000 −0.519291
\(535\) 0 0
\(536\) −1.00000 −0.0431934
\(537\) − 42.0000i − 1.81243i
\(538\) − 15.0000i − 0.646696i
\(539\) −18.0000 −0.775315
\(540\) 0 0
\(541\) −13.0000 −0.558914 −0.279457 0.960158i \(-0.590154\pi\)
−0.279457 + 0.960158i \(0.590154\pi\)
\(542\) − 7.00000i − 0.300676i
\(543\) 4.00000i 0.171656i
\(544\) 6.00000 0.257248
\(545\) 0 0
\(546\) −8.00000 −0.342368
\(547\) − 28.0000i − 1.19719i −0.801050 0.598597i \(-0.795725\pi\)
0.801050 0.598597i \(-0.204275\pi\)
\(548\) 0 0
\(549\) 1.00000 0.0426790
\(550\) 0 0
\(551\) −2.00000 −0.0852029
\(552\) 0 0
\(553\) − 16.0000i − 0.680389i
\(554\) −26.0000 −1.10463
\(555\) 0 0
\(556\) 5.00000 0.212047
\(557\) 18.0000i 0.762684i 0.924434 + 0.381342i \(0.124538\pi\)
−0.924434 + 0.381342i \(0.875462\pi\)
\(558\) 7.00000i 0.296334i
\(559\) −16.0000 −0.676728
\(560\) 0 0
\(561\) −72.0000 −3.03984
\(562\) − 33.0000i − 1.39202i
\(563\) − 24.0000i − 1.01148i −0.862686 0.505740i \(-0.831220\pi\)
0.862686 0.505740i \(-0.168780\pi\)
\(564\) 18.0000 0.757937
\(565\) 0 0
\(566\) 20.0000 0.840663
\(567\) − 22.0000i − 0.923913i
\(568\) 12.0000i 0.503509i
\(569\) 30.0000 1.25767 0.628833 0.777541i \(-0.283533\pi\)
0.628833 + 0.777541i \(0.283533\pi\)
\(570\) 0 0
\(571\) 29.0000 1.21361 0.606806 0.794850i \(-0.292450\pi\)
0.606806 + 0.794850i \(0.292450\pi\)
\(572\) − 12.0000i − 0.501745i
\(573\) 30.0000i 1.25327i
\(574\) 24.0000 1.00174
\(575\) 0 0
\(576\) 1.00000 0.0416667
\(577\) 14.0000i 0.582828i 0.956597 + 0.291414i \(0.0941257\pi\)
−0.956597 + 0.291414i \(0.905874\pi\)
\(578\) − 19.0000i − 0.790296i
\(579\) −20.0000 −0.831172
\(580\) 0 0
\(581\) 0 0
\(582\) 8.00000i 0.331611i
\(583\) − 36.0000i − 1.49097i
\(584\) −2.00000 −0.0827606
\(585\) 0 0
\(586\) 9.00000 0.371787
\(587\) 15.0000i 0.619116i 0.950881 + 0.309558i \(0.100181\pi\)
−0.950881 + 0.309558i \(0.899819\pi\)
\(588\) − 6.00000i − 0.247436i
\(589\) 14.0000 0.576860
\(590\) 0 0
\(591\) −36.0000 −1.48084
\(592\) − 7.00000i − 0.287698i
\(593\) 33.0000i 1.35515i 0.735455 + 0.677574i \(0.236969\pi\)
−0.735455 + 0.677574i \(0.763031\pi\)
\(594\) 24.0000 0.984732
\(595\) 0 0
\(596\) 18.0000 0.737309
\(597\) − 16.0000i − 0.654836i
\(598\) 0 0
\(599\) 27.0000 1.10319 0.551595 0.834112i \(-0.314019\pi\)
0.551595 + 0.834112i \(0.314019\pi\)
\(600\) 0 0
\(601\) 20.0000 0.815817 0.407909 0.913023i \(-0.366258\pi\)
0.407909 + 0.913023i \(0.366258\pi\)
\(602\) 16.0000i 0.652111i
\(603\) 1.00000i 0.0407231i
\(604\) −20.0000 −0.813788
\(605\) 0 0
\(606\) −6.00000 −0.243733
\(607\) 41.0000i 1.66414i 0.554672 + 0.832069i \(0.312844\pi\)
−0.554672 + 0.832069i \(0.687156\pi\)
\(608\) − 2.00000i − 0.0811107i
\(609\) −4.00000 −0.162088
\(610\) 0 0
\(611\) 18.0000 0.728202
\(612\) − 6.00000i − 0.242536i
\(613\) − 2.00000i − 0.0807792i −0.999184 0.0403896i \(-0.987140\pi\)
0.999184 0.0403896i \(-0.0128599\pi\)
\(614\) 16.0000 0.645707
\(615\) 0 0
\(616\) −12.0000 −0.483494
\(617\) − 12.0000i − 0.483102i −0.970388 0.241551i \(-0.922344\pi\)
0.970388 0.241551i \(-0.0776561\pi\)
\(618\) − 8.00000i − 0.321807i
\(619\) 34.0000 1.36658 0.683288 0.730149i \(-0.260549\pi\)
0.683288 + 0.730149i \(0.260549\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 12.0000i 0.480770i
\(624\) 4.00000 0.160128
\(625\) 0 0
\(626\) −25.0000 −0.999201
\(627\) 24.0000i 0.958468i
\(628\) 7.00000i 0.279330i
\(629\) −42.0000 −1.67465
\(630\) 0 0
\(631\) 32.0000 1.27390 0.636950 0.770905i \(-0.280196\pi\)
0.636950 + 0.770905i \(0.280196\pi\)
\(632\) 8.00000i 0.318223i
\(633\) − 20.0000i − 0.794929i
\(634\) 15.0000 0.595726
\(635\) 0 0
\(636\) 12.0000 0.475831
\(637\) − 6.00000i − 0.237729i
\(638\) − 6.00000i − 0.237542i
\(639\) 12.0000 0.474713
\(640\) 0 0
\(641\) 36.0000 1.42191 0.710957 0.703235i \(-0.248262\pi\)
0.710957 + 0.703235i \(0.248262\pi\)
\(642\) 6.00000i 0.236801i
\(643\) − 23.0000i − 0.907031i −0.891248 0.453516i \(-0.850170\pi\)
0.891248 0.453516i \(-0.149830\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −12.0000 −0.472134
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) 11.0000i 0.432121i
\(649\) −54.0000 −2.11969
\(650\) 0 0
\(651\) 28.0000 1.09741
\(652\) − 4.00000i − 0.156652i
\(653\) − 39.0000i − 1.52619i −0.646288 0.763094i \(-0.723679\pi\)
0.646288 0.763094i \(-0.276321\pi\)
\(654\) −8.00000 −0.312825
\(655\) 0 0
\(656\) −12.0000 −0.468521
\(657\) 2.00000i 0.0780274i
\(658\) − 18.0000i − 0.701713i
\(659\) −36.0000 −1.40236 −0.701180 0.712984i \(-0.747343\pi\)
−0.701180 + 0.712984i \(0.747343\pi\)
\(660\) 0 0
\(661\) −4.00000 −0.155582 −0.0777910 0.996970i \(-0.524787\pi\)
−0.0777910 + 0.996970i \(0.524787\pi\)
\(662\) 8.00000i 0.310929i
\(663\) − 24.0000i − 0.932083i
\(664\) 0 0
\(665\) 0 0
\(666\) −7.00000 −0.271244
\(667\) 0 0
\(668\) − 12.0000i − 0.464294i
\(669\) −32.0000 −1.23719
\(670\) 0 0
\(671\) 6.00000 0.231627
\(672\) − 4.00000i − 0.154303i
\(673\) 1.00000i 0.0385472i 0.999814 + 0.0192736i \(0.00613535\pi\)
−0.999814 + 0.0192736i \(0.993865\pi\)
\(674\) −26.0000 −1.00148
\(675\) 0 0
\(676\) −9.00000 −0.346154
\(677\) 33.0000i 1.26829i 0.773213 + 0.634147i \(0.218648\pi\)
−0.773213 + 0.634147i \(0.781352\pi\)
\(678\) − 36.0000i − 1.38257i
\(679\) 8.00000 0.307012
\(680\) 0 0
\(681\) −6.00000 −0.229920
\(682\) 42.0000i 1.60826i
\(683\) 24.0000i 0.918334i 0.888350 + 0.459167i \(0.151852\pi\)
−0.888350 + 0.459167i \(0.848148\pi\)
\(684\) −2.00000 −0.0764719
\(685\) 0 0
\(686\) −20.0000 −0.763604
\(687\) − 28.0000i − 1.06827i
\(688\) − 8.00000i − 0.304997i
\(689\) 12.0000 0.457164
\(690\) 0 0
\(691\) −1.00000 −0.0380418 −0.0190209 0.999819i \(-0.506055\pi\)
−0.0190209 + 0.999819i \(0.506055\pi\)
\(692\) 24.0000i 0.912343i
\(693\) 12.0000i 0.455842i
\(694\) 3.00000 0.113878
\(695\) 0 0
\(696\) 2.00000 0.0758098
\(697\) 72.0000i 2.72719i
\(698\) − 26.0000i − 0.984115i
\(699\) 30.0000 1.13470
\(700\) 0 0
\(701\) 36.0000 1.35970 0.679851 0.733351i \(-0.262045\pi\)
0.679851 + 0.733351i \(0.262045\pi\)
\(702\) 8.00000i 0.301941i
\(703\) 14.0000i 0.528020i
\(704\) 6.00000 0.226134
\(705\) 0 0
\(706\) −33.0000 −1.24197
\(707\) 6.00000i 0.225653i
\(708\) − 18.0000i − 0.676481i
\(709\) 10.0000 0.375558 0.187779 0.982211i \(-0.439871\pi\)
0.187779 + 0.982211i \(0.439871\pi\)
\(710\) 0 0
\(711\) 8.00000 0.300023
\(712\) − 6.00000i − 0.224860i
\(713\) 0 0
\(714\) −24.0000 −0.898177
\(715\) 0 0
\(716\) 21.0000 0.784807
\(717\) − 60.0000i − 2.24074i
\(718\) − 9.00000i − 0.335877i
\(719\) 36.0000 1.34257 0.671287 0.741198i \(-0.265742\pi\)
0.671287 + 0.741198i \(0.265742\pi\)
\(720\) 0 0
\(721\) −8.00000 −0.297936
\(722\) − 15.0000i − 0.558242i
\(723\) − 26.0000i − 0.966950i
\(724\) −2.00000 −0.0743294
\(725\) 0 0
\(726\) −50.0000 −1.85567
\(727\) − 52.0000i − 1.92857i −0.264861 0.964287i \(-0.585326\pi\)
0.264861 0.964287i \(-0.414674\pi\)
\(728\) − 4.00000i − 0.148250i
\(729\) −13.0000 −0.481481
\(730\) 0 0
\(731\) −48.0000 −1.77534
\(732\) 2.00000i 0.0739221i
\(733\) 22.0000i 0.812589i 0.913742 + 0.406294i \(0.133179\pi\)
−0.913742 + 0.406294i \(0.866821\pi\)
\(734\) 19.0000 0.701303
\(735\) 0 0
\(736\) 0 0
\(737\) 6.00000i 0.221013i
\(738\) 12.0000i 0.441726i
\(739\) 34.0000 1.25071 0.625355 0.780340i \(-0.284954\pi\)
0.625355 + 0.780340i \(0.284954\pi\)
\(740\) 0 0
\(741\) −8.00000 −0.293887
\(742\) − 12.0000i − 0.440534i
\(743\) − 48.0000i − 1.76095i −0.474093 0.880475i \(-0.657224\pi\)
0.474093 0.880475i \(-0.342776\pi\)
\(744\) −14.0000 −0.513265
\(745\) 0 0
\(746\) −4.00000 −0.146450
\(747\) 0 0
\(748\) − 36.0000i − 1.31629i
\(749\) 6.00000 0.219235
\(750\) 0 0
\(751\) −13.0000 −0.474377 −0.237188 0.971464i \(-0.576226\pi\)
−0.237188 + 0.971464i \(0.576226\pi\)
\(752\) 9.00000i 0.328196i
\(753\) − 24.0000i − 0.874609i
\(754\) 2.00000 0.0728357
\(755\) 0 0
\(756\) 8.00000 0.290957
\(757\) − 22.0000i − 0.799604i −0.916602 0.399802i \(-0.869079\pi\)
0.916602 0.399802i \(-0.130921\pi\)
\(758\) − 2.00000i − 0.0726433i
\(759\) 0 0
\(760\) 0 0
\(761\) −21.0000 −0.761249 −0.380625 0.924730i \(-0.624291\pi\)
−0.380625 + 0.924730i \(0.624291\pi\)
\(762\) 14.0000i 0.507166i
\(763\) 8.00000i 0.289619i
\(764\) −15.0000 −0.542681
\(765\) 0 0
\(766\) −6.00000 −0.216789
\(767\) − 18.0000i − 0.649942i
\(768\) 2.00000i 0.0721688i
\(769\) −38.0000 −1.37032 −0.685158 0.728395i \(-0.740267\pi\)
−0.685158 + 0.728395i \(0.740267\pi\)
\(770\) 0 0
\(771\) 12.0000 0.432169
\(772\) − 10.0000i − 0.359908i
\(773\) 39.0000i 1.40273i 0.712801 + 0.701366i \(0.247426\pi\)
−0.712801 + 0.701366i \(0.752574\pi\)
\(774\) −8.00000 −0.287554
\(775\) 0 0
\(776\) −4.00000 −0.143592
\(777\) 28.0000i 1.00449i
\(778\) 9.00000i 0.322666i
\(779\) 24.0000 0.859889
\(780\) 0 0
\(781\) 72.0000 2.57636
\(782\) 0 0
\(783\) 4.00000i 0.142948i
\(784\) 3.00000 0.107143
\(785\) 0 0
\(786\) 36.0000 1.28408
\(787\) − 31.0000i − 1.10503i −0.833503 0.552515i \(-0.813668\pi\)
0.833503 0.552515i \(-0.186332\pi\)
\(788\) − 18.0000i − 0.641223i
\(789\) 54.0000 1.92245
\(790\) 0 0
\(791\) −36.0000 −1.28001
\(792\) − 6.00000i − 0.213201i
\(793\) 2.00000i 0.0710221i
\(794\) 34.0000 1.20661
\(795\) 0 0
\(796\) 8.00000 0.283552
\(797\) 18.0000i 0.637593i 0.947823 + 0.318796i \(0.103279\pi\)
−0.947823 + 0.318796i \(0.896721\pi\)
\(798\) 8.00000i 0.283197i
\(799\) 54.0000 1.91038
\(800\) 0 0
\(801\) −6.00000 −0.212000
\(802\) − 15.0000i − 0.529668i
\(803\) 12.0000i 0.423471i
\(804\) −2.00000 −0.0705346
\(805\) 0 0
\(806\) −14.0000 −0.493129
\(807\) − 30.0000i − 1.05605i
\(808\) − 3.00000i − 0.105540i
\(809\) −24.0000 −0.843795 −0.421898 0.906644i \(-0.638636\pi\)
−0.421898 + 0.906644i \(0.638636\pi\)
\(810\) 0 0
\(811\) −19.0000 −0.667180 −0.333590 0.942718i \(-0.608260\pi\)
−0.333590 + 0.942718i \(0.608260\pi\)
\(812\) − 2.00000i − 0.0701862i
\(813\) − 14.0000i − 0.491001i
\(814\) −42.0000 −1.47210
\(815\) 0 0
\(816\) 12.0000 0.420084
\(817\) 16.0000i 0.559769i
\(818\) 28.0000i 0.978997i
\(819\) −4.00000 −0.139771
\(820\) 0 0
\(821\) 18.0000 0.628204 0.314102 0.949389i \(-0.398297\pi\)
0.314102 + 0.949389i \(0.398297\pi\)
\(822\) 0 0
\(823\) 4.00000i 0.139431i 0.997567 + 0.0697156i \(0.0222092\pi\)
−0.997567 + 0.0697156i \(0.977791\pi\)
\(824\) 4.00000 0.139347
\(825\) 0 0
\(826\) −18.0000 −0.626300
\(827\) − 18.0000i − 0.625921i −0.949766 0.312961i \(-0.898679\pi\)
0.949766 0.312961i \(-0.101321\pi\)
\(828\) 0 0
\(829\) −2.00000 −0.0694629 −0.0347314 0.999397i \(-0.511058\pi\)
−0.0347314 + 0.999397i \(0.511058\pi\)
\(830\) 0 0
\(831\) −52.0000 −1.80386
\(832\) 2.00000i 0.0693375i
\(833\) − 18.0000i − 0.623663i
\(834\) 10.0000 0.346272
\(835\) 0 0
\(836\) −12.0000 −0.415029
\(837\) − 28.0000i − 0.967822i
\(838\) 9.00000i 0.310900i
\(839\) 15.0000 0.517858 0.258929 0.965896i \(-0.416631\pi\)
0.258929 + 0.965896i \(0.416631\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 17.0000i 0.585859i
\(843\) − 66.0000i − 2.27316i
\(844\) 10.0000 0.344214
\(845\) 0 0
\(846\) 9.00000 0.309426
\(847\) 50.0000i 1.71802i
\(848\) 6.00000i 0.206041i
\(849\) 40.0000 1.37280
\(850\) 0 0
\(851\) 0 0
\(852\) 24.0000i 0.822226i
\(853\) − 50.0000i − 1.71197i −0.517003 0.855984i \(-0.672952\pi\)
0.517003 0.855984i \(-0.327048\pi\)
\(854\) 2.00000 0.0684386
\(855\) 0 0
\(856\) −3.00000 −0.102538
\(857\) 6.00000i 0.204956i 0.994735 + 0.102478i \(0.0326771\pi\)
−0.994735 + 0.102478i \(0.967323\pi\)
\(858\) − 24.0000i − 0.819346i
\(859\) −14.0000 −0.477674 −0.238837 0.971060i \(-0.576766\pi\)
−0.238837 + 0.971060i \(0.576766\pi\)
\(860\) 0 0
\(861\) 48.0000 1.63584
\(862\) 0 0
\(863\) − 24.0000i − 0.816970i −0.912765 0.408485i \(-0.866057\pi\)
0.912765 0.408485i \(-0.133943\pi\)
\(864\) −4.00000 −0.136083
\(865\) 0 0
\(866\) −4.00000 −0.135926
\(867\) − 38.0000i − 1.29055i
\(868\) 14.0000i 0.475191i
\(869\) 48.0000 1.62829
\(870\) 0 0
\(871\) −2.00000 −0.0677674
\(872\) − 4.00000i − 0.135457i
\(873\) 4.00000i 0.135379i
\(874\) 0 0
\(875\) 0 0
\(876\) −4.00000 −0.135147
\(877\) 8.00000i 0.270141i 0.990836 + 0.135070i \(0.0431261\pi\)
−0.990836 + 0.135070i \(0.956874\pi\)
\(878\) 28.0000i 0.944954i
\(879\) 18.0000 0.607125
\(880\) 0 0
\(881\) −48.0000 −1.61716 −0.808581 0.588386i \(-0.799764\pi\)
−0.808581 + 0.588386i \(0.799764\pi\)
\(882\) − 3.00000i − 0.101015i
\(883\) − 17.0000i − 0.572096i −0.958215 0.286048i \(-0.907658\pi\)
0.958215 0.286048i \(-0.0923416\pi\)
\(884\) 12.0000 0.403604
\(885\) 0 0
\(886\) 18.0000 0.604722
\(887\) − 24.0000i − 0.805841i −0.915235 0.402921i \(-0.867995\pi\)
0.915235 0.402921i \(-0.132005\pi\)
\(888\) − 14.0000i − 0.469809i
\(889\) 14.0000 0.469545
\(890\) 0 0
\(891\) 66.0000 2.21108
\(892\) − 16.0000i − 0.535720i
\(893\) − 18.0000i − 0.602347i
\(894\) 36.0000 1.20402
\(895\) 0 0
\(896\) 2.00000 0.0668153
\(897\) 0 0
\(898\) − 12.0000i − 0.400445i
\(899\) −7.00000 −0.233463
\(900\) 0 0
\(901\) 36.0000 1.19933
\(902\) 72.0000i 2.39734i
\(903\) 32.0000i 1.06489i
\(904\) 18.0000 0.598671
\(905\) 0 0
\(906\) −40.0000 −1.32891
\(907\) 8.00000i 0.265636i 0.991140 + 0.132818i \(0.0424025\pi\)
−0.991140 + 0.132818i \(0.957597\pi\)
\(908\) − 3.00000i − 0.0995585i
\(909\) −3.00000 −0.0995037
\(910\) 0 0
\(911\) 27.0000 0.894550 0.447275 0.894397i \(-0.352395\pi\)
0.447275 + 0.894397i \(0.352395\pi\)
\(912\) − 4.00000i − 0.132453i
\(913\) 0 0
\(914\) 10.0000 0.330771
\(915\) 0 0
\(916\) 14.0000 0.462573
\(917\) − 36.0000i − 1.18882i
\(918\) 24.0000i 0.792118i
\(919\) 46.0000 1.51740 0.758700 0.651440i \(-0.225835\pi\)
0.758700 + 0.651440i \(0.225835\pi\)
\(920\) 0 0
\(921\) 32.0000 1.05444
\(922\) − 30.0000i − 0.987997i
\(923\) 24.0000i 0.789970i
\(924\) −24.0000 −0.789542
\(925\) 0 0
\(926\) −4.00000 −0.131448
\(927\) − 4.00000i − 0.131377i
\(928\) 1.00000i 0.0328266i
\(929\) −3.00000 −0.0984268 −0.0492134 0.998788i \(-0.515671\pi\)
−0.0492134 + 0.998788i \(0.515671\pi\)
\(930\) 0 0
\(931\) −6.00000 −0.196642
\(932\) 15.0000i 0.491341i
\(933\) 0 0
\(934\) −42.0000 −1.37428
\(935\) 0 0
\(936\) 2.00000 0.0653720
\(937\) 11.0000i 0.359354i 0.983726 + 0.179677i \(0.0575053\pi\)
−0.983726 + 0.179677i \(0.942495\pi\)
\(938\) 2.00000i 0.0653023i
\(939\) −50.0000 −1.63169
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 14.0000i 0.456145i
\(943\) 0 0
\(944\) 9.00000 0.292925
\(945\) 0 0
\(946\) −48.0000 −1.56061
\(947\) 24.0000i 0.779895i 0.920837 + 0.389948i \(0.127507\pi\)
−0.920837 + 0.389948i \(0.872493\pi\)
\(948\) 16.0000i 0.519656i
\(949\) −4.00000 −0.129845
\(950\) 0 0
\(951\) 30.0000 0.972817
\(952\) − 12.0000i − 0.388922i
\(953\) 30.0000i 0.971795i 0.874016 + 0.485898i \(0.161507\pi\)
−0.874016 + 0.485898i \(0.838493\pi\)
\(954\) 6.00000 0.194257
\(955\) 0 0
\(956\) 30.0000 0.970269
\(957\) − 12.0000i − 0.387905i
\(958\) 36.0000i 1.16311i
\(959\) 0 0
\(960\) 0 0
\(961\) 18.0000 0.580645
\(962\) − 14.0000i − 0.451378i
\(963\) 3.00000i 0.0966736i
\(964\) 13.0000 0.418702
\(965\) 0 0
\(966\) 0 0
\(967\) − 4.00000i − 0.128631i −0.997930 0.0643157i \(-0.979514\pi\)
0.997930 0.0643157i \(-0.0204865\pi\)
\(968\) − 25.0000i − 0.803530i
\(969\) −24.0000 −0.770991
\(970\) 0 0
\(971\) −42.0000 −1.34784 −0.673922 0.738802i \(-0.735392\pi\)
−0.673922 + 0.738802i \(0.735392\pi\)
\(972\) 10.0000i 0.320750i
\(973\) − 10.0000i − 0.320585i
\(974\) −38.0000 −1.21760
\(975\) 0 0
\(976\) −1.00000 −0.0320092
\(977\) − 57.0000i − 1.82359i −0.410644 0.911796i \(-0.634696\pi\)
0.410644 0.911796i \(-0.365304\pi\)
\(978\) − 8.00000i − 0.255812i
\(979\) −36.0000 −1.15056
\(980\) 0 0
\(981\) −4.00000 −0.127710
\(982\) − 30.0000i − 0.957338i
\(983\) 39.0000i 1.24391i 0.783054 + 0.621953i \(0.213661\pi\)
−0.783054 + 0.621953i \(0.786339\pi\)
\(984\) −24.0000 −0.765092
\(985\) 0 0
\(986\) 6.00000 0.191079
\(987\) − 36.0000i − 1.14589i
\(988\) − 4.00000i − 0.127257i
\(989\) 0 0
\(990\) 0 0
\(991\) −4.00000 −0.127064 −0.0635321 0.997980i \(-0.520237\pi\)
−0.0635321 + 0.997980i \(0.520237\pi\)
\(992\) − 7.00000i − 0.222250i
\(993\) 16.0000i 0.507745i
\(994\) 24.0000 0.761234
\(995\) 0 0
\(996\) 0 0
\(997\) − 1.00000i − 0.0316703i −0.999875 0.0158352i \(-0.994959\pi\)
0.999875 0.0158352i \(-0.00504070\pi\)
\(998\) 13.0000i 0.411508i
\(999\) 28.0000 0.885881
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1450.2.b.a.349.2 2
5.2 odd 4 1450.2.a.d.1.1 1
5.3 odd 4 1450.2.a.e.1.1 yes 1
5.4 even 2 inner 1450.2.b.a.349.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1450.2.a.d.1.1 1 5.2 odd 4
1450.2.a.e.1.1 yes 1 5.3 odd 4
1450.2.b.a.349.1 2 5.4 even 2 inner
1450.2.b.a.349.2 2 1.1 even 1 trivial